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Abstract: Energy-intensive enterprises lack a scientific and effective energy efficiency assessment
framework and methodology. This lack leads to an inaccurate understanding of energy usage and
its benefits. As a result, there is energy wastage and loss. This wastage and loss negatively affect
product costs. They also present a challenge to effective energy management. To address these issues,
this paper introduces a novel, comprehensive energy efficiency evaluation system. This system
integrates both qualitative and quantitative measures. It proposes an evaluation model based on the
Particle Swarm Optimization (PSO) combined with the Analytic Hierarchy Process (AHP) and Fuzzy
Comprehensive Evaluation (FCE), wherein PSO is employed to optimize the weights determined
by AHP, ensuring that the significance attributed to various indicators is scientific, objective, and
rational. The FCE method is utilized to convert diverse factors affecting corporate energy efficiency,
across different types and scales, into standardized 0–1 values, enabling a comparative analysis of
the impact of each process and indicator on energy efficiency. Furthermore, the paper introduces
an energy efficiency prediction model employing a multivariate linear regression algorithm, which
demonstrates a good fit, facilitating the transition from retrospective energy efficiency evaluation
to proactive improvements. Utilizing data on actual consumption of water, electricity, and steam
from an enterprise, along with expert assessments on the implementation levels of new processes,
technologies, equipment, personnel scheduling proficiency, steam recovery rates, and adherence
to policies and assessments, a simulation experiment of the proposed model was conducted using
Python. The evaluation yielded an energy efficiency score of 0.68; this is consistent with the real-world
scenario of the studied enterprise. The predicted mean square error of 9.035416039503998 × 10−9 in-
dicates a high model accuracy, validating the practical applicability and effectiveness of the proposed
approach.

Keywords: enterprise energy efficiency; assessment index system; hierarchical analysis method
AHP; particle swarm optimization PSO; fuzzy comprehensive evaluation method FCE; multiple
linear regression

1. Introduction

Many current evaluations of corporate energy efficiency focus primarily on direct
energy consumption, mainly reflecting energy use through a company’s physical infras-
tructure. This approach often overlooks comprehensive assessments that include process
enhancements, equipment upgrades, recycling initiatives, and adherence to policies and
regulatory frameworks; areas where a gap is evident compared to international energy
efficiency standards.

In the brewing industry, beer production enterprises are significant consumers of
energy and major sources of pollution and waste discharge. The specific process of beer
manufacturing involves several steps: milling, followed by mashing and saccharification;
then wort filtration; boiling with hops at high temperatures; clarification and cooling;
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addition of yeast for fermentation; diatomaceous earth filtration; and finally packaging of
the finished product. This process encompasses various departments, including the power
workshop, brewing workshop, and packaging workshop. This cycle encompasses various
facilities, including power generation, brewing operations, and packaging. By prioritizing
energy management and optimizing the use of water, electricity, and steam, breweries
can ensure product quality and achieve significant economic and environmental benefits.
Establishing an energy efficiency assessment indicator system and evaluation model is key
and of great significance [1–3].

Paper [1] utilizes PSO + AHP and FCE to assess the operational status of wind power
systems. In paper [2], it is indicated that a method for corporate energy consumption pro-
cess modeling provides a multi-dimensional model and an open integration framework for
enterprise energy consumption systems, alongside methods for simulating and optimizing
energy consumption processes and analyzing energy flow and logistics balance within
enterprise production processes. This focuses on sub-models of the enterprise energy
consumption system and methods for simulating and optimizing energy consumption
processes. However, it does not involve the evaluation of energy efficiency. Paper [3]
employs a fuzzy comprehensive assessment method for evaluating the health status of
hoists. Article [4] employs self-coding compression and multi-scale feature extraction for
predicting the degradation assessment of pumped storage units.

Furthermore, paper [5] reviews the use of data envelopment analysis (DEA) for
energy efficiency evaluation, showcasing DEA as a data-oriented method for estimating
the overall efficiency of homogeneous decision-making units based on input–output ratios.
In paper [6], it is indicated that the basic models, development, and application of four
main assessment methods in energy efficiency evaluation, including stochastic frontier
analysis, data envelopment analysis, power analysis, and benchmarking comparison.
References [5,6] merely involve objective energy consumption data and do not cover the
soft environment of enterprises, such as the application of new processes, new technologies,
and new equipment, the scheduling level of professionals, the recovery rate of water vapor,
and other subjective factors. Article [7] utilizes the primary energy input–output (PEIO)
ratio as an assessment method to evaluate the energy balance of a biogas system. Article [8]
proposes a mathematical model based on the target cost approach for selecting energy
efficiency projects aimed at maximizing economic impacts.

Paper [9] emphasizes the need for targeted interventions based on industry character-
istics and the responsibility of various sectors in promoting energy efficiency. It calls for
the adoption of comprehensive methods to integrate energy-saving standards into product
production. This further underscores the significance and societal value of this article,
highlighting it as a subject that requires focused and in-depth research in the field of energy.
In paper [10], a method for assessing the energy efficiency of industrial equipment based
on informational means is described. Reference [11] established a comprehensive energy
efficiency indicator framework for high-energy-consuming enterprises, encompassing eco-
nomic, management, technical energy efficiency indicators, and environmental indicators.
However, it does not provide methods for measuring each indicator. In article [12] an
index system has been established for electric companies, encompassing economic energy
efficiency indicators, electrical energy information indicators, production information indi-
cators, and electrical energy pollution indicators. However, the subjective weights derived
from G1 group judgments have not undergone consistency assessment. In article [13] the
corporate energy efficiency is evaluated based on the Analytic Hierarchy Process (AHP)
and quantitative specific consumption data. Paper [14] gives a comprehensive evaluation
of the smart power distribution network’s effectiveness, including reliability, electrical en-
ergy quality, economy, environmental protection, interactivity, and technicality, established
based on AHP, entropy weighting method, and fuzzy comprehensive analysis. Paper [15],
through theoretical calculation and combining actual sintering production practices, stud-
ies and establishes a standardized sintering process energy efficiency assessment system.
Article [16] gives a comprehensive energy efficiency assessment framework for medium-
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and low-voltage distribution networks, as well as primary thermal networks. This has
been developed and evaluated using the Analytic Hierarchy Process (AHP). Article [17]
combines subjective and objective weights obtained from Particle Swarm Optimization
Analytic Hierarchy Process (PSO-AHP) and Rough Set Theory based on the idea of linear
weighting to acquire combined weights, and uses a Fuzzy Comprehensive Evaluation
method to assess the efficiency of irrigation water use. Paper [18] uses AHP to establish
a hierarchical progressive analysis model, and through the simulated annealing method
improves the Particle Swarm Optimization method to solve the consistency problem of
judgment matrices, addressing the issues of strong subjectivity and uncertainty in informa-
tion security threat assessments. Paper [19], considering distributed power sources and
combined with reclosure devices, proposes a new method that improves Particle Swarm
Optimization and Analytic Hierarchy Process to simultaneously optimize the capacity,
location, and quantity. Paper [20], based on the Particle Swarm Optimization Algorithm
(PSO), constructs the PSO-AHP model, applying this model to evaluate the impact of the
water transport industry on the new rural construction in Nanjing’s Wu Jiazui Village;
Article [21] uses the AHP-FCE method combined with expert questionnaire results and
Fuzzy Comprehensive Evaluation to calculate weights at all levels, scientifically evaluating
factors affecting quality in the commercial concrete production process, thereby enhancing
the management efficiency of commercial concrete operations. Paper [22] constructis an
agricultural product supply chain performance evaluation indicator system, using the
AHP-FCE model as the evaluation method. In paper [23], Analytic Hierarchy Process
(AHP)—Fuzzy Comprehensive Evaluation (FCE) mathematical model is adopted to es-
tablish a comprehensive evaluation system for 20 Macadamia germplasm resources, and
then combines the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
to screen for Macadamia strains with superior comprehensive trait performance. Arti-
cle [24] constructs a pharmaceutical wastewater treatment technology evaluation index
system, sets evaluation standards, and uses the Analytic Hierarchy Process combined with
Fuzzy Comprehensive Evaluation (AHP-FCE) to conduct a comprehensive evaluation
of 13 pharmaceutical wastewater treatment technologies developed for a water-specific
project. Article [25] proposes a comprehensive performance evaluation method for elec-
tromagnetic coupling mechanisms, evaluating various types of electromagnetic coupling
mechanisms that meet the same application requirements.

Building on the foundation of the aforementioned literature, the aim of this study is to
conduct an energy efficiency assessment for enterprises. For the first time, an enterprise
energy efficiency assessment indicator system has been developed, which not only consid-
ers real-time objective data (such as water, electricity, and steam consumption) but also
takes into account subjective evaluations of new technologies and equipment, professional
personnel arrangements, water vapor recovery rate, and the status of regulations and
assessment implementation. A quantitative evaluation model combining Particle Swarm
Optimization + Analytic Hierarchy Process − Fuzzy Comprehensive Evaluation (PSO
+ AHP − FCE) is proposed to assess enterprise energy efficiency, identify weaknesses
affecting energy efficiency, and facilitate targeted rectification. Moreover, based on the
assessment results, a multivariate linear regression method for energy efficiency prediction
is put forward, shifting from post-assessment to pre-estimation, retracing factors leading
to low energy efficiency, and guiding enterprises in specifically improving relevant tech-
nologies and optimizing production scheduling, etc., to enhance energy efficiency. This
analytical and optimization approach provides a means to accurately grasp the trend of
corporate energy efficiency, promote scientific production scheduling, and achieve energy
saving, cost reduction, and efficiency improvement. This method is designed to accurately
capture the trend of corporate energy efficiency, facilitate scientific production scheduling,
and realize energy conservation, cost reduction, and efficiency enhancement.
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2. Principles to Be Followed in Constructing the Energy Efficiency Assessment
Index System

In evaluating the energy efficiency of breweries within the brewing sector, it is essential
to apply a range of indicators that accurately reflect their energy performance. The selection
of these indicators must adhere to specific criteria to ensure a comprehensive representation
of a brewery’s energy efficiency [10,11].

Precision: The foundation and selection of the assessment framework, including indi-
cators and methodologies, must be precise to produce reliable assessment outcomes. This
precision ensures that the chosen indicators are clear and minimizes their interdependence,
to uphold the authenticity and trustworthiness of the results.

Inclusiveness: The chosen indicators should offer an holistic view of the brewery’s
energy consumption and efficiency, spanning various aspects such as water, electricity, and
steam usage across different processes.

Applicability and Universality: Indicators should conform to universally accepted
measurement conventions, incorporating both objective and measurable data and, where
feasible, subjective assessments that are straightforward to gauge.

Organized and Structured Approach: There should be a clear, logical flow from over-
arching energy efficiency goals down to specific factors impacting these goals, establishing
a coherent structure among the indicators.

Integrated Approach: It is essential to balance both quantitative and qualitative
indicators. Quantitative indicators should capture the core aspects of energy efficiency.
In contrast, though more challenging to measure, qualitative indicators can be quantified
based on expert evaluations to encompass elements critical to understanding the brewery’s
energy efficiency landscape.

3. Construction of Energy Efficiency Evaluation System

In assessing the energy efficiency of beer enterprises, this study compares and ana-
lyzes the technologies and equipment adopted in various production stages, the processes
involved in production, and the competencies of technical and management personnel.
Beyond relying solely on quantifiable metrics such as water, electricity, and steam con-
sumption to gauge enterprise energy efficiency, this research integrates both qualitative and
quantitative assessments. It incorporates into the comprehensive energy efficiency evalua-
tion indices those aspects that cannot be directly measured, such as the application of new
processes, technologies, and equipment, the scheduling proficiency of professional person-
nel, the rate of water and steam recovery and reuse, and the energy management systems
and evaluations, which are only amenable to qualitative assessment. This approach enables
the measurement of the soft environment management level within different subsidiaries
of the group, under the fixed conditions of hardware equipment, in terms of different
process modifications, technological innovations, professional personnel scheduling, and
management of leaks and losses.

Each type of energy consumption, such as electricity consumption, is determined
by different stages of consumption, including brewing electricity consumption, power
electricity consumption, packaging electricity consumption, and non-production electricity
consumption. Among these, various process stages such as saccharification, fermentation,
filtration, and CIP cleaning further determine brewing electricity consumption. This reflects
the systemic nature of the enterprise, where energy consumption and its hierarchically
related indicators are interlinked.

For instance, the application of new processes, technologies, and equipment involves
11 secondary indicators, as shown in Figure 1; water and steam recovery rates involve
11 secondary indicators; the level of professional staff scheduling involves four secondary
indicators; the implementation of systems and assessments involves four secondary in-
dicators; electricity consumption involves four secondary indicators for brewing, power,
packaging, and non-production, with brewing electricity consumption further involving
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four tertiary indicators such as saccharification, fermentation, filtration, and CIP cleaning,
etc. The energy efficiency assessment indicator system constructed is shown in Figure 1.
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This section proposes incorporating four qualitative aspects alongside seven quantifi-
able primary indicators into the comprehensive energy efficiency assessment framework.
These aspects include the application of new processes, technologies, and equipment; the
level of professional personnel scheduling; water and steam recovery rates; and the imple-
mentation of systems and assessments—all of which significantly impact energy efficiency
levels but are not directly measurable. The goal layer of the assessment index includes
these alongside measurable consumptions of water, electricity, and steam.

The criterion layer encompasses the various stages affecting related factors and the
methods adopted. It includes specific consumption metrics such as brewing steam, packag-
ing steam, CIP (Clean-In-Place) steam, brewing electricity, power electricity, packaging elec-
tricity, non-production electricity, brewing water, packaging water, auxiliary water usage,
and the application of energy-efficient technologies and practices. Among these are the use
of enclosed boiling kettles, optimization of saccharification processes, wort cooling, ice wa-
ter temperature control, fermentation process optimization, optimal equipment operating
conditions, reduction of steam waste, minimizing temperature differences in pre-soaking
and main caustic tanks, using energy-saving devices, UV sterilization for fermentation
water, improving refrigeration efficiency, centralized production and cessation, planned
maintenance for efficiency enhancement, reasonable scheduling for benefit improvement,
multi-party linkage to control inventory, recovery and reuse of condensate water, circu-
lation of cooling water, recovery of steam heat energy from malt boiling, saccharification
hot water recovery, steam heat energy recovery in saccharification, secondary steam heat
recovery, biogas recovery and utilization, alkali recovery through plate heat exchange,
heat exchange between bottle washers and sterilizers, insulation of heat dissipation areas,
installation of pressure-maintaining valves, energy consumption monitoring and analysis,
setting energy consumption standards, establishing an energy assessment mechanism, and
mechanisms for daily supervision and inspection; totaling 40 secondary indicators.

Within the criterion layer, various processes are included as the indicator layer, such
as steam consumption for brewing saccharification, gelatinization, boiling, hot water
tanks, bottle washing machines, sterilizers, CIP cleaning, and electricity consumption
for power refrigeration, air compression, carbon dioxide production, water treatment,
bottling lines, canning lines, kegging lines, non-production transfer, storage, sewage treat-
ment, heating, process control, administrative activities, and water consumption for brew-
ing saccharification, fermentation, filtration, CIP cleaning, and auxiliary uses; totaling
36 tertiary indicators.

For quantifiable objective indicators, their weights are determined by their importance
at the corresponding level. For instance, in beer production enterprises, the proportion of
steam consumption is the highest, hence its weight is the greatest; while the proportion
of water consumption is the lowest, making its weight the smallest. As for unquantifi-
able subjective indicators, through in-depth research and analysis conducted jointly with
process and technology experts and onsite engineering technicians, the ranking of factors
affecting enterprise energy efficiency has been determined as follows: the application of
new processes, technologies, and equipment; the level of professional personnel scheduling;
the rate of steam recovery; and the implementation of policies and assessments.

The specific factors influencing energy efficiency and the order of their weights are
shown in Figure 1 and Equations (1) to (18).

As can be seen in Figure 1, the set of weights of the first level indicators and the
ranking of the weights:

U = {U1, U2, U3, U4, U5, U6, U7, U8, U9}
ω1 > ω4 > ω2 > ω5 > ω6 > ω3 > ω7

(1)

Set of weights for secondary indicator steam consumption:

U1 = {U11, U12, U13}
ω12 > ω11 > ω13

(2)
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Set of weights for secondary indicator electricity consumption:

U2 = {U21, U22, U23, U24}
ω22 > ω23 > ω24 > ω21

(3)

Set of weights for secondary indicator water consumption:

U3 = {U31, U32, U33}
ω31 > ω32 > ω33

(4)

Set of weights for secondary indicator application of new processes, technologies, and
equipment:

U4 = {U41, U42, U43, U44, U45, U46, U47, U48, U49, U410, U411}
ω41 > ω42 > ω43 > ω44 > ω45 > ω46 > ω47 > ω48 > ω49 > ω410 > ω411

(5)

Set of weights for secondary indicator professional scheduling:

U5 = {U51, U52, U53, U54}
ω51 > ω52 > ω53 > ω54

(6)

Set of weights for secondary indicator water vapor recovery and utilization:

U6 = {U61, U62, U63, U64, U65, U66, U67, U68, U69, U610, U611}
ω61 > ω62 > ω63 > ω64 > ω65 > ω66 > ω67 > ω68 > ω69 > ω610 > ω611

(7)

Set of weights for secondary indicator system assessment:

U7 = {U71, U72, U73, U74}
ω71 > ω72 > ω73 > ω74

(8)

Set of weights for tertiary indicator brewing steam consumption:

U11 = {U111, U112, U113, U114}
ω113 > ω11 > ω112 > ω114

(9)

Set of weights for tertiary indicator packaging steam consumption:

U12 = {U121, U122, U123}
ω121 > ω122 > ω123

(10)

Set of weights for tertiary indicator CPI (cost per unit) steam consumption:

U13 = {U131}
ω131 = 1

(11)

Set of weights for tertiary indicator brewing electricity consumption:

U21 = {U211, U212, U213, U214}
ω211 > ω212 > ω213 > ω214

(12)

Set of weights for tertiary indicator power electricity consumption:

U22 = {U221, U222, U223, U224}
ω221 > ω222 > ω223 > ω224

(13)
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Set of weights for tertiary indicator packaging electricity consumption:

U23 = {U231, U232, U233, U234}
ω231 > ω232 > ω233 > ω234

(14)

Set of weights for tertiary indicator CPI (cost per unit) electricity consumption:

U24 = {U241, U242, U243, U244, U245, U246}
ω243 > ω241 > ω242 > ω246 > ω244 > ω245

(15)

Set of weights for tertiary indicator brewing water consumption:

U31 = {U311, U312, U313, U314}
ω311 > ω313 > ω312 > ω314

(16)

Set of weights for tertiary indicator packaging water consumption:

U32 = {U321, U322, U323, U324}
ω321 > ω322 > ω323 > ω324

(17)

Set of weights for tertiary indicator auxiliary water consumption:

U33 = {U331, U332}
ω331 > ω332

(18)

The subjective scoring is provided by a panel of five experts, consisting of hired group
managers, corporate process specialists, vice presidents of technology, corporate energy
monitoring technicians, and university researchers. This scoring arises from a collective
process of comparison, analysis, and discussion by the panel, based on fundamental
principles (non-adoption is scored as 0, adoption for half a year scores 50, and a score of
about 0.85 is given for the inability to concentrate production or cease operations during the
February Spring Festival and the November off-season, or for seasonal transitions). Given
the consistency in scoring principles, the variance among individual scores is minimal.
The scores, after being averaged arithmetically, are presented in Table 1, as indicated. This
translation is intended for an academic paper; therefore, terminology has been selected for
precision and formality.

As shown in Table 1, enterprises considering food safety risks did not adopt wort
cooling in the first stage, resulting in a score of U42 being 0. When water temperatures are
low during autumn and winter, reducing the refrigeration consumption for ice-making
is feasible, with a score of U43 being 0.5. The use of syrup, not employing the optimal
operating conditions of the gelatinization pot, has a score of U44 being 0.5. Optimizing
fermentation processes, which are affected by seasonal variations, is only applicable for
half of the year, leading to a score of U46 being 0.5. Improving microbial management levels
to reduce steam consumption, which is also limited by seasonality to half-year applicability,
results in a score of U47 being 0.5. These factors influence the score for the application of
new processes, technologies, and equipment.

Extended downtime in February and November impacts the ability to concentrate
production and cessation activities, scoring U51 at 0.83. The transition from off-peak to peak
seasons or vice versa affects multi-party coordination and the inventory of fermentation
liquid, scoring U54 at 0.83, which influences the scores for professional staff scheduling.

Although the recovery of evaporative steam heat during saccharification and gela-
tinization requires capital investment for equipment modification, it is scored U65 at 0,
indicating that its weight is minimal and does not significantly impact the water and steam
recovery score.



Energies 2024, 17, 1931 9 of 23

Table 1. Scores of indicators at each level.

Index Numerical Value Index Numerical Value Index Numerical Value

U1 0.201 T/kl U2 39.05 kwh/kl U3 2.3 T/kl

U4 68.4 U5 81.5 U6 92.6

U7 99.2 U11 0.041 T/kl U12 0.099 T/kl

U13 0.002 T/kl U21 3.56 kwh/kl U22 18.6 kwh/kl

U23 19.7 kwh/kl U24 4.48 kwh/kl U31 1.56 T/kl

U32 0.89 T/kl U33 0.065 T/kl U41 100

U42 0 U43 50 U44 50

U45 90 U46 50 U47 50

U48 100 U49 80 U410 100

U411 100 U51 83 U52 80

U53 80 U54 83 U61 98

U62 100 U63 95 U64 90

U65 0 U66 100 U67 100

U68 100 U69 100 U610 98

U611 100 U71 98 U72 100

U73 100 U74 100 U111 object

U112 object U113 object U114 object

U121 object U122 object U123 object

U131 object U211 object U212 object

U213 object U214 object U221 object

U222 object U223 object U224 object

U231 object U232 object U233 object

U234 object U241 object U242

U243 object U244 object U245

U246 object U311 object U312

U313 object U314 object U321

U322 object U323 object U324

U331 object U332 object

The enterprise focuses on controlling issues such as constant lighting and leaking
faucets, ensuring that energy management systems and assessments are effectively imple-
mented, resulting in high scores.

Objective indicator values are collected by sensors daily, weekly, monthly, or annually,
with data varying across different periods. This academic paper emphasizes the importance
of precision in language to reflect the rigorous nature of the analysis.

4. Comprehensive Energy Efficiency Evaluation Model

To conduct a comprehensive, integrated, scientific, and objective evaluation of en-
ergy efficiency, it is necessary to understand the quantitative evaluation values; i.e., the
magnitude of the weights, based on a qualitative foundation that ranks the importance of
each indicator’s impact on energy efficiency (from Equation (1) to Equation (18)). Here,
the subjective weighting method, the Analytic Hierarchy Process (AHP) model, deter-
mines the weights. Furthermore, these weights obtained from the AHP method are further
optimized through the Particle Swarm Optimization (PSO) method to make them more
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objective and reasonable. This approach ensures a rigorous academic discourse on energy
efficiency evaluation.

4.1. AHP Model

The Analytic Hierarchy Process (AHP) establishes a hierarchical structure model. The
essence of AHP is to hierarchize and quantify the factors affecting energy efficiency. For
this purpose, the complex, multi-dimensional issues affecting enterprise energy efficiency—
encompassing various energy sources, different stages, and diverse factors—are decom-
posed from difficult to easy into corresponding primary, secondary, and tertiary indicators,
as shown in Figure 1. Among the seven primary indicators, 40 secondary indicators, and
36 tertiary indicators of energy efficiency assessment, the evaluation of the application of
new processes, technologies, and equipment, professional staff scheduling, water and steam
recovery, and systems and assessments as primary indicators differs from the three primary
objective indicators of steam, electricity, and water consumption. The subjective factors of
different experts are inevitably prone to certain biases, which may lead to contradictions,
resulting in the judgment matrix not being entirely consistent. Therefore, a consistency test
is necessary to determine the importance of ranking the evaluation of the above indicators.
Based on this, a qualitative and quantitative decision analysis is conducted. The process
flow of the AHP application is illustrated in Figure 2.
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After establishing the multi-level energy efficiency evaluation system shown in Fig-
ure 1, by utilizing the specific data on water, electricity, and steam consumption of a
particular brewery, along with qualitative surveys and incorporating the opinions of ex-
perts; the first-, second-, and third-level judgment matrices J are constructed based on the
scaling theory of the AHP “9-point scale” method, represented as Equation (19):

J =
(
aij)n×n (19)
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Taking the primary indicators as an example, which involve the single consumption of
water, electricity, and steam; as well as the application status of new processes, technologies,
and equipment, the level of professional staff scheduling, the recovery rate of water and
steam, and the implementation of systems and assessments; there are seven indicators in
total. The judgment matrix J is represented as Equation (20):

J =



a11 a12 a13 a14 a15 a16 a17
a21 1 . . . . . . . . . . . . . . .
a31 . . . 1 . . . . . . . . . . . .
a41 . . . . . . 1 . . . . . . . . .
a51 . . . . . . . . . 1 . . . . . .
a61 . . . . . . . . . . . . 1 . . .
a71 . . . . . . . . . . . . . . . 1


(20)

In the formula, aij represents the scale of importance between factor i and factor j,
with aij = 1/aji, and aii = 1, where i = 1, 2 . . . n; j = 1, 2 . . . n, here n = 7. Based on the
ranking of the impacts on energy efficiency by seven indicators: water, electricity, steam,
regulatory and assessment systems, professional personnel scheduling, steam and water
recovery; and the application of new processes, technologies, and equipment, the judgment
matrix J =

(
aij)7×7 for the primary indicator weights is set as Equation (21) and, similarly

for others, according to the degree of influence of the indicators on the previous level, the
judgment matrices for the weights of each level of indicators are determined.

J =



1 2 6 1 3 3 6
1
2 1 3 1

2
3
2

3
2 3

1
6

1
3 1 1

5
1
2

1
2 1

1 3
2 5 1 2 5

2 5
1
3

2
3 2 1

2 1 1 2
1
3

1
2 1 1

2 1 1 2
1
6

1
3 1 1

5
1
2

1
2 1


(21)

In the process of evaluating energy efficiency, which involves seven primary indicators,
40 secondary indicators, and 36 tertiary indicators, the application of new processes, tech-
nologies, and equipment, along with professional staff scheduling, water vapor recovery,
and the assessment system itself, form the basis for four key qualitative indicators. These
are contrasted with three primary quantitative indicators of energy usage: steam, electricity,
and water consumption. The variability in expert opinions on these subjective factors could
potentially introduce biases, leading to inconsistencies within the judgment matrix. This
discrepancy may result in contradictions that affect the overall coherence of the assessment.
To address these issues and ensure the reliability of the subjective weightings, a consis-
tency check is applied. This check helps to verify the coherence of the weights derived
from potentially contradictory evaluations, using a specific formula for the consistency
test [14,15].

CR = CI/RI (22)

where CI is the consistency index of the judgment matrix, RI is the average stochastic
consistency index, which is only related to the matrix order n, and CR is the stochastic
consistency ratio of the judgment matrix. CI is given by Equation (23):

CI =
λmax

n − 1
(23)

where λmax is the largest eigenvalue of the weight matrix, λmax = ∑n
i=1

(Jω)i
nωi

, ωi =
∑n

j=1 aij
n , aij =

aij

∑n
i=1 aij

, ωi = (ω1, ω2, . . . , ωn)
T and n is the order of the weight matrix.



Energies 2024, 17, 1931 12 of 23

A smaller CI value indicates less inconsistency in the weight matrix. Conversely, a higher
CI value indicates an inconsistency in the weight matrix.

The average stochastic consistency index RI is obtained by taking the arithmetic
average after repeated computations of the characteristic roots of the random judgment
matrix, and for the judgment matrix of order 1–12, the average stochastic consistency index
is shown in Table 2.

Table 2. Random consistency index of a 12 order judgment matrix.

The Matrix Order 1 2 3 4 5 6 7 8 9 10 11 12

RI 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54

When CR < 0.1, it is considered that the judgment weight matrix has satisfactory consis-
tency, or the degree of inconsistency is acceptable. If this condition is not met, the judgment
weight matrix needs to be modified to meet the requirement of satisfactory consistency.

According to Figure 2, the weights of each level of the AHP model and the consistency
indicators can be obtained. The calculation results are shown in Table 3.

Table 3. Calculation results of index weights and consistency indexes at all levels of the AHP model.

Index Weight Consistency
Indicators Index Weight Consistency

Indicator Index Weight Consistency
Indicator

U1 0.310 0.004 U2 0.162 0.004 U3 0.049 0.004

U4 0.231 0.004 U5 0.107 0.004 U6 0.092 0.004

U7 0.049 0.004 U11 0.405 0.098 U12 0.521 0.098

U13 0.074 0.098 U21 0.087 0.002 U22 0.408 0.002

U23 0.408 0.002 U24 0.097 0.002 U31 0.615 0.002

U32 0.318 0.002 U33 0.067 0.002 U41 0.311 0.006

U42 0.149 0.006 U43 0.118 0.006 U44 0.108 0.006

U45 0.091 0.006 U46 0.071 0.006 U47 0.052 0.006

U48 0.039 0.006 U49 0.031 0.006 U410 0.021 0.006

U411 0.009 0.006 U51 0.370 0.003 U52 0.345 0.003

U53 0.185 0.003 U54 0.1 0.003 U61 0.139 0.006

U62 0.131 0.006 U63 0.131 0.006 U64 0.123 0.006

U65 0.111 0.006 U66 0.103 0.006 U67 0.096 0.006

U68 0.071 0.006 U69 0.053 0.006 U610 0.031 0.006

U611 0.011 0.006 U71 0.370 0.003 U72 0.345 0.003

U73 0.185 0.003 U74 0.1 0.003 U111 0.233 0.013

U112 0.129 0.013 U113 0.586 0.013 U114 0.052 0.013

U121 0.615 0.001 U122 0.319 0.001 U123 0.066 0.001

U131 1 0 U211 0.536 0.02 U212 0.236 0.02

U213 0.174 0.02 U214 0.054 0.02 U221 0.504 0.01

U222 0.234 0.01 U223 0.213 0.01 U224 0.049 0.01

U231 0.652 0.049 U232 0.230 0.049 U233 0.059 0.049

U234 0.059 0.049 U241 0.283 0.019 U242 0.129 0.019

U243 0.383 0.019 U244 0.046 0.019 U245 0.029 0.019

U246 0.13 0.019 U311 0.402 0.097 U312 0.161 0.097

U313 0.402 0.097 U314 0.035 0.097 U321 0.586 0.094

U322 0.315 0.094 U323 0.049 0.094 U324 0.05 0.094

U331 0.5 0 U332 0.5 0
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4.2. Optimization of Indicator Weights Based on AVOA + AHP

The weights of seven first-level indicators, 40 s-level indicators, and 36 third-level
indicators are determined by AHP, which also meets the consistency requirements; but
considering the subjectivity of AHP in determining the weights, to improve the subjectivity
of AHP in determining the weights of the indicators, PSO is applied to AHP to construct
the PSO+AHP model, which can further optimize the above weights and make the weights
more scientifically reliable.

In optimizing the weight calculation of AHP using PSO, the key lies in determining
the fitness function, i.e., to achieve the global optimum of the consistency index function
expressed as Equation (22) [19–21]. The maximum eigenvalue of the judgment matrix J,
denoted as λmax is given by Equation (24).

λmax =
n

∑
i=1

(Jω)i
nωi

(24)

where ω =
(
ω1, ω2, . . . , ωn)

T is the weight vector of each indicator, ωi = (i = 1, 2, . . . , n)
is the weight value of each indicator calculated by AHP; (Jω)i is the i-th component of the
product of the judgment matrix J and the weight vector ω = (ω1, ω2, . . . ωn)

T .
PSO optimizes the weights calculated by AHP, which is to minimize the consistency

indicator CI, as in Equation (25).

CI =
λmax

n − 1
(25)

It can be seen that the smaller value of Formula (25), indicating that the weight value
is more objective and reasonable, cannot exist self-contradictorily, so the weight value of
the indicators of the objective reasonableness of the test problem can be transformed into
the following optimization problem [16–18]; that is, PSO algorithm of the fitness function
for the Formula (26):

minCI(n) =
∑n

i=1
(Jω)i
nωi

n − 1
(26)

where: CI(n) is the consistency indicator function; ωi is the optimization variable.
Where the constraints are Equation (27):

n

∑
i=1

ωi = 1 (27)

When the number of iterations to meet the requirements is less than 0.1, it is considered
that the weights obtained, that is, the weights of each indicator; when 0, the weights
obtained for the optimal objective and reasonable weights. The particle swarm PSO
algorithm, i.e., PSO + AHP mode, is used to optimize the weights, with learning factors
c1 = 1, c2 = 2, inertia weight w = 0.5, the population size of 10, iteration number of 100, and
boundaries of 0 to 1. The calculation results are shown in Table 4.

According to Table 4, the consistency index of the PSO + AHP method has been
significantly reduced compared to the AHP method, improving the accuracy of the weights
of each index.
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Table 4. Calculation results of index weight and consistency index at all levels of PSO + AHP model.

Index Weight Consistency
Indicators Index Weight Consistency

Indicators Index Weight Consistency
Indicators

U1 0.311 0.002 U2 0.161 0.002 U3 0.048 0.002

U4 0.232 0.002 U5 0.106 0.002 U6 0.091 0.002

U7 0.051 0.002 U11 0.406 0.088 U12 0.522 0.088

U13 0.072 0.088 U21 0.088 0.001 U22 0.407 0.001

U23 0.404 0.001 U24 0.096 0.001 U31 0.616 0.001

U32 0.319 0.001 U33 0.065 0.001 U41 0.312 0.004

U42 0.148 0.004 U43 0.117 0.004 U44 0.109 0.004

U45 0.092 0.004 U46 0.07 0.004 U47 0.051 0.004

U48 0.04 0.004 U49 0.03 0.004 U410 0.022 0.004

U411 0.009 0.004 U51 0.371 0.002 U52 0.344 0.002

U53 0.186 0.002 U54 0.009 0.002 U61 0.140 0.004

U62 0.132 0.004 U63 0.132 0.004 U64 0.122 0.004

U65 0.11 0.004 U66 0.104 0.004 U67 0.092 0.004

U68 0.072 0.004 U69 0.051 0.004 U610 0.032 0.004

U611 0.009 0.004 U71 0.371 0.002 U72 0.344 0.002

U73 0.186 0.002 U74 0.009 0.002 U111 0.234 0.011

U112 0.130 0.011 U113 0.585 0.011 U114 0.051 0.011

U121 0.614 0.0006 U122 0.321 0.0006 U123 0.165 0.0006

U131 1 0 U211 0.538 0.01 U212 0.237 0.01

U213 0.173 0.01 U214 0.052 0.01 U221 0.505 0.008

U222 0.235 0.008 U223 0.214 0.008 U224 0.046 0.008

U231 0.658 0.044 U232 0.231 0.044 U233 0.058 0.044

U234 0.058 0.044 U241 0.284 0.015 U242 0.128 0.015

U243 0.384 0.015 U244 0.045 0.015 U245 0.028 0.015

U246 0.031 0.015 U311 0.405 0.091 U312 0.159 0.091

U313 0.404 0.091 U314 0.032 0.091 U321 0.588 0.091

U322 0.316 0.091 U323 0.048 0.091 U324 0.048 0.091

U331 0.5 0 U332 0.5 0

4.3. Degradation Calculation

To compare the influence of various subjective and objective factors on the previous
level indicators, the indicators of different dimensions are transformed, and the differing
impacts of various indicator magnitudes are reflected.

In Figure 1, the energy efficiency evaluation system for breweries is depicted, high-
lighting that lower consumption of steam, electricity, and water correlates with decreased
energy usage and, thus, enhanced energy efficiency. Additionally, the implementation of
innovative processes, technologies, and equipment, alongside optimized management of
professional personnel and improved recycling of steam and water, directly contributes
to higher energy efficiency. Conversely, increased energy consumption signifies reduced
energy efficiency.

Drawing parallels with assessments of equipment malfunction, this analysis introduces
the concept of deterioration degree, denoted as g; where 0 ≤ g ≤ 1. This metric quantifies the
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shift from an ideal state of optimal energy efficiency to a less favorable one, indicating that a
lower value of g signifies reduced energy usage and, consequently, higher energy efficiency.

This paper adopts the principle of min–max: the less the amount of energy consump-
tion of steam, electricity, and water, the lower the energy consumption, the higher the energy
efficiency, so the use of Formula (28), the less the better type of deterioration calculation.

x∗ =
(x − xmin)

(xmax − xmin)
(28)

x in this context, “x“ represents the evaluation indicator parameter xmin xmax value,
while “xmin” and “xmax” are the threshold values for the critical interval of the evaluation
indicator parameters. When conducting an evaluation, it is necessary to determine the
threshold values of xmin xmax”xmin” and “xmax” based on the evaluation period. For
objective indicators, these thresholds are decided by the per-unit consumption of gas,
electricity, and water in December.

The incorporation of innovative processes, technologies, and the application of new
equipment, along with more effective scheduling of professional staff and enhanced water
vapor recycling, contribute to improved operational metrics. Additionally, the thorough
implementation of systems and evaluations further elevates these scores. As such, higher
performance in these areas often correlates with increased energy efficiency, contrary to
the intuition that higher energy consumption would imply lower efficiency. Consequently,
utilizing Equation (29), we find that an increase in these positive factors leads to more
favorable calculations of the degree of deterioration, indicating an approach towards
optimal energy efficiency.

x∗ = 1 − (x − xmin)

(xmax − xmin)
(29)

The threshold xmin xmax values of “xmin” and “xmax” for subjective indicators are
determined based on whether a particular technology or system is implemented effectively
within the company. The full score is 100, and the absence of implementation score is 0.

Degree of deterioration g is actually also normalized, so that the seven primary
indicators, 40 secondary indicators, and 36 tertiary indicators with different value ranges
have the same outline. However, each indicator needs to be taken separately as the lower
the amount of energy consumption, the lower the energy efficiency, and the higher the
score, the higher the energy consumption, the lower the energy efficiency, the higher the
different strategies, the objective measurement of the unit consumption and the subjective
score and so on, the different dimensions of the eigenvalues of the mapping to the same
interval [0, 1].

According to Equations (28) and (29), the results of the normalization of each indicator
are obtained as follows:

The degradation of the 83 factors calculated in Table 5 converts all the factors affecting
the energy efficiency of enterprises, of different types and dimensions, into numerical
values ranging from 0 to 1 for the sake of comparing the impacts of various processes and
specific technical indicators on energy efficiency. A smaller gi indicates better performance,
whereas a larger gi indicates poorer performance. A value of g22 = 1, g52 = 1, g75 = 1,
respectively, signifies that the steam consumption for packaging has reached the highest
value of the evaluation period in a year (in this case, January), consideration of food
safety risks has prevented the adoption of technological modifications for wort cooling
in one stage, and a need for capital investment to modify equipment, as the enterprise
has not yet recovered the thermal energy from steam evaporation in the saccharification
and gelatinization processes. This provides a clear and comprehensive understanding and
grasp of the factors affecting energy efficiency from a local and microscopic perspective.
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Table 5. Deterioration calculation results.

Deterioration Degree Calculation Results

g1 (0.71225,0,0,0.091,0.185,0.074,0.008)

g2 (0.1852,1,0.25)

g3 (0,0,0.5462,0.4078)

g4 (0,0.1826,0.2305)

g5 (0,1,0.5,0.5,0.1,0.5,0.5,0,0.2,0,0)

g6 (0.17,0.2,0.2,0.17)

g7 (0.02,0,0.05,0.1,1,0,0,0,0,0.02,0)

g8 (0.98,0,0,0)

4.4. FCE Model

Setting up the evaluation set of targets in the energy efficiency assessment system:

V = {1, 0.67, 0.33, 0} (30)

The corresponding energy efficiency is {excellent, good, acceptable, inferior}.
Equation (30) indicates that an energy efficiency below 1 but close to 0.67 is considered

good, while approaching 1 is deemed excellent. Energy efficiency below 0.67 but close to
this value is rated as acceptable, and approaching 0.33 is considered inferior.

To derive the evaluation outcomes, it is essential to ascertain the extent to which
each indicator aligns with states of high energy efficiency and low energy consumption,
termed as the degree of association. Employing a fuzzy comprehensive evaluation, which
incorporates a multifaceted relationship among the pertinent data and information through
mathematical processing, allows for this determination. The assessment of indicators
across these four distinct states generates results as per Formula (30). These outcomes then
collectively contribute to the construction of an evaluative judgment matrix.

The affiliation function of each evaluation level is shown below:

rg =


1 g < 0
0.33−g

0.33 0 ≤ g ≤ 0.33
0 g > 0.33

(31)

rg =


0 g < 0

g
0.33 0 < g ≤ 0.33
0.67−g

0.34 0.33 < g < 0.67
0 g ≥ 0.67

(32)

rg =


0 g < 0.33
g−0.33

0.34 0.33 < g ≤ 0.67
1−g
0.33 0.67 < g < 1
0 g ≥ 1

(33)

rg =


0 g ≤ 0.67
g−0.33

0.34 0.67 < g < 1
1 g ≥ 1

(34)

Based on the calculation results from Table 5, by substituting into the membership
calculation formulas given in Equations (31) to (34), the membership degree matrix R for
the primary and various secondary indicators of a brewery’s energy efficiency in January
2021 can be determined.
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RU1 =



0 0 0.872 0.128
1 0 0 0
1 0 0 0

0.042 0.958 0 0
0.439 0.561 0 0
0.776 0.224 0 0
0.976 0.024 0 0


(35)

RU2 =

0.439 0.561 0 0
0 0 0 1

0.242 0.758 0 0

 (36)

RU3 =


1 0 0 0
1 0 0 0
0 0.364 0.636 0
0 0.771 0.229 0

 (37)

RU4 =

 1 0 0 0
0.447 0.553 0 0
0.302 0.698 0 0

 (38)

RU5 =



1 0 0 0
0 0 0 1
0 0.5 0.5 0
0 0.5 0.5 0

0.697 0.303 0 0
0 0.5 0.5 0
0 0.5 0.5 0
1 0 0 0

0.394 0.606 0 0
1 0 0 0
1 0 0 0



(39)

RU6 =


0.485 0.515 0 0
0.394 0.606 0 0
0.394 0.606 0 0
0.485 0.515 0 0

 (40)

RU7 =



0.939 0.061 0 0
1 0 0 0

0.848 0.152 0 0
0.697 0.303 0 0

0 0 0 1
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

0.939 0.061 0 0
1 0 0 0



(41)

RU8 =


0 0.061 0.939 0
1 0 0 0
1 0 0 0
1 0 0 0

 (42)

The seven rows in Equation (35) correspond to the membership statuses of the seven
primary indicators. The first row indicates that the energy efficiency related to steam
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consumption is relatively low, with a 0.872 probability of being “acceptable” and a 0.128
probability of being “inferior”, signifying elevated energy consumption. The analysis for
other indicators proceeds analogously.

4.5. Quantitative Evaluation Model Based on PSO + AHP − FCE

Considering that the quantitative scoring is to be realized in the end, the individual
scores of each index can be obtained by synthesizing the fuzzy evaluation affiliation matrix,
R, and the evaluation set matrix, as shown in Equation (43) as:

C = R · VT (43)

Using PSO + AHP obtained by the weights of the indicators ω FCE calculated by the
single score of the indicators Q weighted processing, you can get a brewery based on the
energy efficiency assessment system shown in Figure 1, energy efficiency PSO + AHP −
FCE quantitative assessment model evaluation results, as shown in Equation (44) for:

Z = ω · C = ω · R · VT (44)

4.6. Energy Efficiency Prediction Based on Multiple Linear Regression Algorithm L

Energy efficiency prediction based on multiple linear regression algorithms is based
on energy efficiency and its related factors, and it predicts the future trend of energy
efficiency by analyzing the related factors affecting energy efficiency. Compared with
the univariate linear regression method, which uses only one independent variable for
prediction, it is more accurate and effective to use multiple independent variables for joint
prediction [19–21].

Since energy efficiency is linearly correlated with each of the seven primary indicators,
its expression is shown in Equation (45):

f (xi) = θ0 + θ1x1 + θ2x2 + . . . + θmxm (45)

In regression analysis, k denotes the number of variables, and βm (m = 1, 2,. . ., k) are
referred to as the regression coefficients, with i representing the number of samples.

Next, test the significance of the regression equation. Assuming H0: β1 = β2 = . . . =
βk = 0 and H1 at least one β is not equal to 0. Conduct an F-test to construct the F-statistic:

F =
∑
(
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Using Equation (27), calculate the F-statistic. Then, based on the given significance
level α, obtain the critical value Fα(k, i − k − 1) by referring to the F-distribution table with
the first degree of freedom k and the second degree of freedom i − k − 1. Compare the
calculated F-value to the critical value Fα(k, i − k − 1). If F > Fα(k, i − k − 1), reject H0,
indicating a significant regression effect. If F ≤ Fα(k, i − k − 1), accept H0, suggesting an
insignificant regression effect.

Furthermore, significance testing of the regression coefficients is performed using
Equation (47):

T =
βi
Sβi

∼ t(i−2) (47)

In Equation (47), Sβi =

√
S2

y

∑(xi−x̄i)2 , Sy is an estimate of the standard error of the

regression equation, reflecting how well the regression equation fits the data.
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According to Equation (47), calculate the T-statistic; then, based on the given signifi-
cance level α, obtain the critical value tα/2(i − 2) from the t-distribution table with degrees
of freedom i − 2. By comparing the absolute value of the calculated T-statistic with the
critical value, the significance of the regression coefficient is determined. If |t| > tα/2(i − 2),
reject H0, indicating a significant regression effect; if |t| ≤ tα/2(i − 2), accept H0, indicating
an insignificant regression effect.

Finally, the energy efficiency prediction is carried out according to the established
regression model.

5. Application of PSO + AHP − FCE Quantitative Evaluation Model Energy Efficiency
Assessment and Prediction by Multiple Linear Regression Algorithm
5.1. Energy Efficiency Prediction Based on Multiple Linear Regression Algorithm

According to Equation (43), the results of the quantitative evaluation model can be
obtained, as shown in Table 6.

Table 6. Results of the Quantitative Evaluation Model.

Quantitative Evaluation Model The Calculation Results

CU1 (0.2875;1;1;0.684;0.815;0.926;0.992)
CU2 (0.8148;0;0.75)
CU3 (1;1;0.45;0.593)
CU4 (1;0.8174;0.7695)
CU5 (1;0;0.5;0.9;0.5;0.5;1;0.8;1;1)
CU6 (0.83;0.8;0.8;0.83)
CU7 (0.9799;1;0.9498;09;0;1;1;1;0.9799;1)
CU8 (0.3507;1;1;1)

According to Equation (44), the energy efficiency assessment value of the brewery can
be obtained as Equation (48).

The energy efficiency assessment value is:

Z = ωUCU1 = 0.68 (48)

5.2. Application of Multiple Linear Regression Algorithm to Predict Energy Efficiency

The flowchart of the multiple linear regression algorithm for predicting energy effi-
ciency is shown in Figure 3.

Here, energy efficiency comprises various hierarchical indicators. Utilizing 10 months
of energy efficiency data from the previous year to predict the energy efficiency values for
the following two months, where k represents the number of indicators at a given hierarchy
level, and k denotes the number of variables or indicators, with k = 7 for primary indicators.
The sample size is i, with I = 10 in this case. The predicted energy efficiency fitting chart
through the multivariate linear regression algorithm is shown in Figure 4.
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5.3. Analysis of Results

As seen in Table 5, the specific steam consumption is high due to financial constraints
on technological improvements, which to some extent affect the application level of high-
tech processes, new technologies, and new equipment; resulting in lower scores for these
two factors.

The energy efficiency evaluation value presented in this paper is 0.68, which is consis-
tent with the actual situation of older enterprises. The reason is that steam consumption
was at its highest in January within the entire evaluation period of one year. Since steam
consumption represents the highest proportion of the company’s total energy consumption,
it significantly impacts the energy efficiency score. However, due to the solid technical
personnel and superior soft environment in older enterprises, particularly in aspects such as
professional personnel scheduling, steam and water recovery rates, and the implementation
of systems and assessments, the overall energy efficiency of the enterprise has essentially
reached a satisfactory range. The energy efficiency evaluation values of different enter-
prises using the PSO + AHP − FCE model vary, thereby facilitating the measurement of an
enterprise’s level of energy efficiency.

The blue dots in Figure 4 represent the energy efficiency evaluation results from the
PSO + AHP − FCE model, while the red line represents the results of energy efficiency
prediction using multivariate linear regression. The consistency in trends between the
two, with most points concentrated between 0.57 and 0.72, proves the effectiveness of
multivariate linear regression for predicting energy efficiency.

On the one hand, the evaluation results from the PSO + AHP − FCE model validate
the effectiveness of multivariate linear regression predictions. On the other hand, based on
the predictive results, tracing back to the individual scores of various indicators affecting
energy efficiency reveals their impacts on overall energy efficiency. This analysis is utilized
to improve and perfect the application of new processes, technologies, and equipment,
professional personnel scheduling levels, steam and water recovery utilization rates, im-
plementing systems and assessments, and the secondary and tertiary specific indicators
beneath them; thereby enhancing energy efficiency.

Based on the predictive results shown in Figure 4, along with the calculated coefficient
of determination (R2) value of 1 and a mean squared error of 9.035416039503998 × 10−9, it
indicates that the model fits the data well.

According to the results shown in Table 7, x1 to x7 represent the factors affecting
energy efficiency; namely, specific steam consumption, specific electricity consumption,
specific water consumption; the application of new processes, technologies, and equip-
ment; professional personnel scheduling levels; steam and water recovery rates; and the
implementation of systems and assessments. The “coef” column displays the regression
coefficients for each independent variable, indicating the values of β in Equation (45); the
R-squared value of 1 demonstrates a good fit of the model to the data; the mean squared
error of 9.035416039503998 × 10−9 meets the precision requirements for prediction. The
F-statistic of 4.508 × 105 and Prob F-statistic of 2.22 × 10−6 reflect the model’s good fit to the
data; the “t” and “P > |t|” columns show the t-statistic values and corresponding p-values.
Here, the t-values for “x1” to “x5” and “x7” are very high, and the corresponding p-values
are close to 0, indicating these variables have a statistically significant impact on y energy
efficiency. The t-value for x6 is close to −0.994, with a higher p-value (0.425), suggesting that
x6’s impact on y is statistically weaker than that of other independent variables. Further
analysis reveals that the 11 secondary indicators for steam and water recovery utilization
have some correlation with the 11 secondary indicators for the application of new processes,
technologies, and equipment.
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Table 7. OLS regression results.

Coef t P > |t|

x1 −0.3133 −52.295 0

x2 −0.162 −61.181 0

x3 −0.0476 −27.264 0.001

x4 −0.2415 −26.96 0.001

x5 −0.1064 −60.046 0

x6 −0.0452 −0.994 0.425

x7 −0.0735 −4.019 0

6. Conclusions

The multi-level indicator energy efficiency assessment system, combined with the PSO
+ AHP −FCE model and multivariate linear regression for energy efficiency assessment
and prediction, presents a method that integrates soft management with hard equipment,
as well as subjective scoring with objective data, for a comprehensive evaluation of energy
efficiency. This approach holds practical value and provides guidance, offering a reference
for other industries as well.

The degree of deterioration can carry out local, microscopic, and refined analysis and
rectification of various factors affecting the energy efficiency of the enterprise. FCE can
effectively integrate unit consumption with the application of new processes and new
technologies and equipment, the level of scheduling of professional staff, water vapor
recovery rate, the implementation of the system, and the assessment of a variety of different
evaluation indexes, which makes the results of the energy efficiency evaluation more
accurate, comprehensive, stable, and reliable. The energy efficiency evaluation model based
on PSO + AHP − FCE can achieve the overall, macro, and comprehensive understanding
and mastery of the enterprise’s energy efficiency.

The prediction of energy efficiency through multiple linear regression can grasp the
trend of enterprise energy efficiency in order to realize scientific scheduling and dispatching,
etc., and to achieve the purpose of energy saving and consumption reduction to improve
energy efficiency.

The evaluation results are correlated not only with the specific consumption of objec-
tive data but also with the subjective scoring related to the enterprise management level,
and such subjective scoring can also impact the assessment outcomes. How to assign
scientifically sound, objective, and rational scores to the various factors affecting energy
efficiency necessitates further in-depth research. The relative importance of all subjective
and objective factors affecting corporate energy efficiency determines the values in the AHP
judgment matrix, i.e., the proportionate weight values of each factor to energy efficiency,
which will directly influence the enterprise’s energy efficiency and the direction of techno-
logical improvements. How to optimally combine weights through objective weighting
methods such as the entropy method, standard deviation method, CRITIC method, etc.,
with subjective weights optimized by PSO in AHP to obtain comprehensive, scientific,
objective, and rational weights requires further in-depth exploration.
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