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Abstract: With the development of smart grids and new power systems, the combination of non-
intrusive load identification technology and smart home technology can provide users with the
operating conditions of home appliances and equipment, thus reducing home energy loss and im-
proving users’ ability to demand a response. This paper proposes a non-intrusive load decomposition
model with a parallel multiscale attention mechanism (PMAM). The model can extract both local
and global feature information and fuse it through a parallel multiscale network. This improves the
attention mechanism’s ability to capture feature information over long time periods. To validate the
model’s decomposition ability, we combined the PMAM model with four benchmark models: the
Long Short-Term Memory (LSTM) recurrent neural network model, the Time Pooling-based Load
Disaggregation Model (TPNILM), the Extreme Learning Machine (ELM), and the Load Disaggrega-
tion Model without Parallel Multi-scalar Attention Mechanisms (UNPMAM). The model was trained
on the publicly available UK-DALE dataset and tested. The models’ test results were quantitatively
evaluated using a confusion matrix. This involved calculating the F1 score of the load decomposition.
A higher F1 score indicates better model decomposition performance. The results indicate that the
PMAM model proposed in this paper maintains an F1 score above 0.9 for the decomposition of three
types of electrical equipment under the same household user, which is 3% higher than that of the
other benchmark models on average. In the cross-household test, the PMAM also demonstrated a
better decomposition ability, with the F1 score maintained above 0.85, and the mean absolute error
(MAE) decreased by 5.3% on average compared with that of the UNPMAM.

Keywords: non-intrusive load monitoring; smart home; parallel multiscale attention mechanisms;
smart grid; machine learning

1. Introduction

With the rapid development of the electrical power industry, the smart grid is being
highly valued in the electrical power industry of various countries, which adopts intelligent
control means to unite all aspects of the traditional electric power grid. Smart grids integrate
the three fields of information interaction, power coordination, and business initiatives
and, through the integration of these three fields, they achieve intelligence and constitute
a modern power grid with good interaction measures. In the context of “carbon neutral,
carbon peak” energy requirements, in order to achieve a carbon peak and carbon neutrality,
countries are accelerating the intelligent transformation of the power grid in order to build
a new power system with new energy as the theme [1]. In recent years, more and more
scholars have devoted their attention to the study of smart grids and new power systems,
aiming to achieve more efficient and beneficial energy management initiatives through
intelligent facilities and solutions [2,3]. Each household user, as both a consumer and a
demander of energy, constitutes an important part of the total energy consumption of the
country [4]. The composition of the smart grid is shown in Figure 1 below.
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Figure 1. Smart grid architecture. 
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In addition, with the access to distributed energy resources and the increasing in-
stalled capacity of new renewable energy sources, such as photovoltaic power generation,
distribution grids require faster and more accurate demand-side response capabilities [5].
For each power plant and energy company that provides energy, user-side energy man-
agement is an important part of building a new power system under the smart grid. If
the user side can obtain real-time information about the energy consumed by different
electrical devices in the home environment, i.e., the amount of electricity consumed by
each electrical device and the current price of electricity, it can greatly improve each home
user’s awareness about saving energy and electricity consumption, so that the user can
join the optimization strategy of the energy demand-side response on their own initiative
and, thus, achieve the purpose of reducing the non-essential energy expenditure of the
home and reducing the non-essential energy consumption [6,7]. In the literature [8,9], some
scholars have proposed that, if each household user’s electricity consumption and tariff
information is provided to them in a timely manner, the household energy consumption
can be greatly reduced (by about 5–20%). And, according to the benefits of the power
plants and energy companies themselves, if we can grasp the electrical energy consumption
of each household in real time and analyze the electricity consumption of each user, we
can improve the accuracy and reliability of the established grid load model and, at the
same time, greatly improve the security of the grid’s operation and the economy of the
project planning [10]. At present, real-time load detection is one of the most effective means
of enhancing home users’ understanding of the operating status of household electrical
equipment and energy consumption.

Real-time load detection can be classified as intrusive or non-intrusive depending
on the method of detection. Intrusive load detection involves adding an information
collection device in front of each household electrical device to collect the switching status,
operating voltage, current conditions, power factor, and other electrical characteristics. This
method of load detection can accurately collect the electrical data on the equipment and
provide an understanding of its operating status. In practical applications, users have a
variety of electrical equipment. Intrusive load detection methods require the installation
of multiple information collection devices, which significantly increases the user’s costs.
Additionally, maintaining these collection devices poses a major challenge. In contrast to
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intrusive load monitoring, the non-intrusive load monitoring (NILM) method requires only
the connection of an information collection device to the total power line of the household’s
electrical equipment. By analyzing the electrical data on the bus and combining them with
the unique electrical characteristics of different pieces of electrical equipment, NILM can
break down the information on the power consumption of each device. Figure 2 below
illustrates the physical architecture of both intrusive and non-intrusive load detection.

Energies 2024, 17, x FOR PEER REVIEW 3 of 24 
 

 

intrusive load monitoring, the non-intrusive load monitoring (NILM) method requires 

only the connection of an information collection device to the total power line of the 

household’s electrical equipment. By analyzing the electrical data on the bus and combin-

ing them with the unique electrical characteristics of different pieces of electrical equip-

ment, NILM can break down the information on the power consumption of each device. 

Figure 2 below illustrates the physical architecture of both intrusive and non-intrusive 

load detection. 

Smart Meters

Power 

Supply

Switch Box

Refrigeration

Sensor

Sensor

Washing Machine

Sensor

Fridge

Sensor

Microwaves

Sensor

Electric Fan

Sensor

Tube

ZeroWire

FireWire

Smart Meters

Power 

Supply

Switch Box

Refrigeration

Washing Machine

Fridge

Tube

Electric Fan

Microwaves

ZeroWire

FireWire

Intrusive Detection

Non-intrusive Detection

Sensor

Management Platform

 

Figure 2. Physical architecture of intrusive load detection and non-intrusive load detection. 

Non-intrusive load monitoring (NILM) disaggregates the data from the power bus, 

and its main tasks can be divided into detecting the operating state of each electrical de-

vice and decomposing the electrical energy consumed by the electrical device. In 1992, 

Professor Hart from the United States proposed the concept of NILM [11,12], and he pro-

posed a method for solving the power decomposition problem using a finite state ma-

chine, which establishes a two-dimensional coordinate system of P–Q based on the 

changes in the active and reactive power of loads for cluster identification [13]. Although 

the identification method proposed by Prof. Hart is less accurate in identifying loads, 

more and more scholars began to study NILM based on it, giving rise to the classical mod-

els of load decomposition algorithms such as the Hidden Markov Model (HMM) and the 

Factorial Hidden Markov Model (FHMM) [14–17]. As they neglect the different electrical 

devices and their operating states, the load decomposition results of the models are af-

fected when dealing with energy data with multiple operating states, leading to an in-

crease in the commonly used evaluation metric of the mean absolute error (MAE) [18]. An 

adaptive NILM algorithm for constructing a feature library of V-I trajectories based on the 

voltage and current parameters of the load has been proposed in [19]. The transient char-

acteristics of electrical equipment are used in [20] to match the power curve changes gen-

erated by the equipment at the instant the established feature library of household load 

data is switched. The NILM decomposition algorithm that combines the sequence-to-

Figure 2. Physical architecture of intrusive load detection and non-intrusive load detection.

Non-intrusive load monitoring (NILM) disaggregates the data from the power bus,
and its main tasks can be divided into detecting the operating state of each electrical device
and decomposing the electrical energy consumed by the electrical device. In 1992, Professor
Hart from the United States proposed the concept of NILM [11,12], and he proposed a
method for solving the power decomposition problem using a finite state machine, which
establishes a two-dimensional coordinate system of P–Q based on the changes in the active
and reactive power of loads for cluster identification [13]. Although the identification
method proposed by Prof. Hart is less accurate in identifying loads, more and more
scholars began to study NILM based on it, giving rise to the classical models of load
decomposition algorithms such as the Hidden Markov Model (HMM) and the Factorial
Hidden Markov Model (FHMM) [14–17]. As they neglect the different electrical devices
and their operating states, the load decomposition results of the models are affected when
dealing with energy data with multiple operating states, leading to an increase in the
commonly used evaluation metric of the mean absolute error (MAE) [18]. An adaptive
NILM algorithm for constructing a feature library of V-I trajectories based on the voltage
and current parameters of the load has been proposed in [19]. The transient characteristics
of electrical equipment are used in [20] to match the power curve changes generated by the
equipment at the instant the established feature library of household load data is switched.
The NILM decomposition algorithm that combines the sequence-to-sequence (Seq2Seq)
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model with the attention mechanism proposed in [21] greatly improves the deep mining of
the load power sequence data features.

As more and more scholars conduct research on NILM algorithms, more and more
types of NILM algorithms are developed. According to the different technical solutions
adopted by NILM algorithms, NILM algorithms are divided into two main categories
based on event detection and non-event detection. The main difference between the two
is that the former uses the input and output events of electrical equipment to classify the
events and thus achieve load identification, while the latter uses the sequence features or
other features of the entire power line of the electrical equipment and directly predicts
the electrical equipment to be identified or speculates on the combination of electrical
equipment that may be activated at that time to achieve load decomposition.

In summary, in order to achieve the accurate identification of household electrical
appliances and provide users with detailed information about power loss, we adopted
a load decomposition model with a parallel multiscale attention mechanism (PMAM),
which solves the problem of traditional attention mechanisms being too focused on a single
representation and too difficult to use to characterize long sequences. The PMAM model
can also capture both global and local contextual information on the input sequences. In
order to verify the load performance of the PMAM model, we trained and tested the model
on the publicly available UK-DALE dataset. The decomposition results were evaluated
quantitatively using the confusion matrix and mean absolute error (MAE). A smaller MAE
indicates that the error between the model score and the actual score is smaller. From the
confusion matrix, advanced model evaluation indexes, such as the accuracy, recall, and
F1 score, can be obtained. The F1 score is commonly used to measure the accuracy of the
detection of the working state of electrical equipment, taking into account both the accuracy
and recall of the model. The higher the F1 score, the better the model’s decomposition
performance. The research contributions of this paper are as follows:

• We discuss the combination of smart home technology and non-intrusive load monitor-
ing (NILM) technology under the development of smart grids and new power systems
in order to provide users with a clear picture of the operating status of household
electrical appliances based on NILM, reduce household energy loss, and save money.

• We propose a non-intrusive load disaggregation model with a parallel multiscale
attention mechanism that has a high degree of readiness for load disaggregation and
was validated on the publicly available UK-DALE dataset. First, the feature extraction
network was formed using a four-layer, one-dimensional convolutional block and a
pooling layer. This improved the model’s global perception of sequence data through
the convolution of multiple layers. Subsequently, the feature extraction network was
enhanced with a parallel multiscale attention mechanism and a parallel feature fusion
network in order to extract deep load features. The PMAM model’s decomposition
performance was validated using the publicly available UK-DALE dataset.

• In the case of load detection using the same dataset, other machine learning algorithms,
such as the Long Short-Term Memory (LSTM) recurrent neural network, Time Pooling-
Based Load Disaggregation Model (TPNILM), Extreme Learning Machine (ELM),
and Load Disaggregation Model without Parallel Multi-scale Attention Mechanisms
(UNPMAM), were applied, and the results were compared and analyzed. To verify
the generalizability of the PMAM model, we trained the model using two different
household users and compared its decomposition performance across households.

The paper is structured as follows. Section 2 outlines the steady state and transient
characteristics of load profiles as well as the publicly available datasets. Section 3 ex-
plains the parallel multiscale attention mechanism used in this paper. Section 4 presents
the analytical validation of the model on publicly available data using arithmetic cases.
Finally, Section 5 provides the conclusions of this paper and suggests possible future
research directions.
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2. Load Characterization and Datasets
2.1. Load Characteristics

In non-intrusive load monitoring (NILM), the detection device is connected to the
power input bus of the household’s electrical equipment and detects the power information
of the power input bus. The total power can be expressed as follows:

P(t) =
n

∑
m=1

pm(t) + σ(t), (1)

where P(t) denotes the total power of the input bus at time t, pm(t) denotes the power
of electrical appliance m in the house at time t, and σ(t) denotes the noise interference at
the time of sampling. Since each electrical device does not work in real time and there are
interruptions in the working time, the working state of the device can be set as a variable
(Son/o f f ). The value of this variable takes 1 to indicate that the device is in the input state
and vice versa for the device removal state. The total power can be expressed as follows:

P(t) =
n

∑
m=1

pm(t) ∗ Son/o f f + σ(t). (2)

As shown in Figure 3 below, for a user within 7 days of the total power consumed
by household electrical appliances and the power consumed by each electrical appliance
individually, the total power is superimposed by the power consumed by each individ-
ual electrical appliance. The essence of the NILM algorithm is actually based on the
identification of different loads during steady state operation or the switching operating
state when the different electrical features can be classified into steady state features and
transient features, which are also divided into non-traditional features in [15,22]. The com-
monly used load feature library classification and feature extraction methods are shown in
Table 1 below.
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Compared with transient features, steady state features are the most commonly used
feature variables in NILM. This is due to the fact that most transient features occur at
the moment the load state changes and during load switching, which requires a high-
frequency sampling device to capture the state at the moment the transient feature occurs.
Although high-frequency sampling devices can capture a range of load information, they
are expensive, have a large amount of data, and require the use of high-performance
computing equipment, which results in increased user costs and a long computing time.
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Therefore, it is more appropriate to set up a load information acquisition device in the
home environment to extract the steady state characteristics of the load.

Table 1. Commonly used load feature library classification and feature extraction methods.

Feature Type Specific Characteristics Feature Extraction Method

Homeostatic Characteristics

voltage/current characteristics statistical analysis
active/reactive power characteristics statistical analysis

harmonic characteristic Fast Fourier Transform (FFT)
peripheral V-I characteristics relevant indicators used to characterize trajectories

Transient Characteristics
prompt power power spectral envelope estimation, waveform vectors

instantaneous current Fast Fourier Transform (FFT)
voltage noise spectral analysis

2.1.1. Homeostatic Characteristics

The characteristics of the current, active power, and reactive power in steady-state
operation are different for different electrical appliances. Figure 4 below shows the current,
active power, and reactive power waveforms of a laptop computer, a water dispenser, a
microwave oven, and a laser printer in a user’s home during steady-state operation.
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From the four sets of waveforms shown in Figure 4, it can be seen intuitively that dif-
ferent loads have their own unique current and active/reactive power characteristics. The
current characteristics can be symbolized by the mean Iarv, the root-mean-square IRMS, and
the maximum values of the current Imax, which are quantified by the following equations:

Iarv =
1
T

T

∑
t=1

I(t), (3)

IRMS =

√√√√ 1
T

T

∑
t=1

I(t)2, (4)

Imax = max{I(t)}, (5)

where T is the duration of the state.
With the broad application of deep learning algorithms in the field of image processing

in recent years, ref. [23] proposed that the V-I trajectory characteristics of the load, in
combination with a convolutional neural network, be used to weight-pixelize the V-I
trajectory map as the input of the network. In addition, in order to extract more load
information from the V-I trajectories, ref. [24] color-coded the V-I trajectory images to
maximize the classification ability of the images and transform the V-I trajectories into
visual features. The authors of [25] proposed a machine learning algorithm using semi-
supervised learning to solve the problem of the inability of a load operating state that
has diverse V-I trajectories to correctly identify the corresponding load. In this paper, we
used the information on steady-state load collected by a home user’s acquisition device to
extract the voltage and current data over one cycle corresponding to four types of electrical
equipment in order to plot the V-I trajectory.

When plotting the V-I curve, in order to avoid the influence of the differences in the
amplitude of the voltage and current during the steady-state operation of different pieces
of electrical equipment, we unified the voltage and current data for data preprocessing.
The two parameters were normalized to values between 0 and 1 to reduce the influence of
the different magnitudes of the two parameters. The normalized formula is as follows:

G′(t) =
G(t)− Gmin(t)

Gmax(t)− Gmin(t)
. (6)

After processing the voltage–current data using Equation (6), we plotted the V-I curve,
which is shown in Figure 5 below.

From the V-I trajectories of the four electrical appliances shown in Figure 5 above, it can
be seen that different electrical appliances have different V-I trajectory characteristics, and
each V-I trajectory map contains different characteristic information for the identification
of electrical appliances. When using V-I trajectories for NILM, the main concern is the
information on stress, such as the curvature, total area, asymmetry, and slope of the V-I
trajectories. The formula for the slope of the curve γmn is as follows

γmn =
∆Umn

∆Imn
, (7)

where ∆Umn denotes the voltage span, ∆Imn denotes the current span, m denotes device m,
and n denotes the state circumference n of the device.
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2.1.2. Transient Characteristics

During the transition of electrical equipment from one state to another, such as from
startup to stable operation or from stable operation to shutdown, there is a short period
of switching known as the transient characteristics. These characteristics require a high
sampling frequency for the sampling device due to the quick nature of the transient process.
The NILM algorithm aims to improve the load identification accuracy by considering both
steady state and transient load characteristics. For instance, ref. [26] suggests that the
load data be pre-screened using the time and power jump values of the transient process
between two state jumps. This method uses a support vector machine (SVM) to identify the
load. The commonly used transient features include the transient transition time, inrush
power multiplier, and active/reactive power jump values. These are shown in Figure 6
below, which illustrates the transition process of electrical equipment from startup to
steady state.

The time required for an electrical device to transition from its current state Tstate
′ to

the next state Tstate is represented by the transient transition time ∆t. The formula for this
is expressed as follows:

∆t = Tstate − Tstate
′. (8)

The active power jump variable ∆P represents the difference between the active power
Pstate

′ of the load in the previous steady state and the active power Pstate when it reaches
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the new steady state after passing through the transient process, which is expressed by the
following formula:

∆P = Pstate − Pstate
′. (9)

The reactive power jump variable ∆Q represents the difference between the reactive
power Qstate

′ of the load at the previous steady state and the reactive power Qstate when
the load reaches the new steady state after passing through the transient process, which is
expressed by the following formula:

∆Q = Qstate − Qstate
′. (10)

The impact power multiplier ρ indicates the relationship between the peak value Ppeak
reached by the power of the electrical equipment in the transient process and the power
Pstate when it reaches the next steady state, which is expressed by the following formula:

ρ =
Ppeak − Pstate

′

Pstate − Pstate
′ . (11)

The difference between the peak active power Ppeak in the transient state and the active
power Pstate after the transient state is denoted ∆PC. The difference between the peak
reactive power Qpeak and the reactive power Qstate after the transient state is denoted ∆QC.
The formula is expressed as follows:

∆PC = Ppeak − Pstate, (12)

∆QC = Qpeak − Qstate. (13)
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Figure 6. Examples of transient characteristics.

2.2. Dataset

Regardless of whether the steady state or transient characteristics of loads are chosen,
the implementation of NILM must rely on household load data acquired in real scenarios.
In recent years, with the growing interest in load identification, there has been a gradual in-
crease in NILM-related datasets, and there are already many high-quality datasets available
for researchers in this field [27,28]. We introduce several commonly used datasets below.

The UK-DALE dataset [29], provided by Jack Kelly in the UK, offers information on the
electrical energy consumption of all electrical equipment in the homes of five householders
over a period of time. The data were recorded every 6 s by a collection device for each
household. To provide data with richer high-frequency load information, the voltage
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and current of the entire house were recorded at 16 kHz for three of the five households.
Additionally, the dataset includes energy consumption data for one home over a period of
655 days. The REDD dataset, provided by Kolter and Johnson in the U.S. [30], offers both
high-frequency and low-frequency data. The low-frequency data contain information on
six households. The collection device recorded energy consumption data for each electrical
device in each household, as well as the overall energy consumption data, at a sampling
rate of 1 Hz. The high-frequency data were sampled at 15 kHz, and load energy data were
collected for two households. Anderson et al. [31] provided the BLUED dataset, which
includes the electricity usage and state transition information on each electrical device in a
U.S. household for one week at a sampling frequency of 12 kHz.

These datasets are commonly used to validate NILM algorithms. The UK-DALE
dataset is preferred due to its rich information, the appropriate amount of user data
captured, and the length of time compared with the other two datasets. In this study, we
used the UK-DALE data to divide the training and validation samples. We validated the
non-intrusive load decomposition model with the parallel multiscale attention mechanism
proposed in this paper. In order to facilitate subsequent cross-household experiments
with the model, we selected electrical devices owned by both Household User 1 and
Household User 2 in the UK-DALE dataset. In this study, washing machines, dishwashers,
and refrigerators were selected as target loads. The total power and the power curves of
the three types of electrical appliances for Household User 1 and Household User 2 in one
day are shown in Figure 7 below.
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of electrical appliances.

As can be seen in Figure 7, the power curves of the refrigerator and dishwasher are
simpler, with only two states (on and off) present during the operation of the appliance.
However, the power curve of the washing machine [32] has multiple load fluctuation pat-
terns, meaning there are switching operating states. For Household User 1, the maximum
power of the refrigerator is 253.78 W, the maximum power of the dishwasher is 2419.01 W,
and the maximum power of the washing machine is 2004.73 W. For Household User 2, the
maximum power of the refrigerator is 102.58 W, the maximum power of the dishwasher is
2041.4 W, and the maximum power of the washing machine is 2242.19 W.

3. Smart Home Modeling Using Non-Intrusive Load Decomposition
3.1. Model Structure

The smart home model based on non-intrusive recognition designed in this study
consists of a decision control part, an execution control part, and an information perception
part. The overall model framework is shown in Figure 8.
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The execution control part contains most of the electrical devices used within the
home, and the user can expand the entire system by increasing the size of the lower
computer module. The upper computer module communicates with each lower computer
module using Zigbee technology in order to reduce the layout difficulties caused by the
line connection. The information perception part consists of two subparts: the traditional
collection module and the information collection device, which is dedicated to non-invasive
load recognition. The model monitors the environmental conditions in the home in real
time by means of traditional collection modules, such as temperature detection sensors,
humidity detection sensors, and smoke concentration detection sensors, and the monitored
data are summarized and sent to the decision-making control part. The non-intrusive
load recognition model adopts a special voltage and current collection device, with a set
sampling frequency of 1/6 Hz, and puts the data collected on power consumption into the
parallel multiscale information collection device proposed in this paper. In the proposed
load decomposition model with the parallel multiscale attention mechanism, the energy
consumption data used by the corresponding electrical equipment over a period of time
are extracted. The decision control part sends control commands to the executive control
part using the data transmitted from the information perception part. It then summarizes
the data and provides to the user through the visualization interface specific information
on the home environment and electrical equipment.

3.2. A Non-Intrusive Load Decomposition Model Based on a Parallel Multiscale
Attention Mechanism

Non-intrusive load identification is a typical time series problem that aims to decom-
pose the energy consumed by individual electrical devices from the total power consump-
tion. Equation (1) shows that the total power consumption of household loads at a certain
moment is not only determined by the power of all operating devices at that moment
but also by the operating status of the devices at that moment. Commonly used methods
for solving time series problems include the sequence-to-sequence model (Seq2Seq), the
Long Short-Term Memory (LSTM) recurrent neural network, and the convolutional neural
network (CNN). In this study, we used a sequence-to-point (Seq2Point) learning model,
which has shown a greater ability to decompose the load compared with the Seq2Seq model,
while also requiring less computation time [33]. In this paper, we present a non-intrusive
load decomposition model that incorporates a parallel multiscale attention mechanism
(PMAM) based on the existing model.
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3.2.1. Sequence-to-Point Learning Model

The sequence-to-point (Seq2Point) learning model maps the input time series data
to the output sequence. Unlike the Seq2Seq model, the output of the Seq2Point model
becomes a single prediction for each midpoint element of the target device, rather than an
average of the predicted data across the entire output window, which helps to reduce the
amount of time required to train the model and produces more accurate predictions.

After the raw total power data are input into the Seq2Point model, after encoding
the raw data, the model maps the input total power data in the sliding window Yt:t+W−1
fragments to the corresponding output window Xt:t+W−1 at the midpoint Xτ . The mapping
relation function can be expressed by Equation (14):

Xτ = Fp(Yt:t+W−1) + ε, (14)

where t : t+W − 1 denotes a sliding time window of length W starting from t and ε denotes
random Gaussian noise. In order to make the predicted value of the model close to the true
value, the loss function of the model can be defined as:

Lp =
T−W+1

∑
t=1

log p(Xτ

∣∣Yt:t+W−1, θp) , (15)

where θp is the parameter of the training network.
In the learning model of the sequence problem, in order to ensure that the acquired

input sequence features contain rich feature information rather than focus too much on a
single representation, we adopted a parallel multiscale attention mechanism to simultane-
ously learn the contextual representation information at different scales and combined the
self-attention mechanism with a convolution to learn the sequence at different scales.

3.2.2. Parallel Multiscale Attention Mechanism

The self-attention mechanism has a huge advantage when using local information.
When faced with information containing multiple features, it can selectively focus on a
certain feature while ignoring the other features, and it can simulate very long dependency
relationships. In order to obtain both local and global feature information, we adopted a
parallel multi-channel attention mechanism, the structure of which is shown in Figure 9.

As the collected load information is characterized by high dimensionality, redundant
information, and a large amount of information, we pooled the data in order to simplify
the complexity of the network. Pooling not only expands the perception of information but
also has invariance. The characteristics of the data, such as translation, rotation, and scale,
do not change after pooling, which both speeds up the calculation and prevents overfitting.
Maximum pooling is one of the most-adopted pooling methods and is able to select the
largest value in each pooling window as the output in order to achieve feature reduction
and extraction. In performing non-invasive load decomposition, in addition to focusing on
the most significant features, it is also necessary to focus on the overall data features. For
this reason, we adopted both maximum pooling and average pooling. The most significant
data features were obtained through maximum pooling, and the overall data features were
obtained through average pooling. The two datasets were fused into the input of the next
level of the parallel multiscale attention mechanism.

The parallel multiscale attention mechanism is the key part of the non-invasive de-
composition model, which has three main parts: the self-attention mechanism that can
capture the global feature information, the depth-separable convolution that acquires the
local feature information, and the position feed-forward network that captures the labeled
features [34]. The relationship between the output of the model and the output can be
expressed as follows:

Xi = Xi−1 + SA(Xi−1) + Conv(Xi−1) + PW(Xi−1), (16)
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where Xi−1 denotes the sequence data input into the i − 1 layer, SA denotes the self-
attention mechanism function, Conv denotes the depth-separable convolution function,
and PW denotes the position feed-forward network function.
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In the self-attentive mechanism function, the input sequence Xi−1, Xi−1 is first linearly
transformed to obtain the desired Query (Q), Key (K), and Value (V) variables. The linear
transformation is shown in Equation (17):

Q, K, V = LinearQ(Xi−1), LinearK(Xi−1), LinearV(Xi−1). (17)

Secondly, the attention score is obtained after calculating the similarity of Q and K.
The obtained attention score is normalized to a probability distribution using the So f tMax
function. Finally, the final attention value is obtained by a weighted summation with V
based on the normalized result. The calculation formula is shown in Equation (18):

SA(Xi−1) = So f tMax(
QKT
√

dk
) · V, (18)

where dk denotes the variance in the normalized probability distribution. Since the distri-
bution of the probability distribution obtained by the So f tMax function is related to the
variance dk, the probability distribution obtained by the So f tMax function needs to be
decoupled from the variance dk during the computation to ensure that the gradient value
of the model remains stable during the training process.

In contrast to the conventional convolution operation, the depth-separable convolution
used in this paper employs a convolution kernel that is responsible for only one channel,
rather than multiple channels. As a result, the number of convolution kernels and the
number of channels in the previous layer are the same, and each channel is calculated
independently of the others. We utilized a position feed-forward network in conjunction
with the depth-separable convolution to provide richer feature information for the model.
This approach addresses the issue of the model’s inability to fully explore the feature
information at the same spatial location.
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3.2.3. Feature Extraction Networks

The feature extraction network aims to filter the input long-term sequence data and
remove redundant information to obtain the important features of the sequence data.
The PMAM decomposition model’s input layer employs four sets of one-dimensional
convolutional blocks and pooling layers to form the feature extraction network. The one-
dimensional convolutional block has four components: a one-dimensional convolution
(Conv1D), a RELU activation function, batch normalization (BN), and Dropout. Figure 10
provides a visual representation.
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In the feature extraction network, the local features of sequence data are extracted
by multiple 1D convolutional blocks, and, as the layers of 1D convolutions are further
stacked, more and more feature information can be captured, which improves the ability of
the model to globally sense the input long-term sequence data [35]. The decomposition
performance of the PMAM model is also affected by the hyperparameters, such as the
number of convolution kernels in the 1D convolutional block, the convolution kernel’s
dimensions, and the activation function settings. The model’s decomposition effect varies
depending on the hyperparameter settings [36]. In this study, the PMAM model used
four groups of 1D convolutional blocks for feature extraction. Each group had a different
number of convolutional kernels (32, 61, 128, and 320). Additionally, the number of feature
channels in each group of convolutional blocks was increased from 1 to 128.

The one-dimensional convolutional block uses the Rectified Linear Unit (RELU) as its
activation function to improve the nonlinear relationship between the layers in the network.
The RELU activation function is effective in solving the problem of gradient vanishing in
non-negative intervals due to its constant gradient. Additionally, it sparsifies the network
by resulting in some outputs being 0. This allows the model to better identify relevant
features and fit the training data.

3.2.4. Parallel Multiscale Feature Fusion

In a fixed deep learning network architecture, the network’s learning scale is typically
unchangeable and challenging to adjust to the task objectives. This limitation restricts the
model to only obtaining information on a fixed scale during the learning process. To enable
the model to learn multiscale information, we propose a multiscale network architecture.

Two frequently used multiscale network structures are serial networks and parallel
multibranch networks [37]. Serial networks use layer-hopping connections to combine
different scale features, while parallel multibranch networks use various convolutional
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kernels with different sizes, null convolutions, and pooling to obtain feature information
on different scales within the same layer. Finally, they pass the feature fusion on to the
next layer. In comparison with serial networks, parallel networks can significantly enhance
the model’s computational ability and reduce the required computing time. Therefore,
we employed a parallel multiscale network in the temporary pooling layer of the PMAM
model to merge the load features at seven different scales, as illustrated in Figure 11 below.
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Figure 11. Parallel multiscale network structure.

In a parallel multiscale network, each pooling block has five components: an average
pooling layer, a 1D convolution, the RELU activation function, a BN layer, and Dropout.
The input data for feature information in the parallel multiscale network are transformed
into load features of varying sizes through the average pooling layer in different pooling
blocks. Subsequently, the size of the output load feature is made consistent by using 1D
convolution. The size of the convolution kernel used for 1D convolution is 64. The feature
information from the seven sets of pooling blocks is combined with the feature information
inputted into the parallel multiscale network to obtain the final load feature. The seven
pooled blocks are then fused with the input data of the parallel multiscale network to
obtain the final load features.

3.3. Model Parameter Selection

In the model parameter settings, we set the number of data samples (Batchsize) used
in a single pass to train the model to 1470, and we set the number of times the model
was trained to 100. As overfitting may occur during the model training process, we used
the optimizer to manage and update the values of the learnable parameters in the model,
which is conducive to a closer match between the training results of the model and the real
values. Figure 12 shows the results of the loss values of the model training by the different
optimizers used in this study.

As can be seen in Figure 12, the Adam optimizer is able to converge quickly and
stabilize the loss values of the model compared with the other optimizers when the model
is trained. For example, the Adadelta optimizer does not converge even after being trained
100 times, and the convergence performance is not good. Therefore, in this study, the Adam
optimizer was used to train the model. In order to verify the convergence performance of
the Adam optimizer on the model at different learning rates, we tested the loss value of
the model during training at learning rates of 0.0001, 0.001, 0.005, and 0.01. The test results
are shown in Figure 13 below, according to which it can be found that the model is better
trained at a learning rate of 0.005.
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4. Algorithm Analysis
4.1. Hardware and Software Platform

This study’s hardware environment consisted of a 64-bit computer with an Intel(R)
Core(TM) i7-11800H @ 2.30 GHz processor and 16.0 GB of RAM. The software platform
used was the Windows 10 Professional operating system, Python 3.7.4, and the Tensorflow-
gpu version 2.1 deep learning framework. The model structure shown in Figure 8 was used
to train the UK-DALE data.

4.2. Load Decomposition Evaluation Metrics

To assess the performance of the training model, we used several evaluation metrics,
including the F1 score, precision rate, recall rate, accuracy rate, Matthews correlation
coefficient (MCC), and mean absolute error (MAE). Among them, the confusion matrix is
the most commonly used performance evaluation matrix in the field of machine learning,
and we calculated the required evaluation indexes, such as the F1 score, precision rate, and
recall rate, according to the results of the confusion matrix. The structure of the confusion
matrix is shown in Figure 14.
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In the confusion matrix, Ture means that the result of the model decomposition is
consistent with the actual working state of the electrical equipment, Positive means that
the electrical equipment is in the working state, and Negative means that the electrical
equipment is in the non-working state. The formulas for Precision, Accuracy, Recall, F1
score, and MCC are as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
, (19)

Precision =
TP

TP + FP
, (20)

Recall =
TP

TP + FN
, (21)

F1 = 2 · Precision · Recall
Precision + Recall

, (22)

MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
. (23)

MAE denotes the mean absolute value of the difference between the model’s pre-
dicted value x̃t and the true value xt over a period of time and is expressed in the
following equation:

MAE =
1
T

T

∑
t=1

|x̃t − xt| (24)

4.3. Experimental Results and Analysis

In conducting experiments on the PMAM load decomposition model, the experimen-
tal process was divided into data collection, hyperparameter setting, model training, and
model evaluation. For this study, we selected the total power data on Household User 1
and the electrical data on each electrical device from the publicly available UK-DALE
dataset, covering the period from April 2013 to December 2014. The collected data have
been preprocessed. The model was trained using the preprocessed data and the set hyper-
parameters. Subsequently, the load decomposition effect of the PMAM model was verified
using each load decomposition evaluation index proposed in Section 4.2. The experimental
flow is illustrated in Figure 15.
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In this study, the data on dishwasher and washing machine loads and the correspond-
ing operating states in the UK-DALE data were selected. After we applied the PMAM load
decomposition model proposed in this paper, the decomposition results of their operating
states were compared with the real operating states of the electrical equipment as shown in
Figure 16 below.

From the work state prediction results shown in Figure 16, it can be seen that the model
has a good load decomposition ability and can more accurately achieve the extraction of
the target load work state from the bus data containing the work state of multiple devices.
In order to better validate the performance of this model, we used the electrical appliance
data on Household User 1 from the same UK-DALE dataset to train the Long Short-
Term Memory (LSTM) recurrent neural network model, the Time Pooling-Based Load
Disaggregation Model (TPNILM) [38], the Extreme Learning Machine (ELM) [39], and the
same network structure as in this paper, but without the parallel multi-scalar attention
mechanism. The training set for Household User 1 consisted of data from a specific period
of time, while the data used to train the model were taken from a different period than
that of the test. After the model training was completed, we obtained the performance
evaluation index of each model, which is shown in Table 2 below.
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Table 2. Comparison of the load-splitting performance evaluation metrics for Household User 1.

Electrical Equipment Modeling
Evaluation Indicators

F1 Precision Recall Accuracy MAE MCC

Dishwasher

PMAM 0.966 0.967 0.965 0.998 20.44 0.965
UNPMAM 0.933 0.908 0.959 0.997 21.37 0.932

LSTM 0.06 0.03 0.63 0.35 130 -
TPNILM 0.930 0.942 0.919 0.997 20.41 0.928

ELM 0.93 0.89 0.99 0.98 19 -

Washing machine

PMAM 0.989 0.987 0.991 0.998 41.48 0.988
UNPMAM 0.984 0.985 0.982 0.998 41.51 0.982

LSTM 0.09 0.05 0.62 0.31 133 -
TPNILM 0.978 0.975 0.982 0.997 41.97 0.977

ELM 0.84 0.73 0.99 0.76 27 -

Refrigerators

PMAM 0.900 0.903 0.898 0.910 12.66 0.818
UNPMAM 0.867 0.879 0.856 0.881 15.09 0.760

LSTM 0.06 0.03 0.63 0.35 130 -
TPNILM 0.867 0.875 0.859 0.880 15.25 0.759

ELM 0.83 0.88 0.80 0.88 20 -

As can be seen from Table 2, the PMAM model proposed in this paper outperforms the
other four decomposition models in most of the load decomposition performance metrics.
The F1 scores of the PMAM model for decomposing the three types of loads, namely
dishwasher, washing machine, and refrigerator loads, remain above 0.9 and are better
than those of the other load decomposition models. The F1 scores were also improved
by an average of 8.5 percent compared with those of the ELM model, which showed a
good ability to decompose the loads. The PMAM model is optimal in the recall evaluation
index for all types of electrical equipment except for dishwashers, where its performance
is slightly lower than that of the ELM model. The PMAM model also improves the recall
by 3% compared with the TPNILM model. Although the ELM model performs the best
in the MAE decomposition performance index, the PMAM model proposed in this paper
outperforms the other models in terms of overall decomposition performance. Under the
same network, compared with the Load Disaggregation Model without Parallel Multi-scalar
Attention Mechanisms (UNPMAM), the average absolute errors of both appliances were
reduced, and they were also slightly better than the UNPMAM in terms of the F1 score.

Compared with the F1 evaluation metrics of the UNPMAM in the washing machine,
the F1 metrics of the PMAM model proposed in this paper are significantly better than
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those of the UNPMAM in both the dishwasher and the refrigerator. The power of the
washing machine fluctuates greatly during operation and its working state transitions
frequently, as shown in Figure 7. In contrast, the refrigerator has a clear periodicity during
operation, and the power required for each cycle is relatively stable with distinct load
characteristics. It is important to note these differences in power consumption between the
two appliances. Table 2 shows that all models have a significant deviation from the actual
washing machine decomposition results. Additionally, Household User 1 uses the washing
machine less frequently, resulting in a smaller number of required training samples. As a
result, the PMAM model cannot effectively extract the load characteristics. Therefore, to
enhance the model’s ability to extract deep load features, further research will be conducted
to extract the load features of electrical appliances that frequently switch operating states.
Additionally, the super-parameters of the feature extraction network will be optimized.

In order to validate the generalizability of the PMAM model proposed in this paper,
data from Household User 2 in the UK-DALE dataset were selected for cross-household
experiments. The model’s training set was selected from Household User 1’s data between
April 2013 and December 2014, while the test set was selected from Household User 2’s
data for a one-month period in order to conduct load decomposition tests. The results of
the tests are presented in Table 3 below.

Table 3. Comparison of the load-splitting performance evaluation metrics for Household User 2.

Electrical Equipment Modeling
Evaluation Indicators

F1 Precision Recall Accuracy MAE MCC

Dishwasher

PMAM 0.899 0.907 0.892 0.994 30.84 0.896
UNPMAM 0.740 0.679 0.813 0.984 35.91 0.735

LSTM 0.08 0.04 0.87 0.30 168 -
TPNILM 0.809 0.788 0.835 0.989 33.07 0.805

ELM 0.55 0.35 1.00 1.00 22 -

Washing machine

PMAM 0.973 0.977 0.969 0.999 9.32 0.972
UNPMAM 0.955 1.00 0.915 0.999 9.50 0.956

LSTM 0.03 0.01 0.73 0.23 109 -
TPNILM 0.863 0.858 0.869 0.997 8.31 0.862

ELM 0.43 0.10 1.00 0.84 21 -

Refrigerators

PMAM 0.874 0.829 0.924 0.908 15.87 0.805
UNPMAM 0.847 0.785 0.919 0.886 17.53 0.763

LSTM 0.74 0.72 0.77 0.81 36 -
TPNILM 0.871 0.892 0.851 0.905 17.03 0.796

ELM 0.89 0.90 0.92 0.94 23 -

Table 3 shows that the PMAM model maintains good decomposition performance
even when tested with data from untrained Household User 2. The model outperforms
the other models in most performance evaluation metrics. In the performance evaluation
index of the PMAM model’s decomposition of the refrigerator data, the model’s MAE is
the lowest. Although the F1 score of the ELM model is higher than that of the PMAM
model, the difference is only 1.6%. However, the MAE of the PMAM model is 31% lower
than that of the ELM model. Therefore, it appears that the PMAM model proposed in
this paper is superior overall. In the performance evaluation of the PMAM model on the
washing machine data, the PMAM model outperforms the other models with higher F1
scores (an 11% increase compared with the TPNILM model). The results in Tables 2 and 3
demonstrate the superior generality of the PMAM model proposed in this paper.

When implementing smart grid technology, it is important to consider the model’s
generalization and load decomposition capabilities as well as its training time and compu-
tational requirements. To achieve this, we compared the number of model parameters and
the training time required by different models, as shown in Table 4.
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Table 4. Model training time and number of parameters for each model.

Model Number of Modeling Parameters Training Time/(s/epoch)

PMAM 549,902 3.17
UNPMAM 496,259 0.76
TPNILM 327,619 1.62

ELM - 2.46

From Table 4, it can be seen that the PMAM model requires more computations
compared with the other models, which is due to the fact that the PMAM model uses a
parallel multiscale feature fusion network, which captures both global and local features
through a parallel multiscale attention mechanism, resulting in an increase in the number
of model parameters. Compared with the other models, the PMAM model proposed in this
paper has a smaller difference in the training time per epoch. It also has a comprehensive
decomposition capability that can still be applied to NILM. However, there is still room
to optimize the number of computations that the model requires when deployed in real
smart grid projects. The complexity of the model can be optimized while maintaining the
decomposition performance.

5. Conclusions

This paper presented a non-intrusive load decomposition model with a parallel mul-
tiscale attention mechanism that combines non-intrusive load identification technology
with smart home technology to improve the energy demand-side response under the de-
velopment of smart grids and new power systems. Incorporating the multiscale attention
mechanism in the training network captures both global and local feature information,
expanding the perceptual field of the model. Additionally, the model’s decomposition
performance is improved to a certain extent by the multiscale feature fusion network. After
validating the PMAM model with two household users from the UK-DALE dataset, we
proposed a model with better generalizability and improved accuracy and F1 score values
compared with the other models. The experimental results indicate that the PMAM model
maintains F1 scores above 0.9 for refrigerator, dishwasher, and washing machine data
under the same household user. On average, the F1 scores improved by 2.1% and the
MAE decreased by 6.84% compared with the UNPMAM. This suggests that the model’s
decomposition performance was better after the parallel multiscale attention mechanism
was added. In the cross-family test, the PMAM model demonstrated a superior decompo-
sition ability, maintaining an F1 score above 0.85. On average, compared with the other
models, the F1 score increased by 15.34%, indicating better generalizability. The PMAM
model allows for the decomposition of data on household electrical equipment, providing
users with a clear understanding of the working status of each device in the household.
Users can utilize the information on the operational status of their loads to establish a
home energy management system. This system can optimize the scheduling of household
electrical equipment, resulting in reduced energy loss and cost savings while maintaining
user comfort.

In future research, the PMAM model’s decomposition results will be combined with a
home energy management system to optimize equipment scheduling by considering the
working status of each electrical device. Additionally, depending on the energy suppliers’
buying and selling policies, home users with energy storage devices or electric vehicles
can achieve better energy returns. Simultaneously, information on electrical equipment
obtained from decomposition can be linked to the user’s behavior, allowing for the predic-
tion of the user’s next action based on their use of a particular electrical device. This may
enhance the intelligence of household equipment and improve the user’s experience.
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