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Abstract: The smart transformer (ST) is a multiport and multi-stage converter that allows for the
formation of meshed hybrid microgrids (MHMs) by enabling AC-DC ports in medium and low
voltage. This type of microgrid has advantages over the performance of conventional hybrid AC-DC
microgrids (HMGs); however, the number of degrees of freedom of the ST increases the complexity of
the energy management systems (EMSs), which require adequate and accurate modeling of the power
flow of the converters and the MG to find the feasible solution of optimal power flow (OPF) problems
in the MHM. An ST’s equivalent power flow model is proposed for formulating the MHM OPF
problem and developing low-frequency equivalent models integrated with a decoupled hierarchical
control architecture under a real-time simulation approach to the ST-based MHM. A simulation
model of the MHM in the Simulink® environment of Matlab®9.12 is developed and implemented
under a digital real-time simulation (DRTS) approach on the OPAL-RT® platform. This model allows
for determining the accuracy of the developed equivalent models, both low-frequency and power
flow, and determining the MHM performance based on optimal day-ahead scheduling. Simulation
test results demonstrated the ST equivalent model’s accuracy and the MHM’s accuracy for OPF
problems with an optimal day-ahead scheduling horizon based on the model-in-the-loop (MIL) and
DRTS approach.

Keywords: AC/DC microgrid; distributed generation; real-time simulation; smart transformer;
meshed hybrid microgrids

1. Introduction

Developing an efficient and sustainable electricity system under an energy transition
approach involves challenges in the system’s design, planning, and operation. This system
requires integrating new technologies, such as microgrids and power electronic converters,
whose new paradigm is reflected in the modeling and simulation methods used to analyze,
control, and manage medium- and low-voltage electrical systems [1]. Under this new
paradigm, MGs play an essential role since they allow for the integration of distributed
energy resources (DERs) flexibly and efficiently in distribution systems (DSs), even though
they require synchronization and reactive power control mechanisms—in AC MGs’ case,
voltage regulation mechanisms, and in DC MGs’ case, power dispatch algorithms—which
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are characteristics that increase the complexity of EMSs in MGs [2]. HMGs allow the
advantages of AC and DC systems to be exploited in a flexible, reliable, and economical
manner under a radial structure in most applications [3]. However, these structures
require voltage regulation strategies since they present drawbacks about voltage surges
at the DER coupling points and overloads at the common coupling points (CCPs) of
the MG combined with voltage sags at the end of the feeder in the face of high-load-
demand events [4]. Recently, ST-based MHMs have been proposed as an answer to the
shortcomings of conventional HMGs since they take advantage of the degrees of freedom
of the ST [5]. This type of MG allows for the forming of several meshed power flow paths
by interconnecting the electronic power interface (EPI) of each DER of the MG with the
medium- and low-voltage AC/DC ports of the ST; moreover, it allows for eliminating the
coupling of an interconnecting converter (IC), typical of HMGs [6].

For the management of ST-based MHMs, a hierarchical control structure must be
integrated. The primary level comprises the control loops of the electronic converters
(voltage and current regulation) and power transfer management of the DERs and each
stage of the ST. The secondary level is oriented to control power flow, voltage, frequency,
and power quality criteria. Finally, the tertiary level seeks to establish decision criteria
in the framework of the economic dispatch, the general supervision of the MG, and the
generation and demand forecasting, ensuring the optimal operating point of the system [7].
For the design, simulation, and validation of system performance under a hierarchical
control approach, mathematical models relating the DER power flow to the MHM are re-
quired to formulate and solve an optimization problem at the upper layer of the control and
management of the MHM [8]. At the secondary and primary levels, low-frequency equiv-
alent models, whose dominant dynamics are by the simulation horizon, are introduced
for system performance analysis under a daily scheduling approach based on demand
and generation forecasting [9,10]; these models must be sufficiently detailed so that the
dynamics of interest are accurately identified throughout, while at the same time being
simple enough to meet real-time simulation constraints [11,12]. Thus, it is necessary to
build DRTS schemes with the detail and accuracy required to account for the reliability of
both the computational models and the optimal operating point of the MHM.

Off-line (model in the loop—MIL, processor in the loop—PIL, software in the loop—SIL),
online, and real-time simulations are the main methods focused on power electronics equip-
ment testing. The digital real-time simulation can be classified into two main categories:
(1) an entirely software-based DRTS and (2) hardware-in-the-loop (HIL) RT simulation or
HILS. These schemes allow for testing the performance of electrical systems focused mainly
on the second and first level of system control. However, with long-term approaches, model
adjustments are required to capture relevant dynamics in the study while maintaining the
generality of the simulation horizon [13].

Table 1 summarizes the review results of the principal published articles compared
with the approach proposed in this paper. First, we seek to identify the publication date
and the simulation method. We also determine whether it focuses on converter control
(transient analysis) or power flow microgrid management (steady state) and whether ST
integration is considered. Finally, we introduce the type of modeling, where equivalent or
switched models are considered according to the simulation approach.

Table 1. Comparison of findings in the literature review.

Ref. Date Approach Method ST Modeling Type

[14] 2017 Transient HILS - Commutate
[15] 2017 Transient HILS

√
Commutate

[16] 2018 Steady State DRTS - Equivalent
[17] 2019 Transient HILS

√
Commutate

[18] 2020 Steady State HILS - Equivalent
[19] 2020 Steady State SIL - Equivalent
[11] 2020 Transient DRTS - Commutate
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Table 1. Cont.

Ref. Date Approach Method ST Modeling Type

[5] 2021 Transient HILS
√

Commutate
[20] 2021 Transient HILS

√
Commutate

[21] 2022 Transient HILS
√

Commutate
[22] 2022 Transient SIL - Commutate
[23] 2022 Transient DRTS - Commutate
[24] 2022 Steady State DRTS - Commutate
[25] 2022 Steady State DRTS - Equivalent
[26] 2022 Transient HILS - Commutate
[27] 2023 Transient DRTS - Commutate
[28] 2023 Transient DRTS - Equivalent

[29] 2023 Steady State
Transient HILS - Commutate

Equivalent
[30] 2023 Transient HILS

√
Commutate

[31] 2023 Transient HILS Commutate

Purposed 2024 Steady State
Transient DRTS

√
Equivalent

According to the information reported in Table 1, it is observed that the HILS method
is typically used for analysis under a transient approach considering detailed or switched
models. In most cases where a long-term analysis is considered, equivalent models are
developed to reduce the computational load [18]; however, some works present hybrid
models, switched models in the lower control layers, and equivalent models for long-term
system management [29]. On the other hand, it is identified that the DRTS approach
presents good performance in both switched models and equivalent models, in addition to
the functionalities presented about the steady-state analysis of the system, mainly for long-
term analysis for optimal power flow. Finally, it is observed that the reported works that
present the study of the ST propose switched structures under an HILS method, focusing
mainly on the performance of the control loops of the different ST stages.

Although DRTS and HILS models have been widely implemented to validate the
performance of controllers in power electronic converters, even with a long-term approach,
no works have been identified that take advantage of the benefits of ST-based MHMs in
terms of the EMS performance and availability of ancillary services such as active and
reactive power dispatch under a simulation approach, either DRTS or HILS, integrating
equivalent and power flow models with a 24 h operation horizon. In this context, a gap
is identified regarding DRTS simulation in ST-based MHMs for day-ahead operation and
reactive power dispatch; therefore, the main contributions of this work are as follows:

✓ A low-frequency equivalent model is proposed for both the ST with decoupled control
loops and the PEIs MHM to develop accelerated DRTS models under long-term
simulation tests.

✓ A power flow model from a decoupled ST and PEI structure is proposed to formulate
and solve an optimization problem in the MHM’s upper control and management
layer for day-ahead operational planning.

✓ A methodology for implementing ST-based MHMs’ DRTS-accelerated models allows
for analyzing the system response according to the hierarchical control layer structure
under a system daily operational planning approach.

This paper presents the development of a simulation model of an ST-based MHM
under the Simulink® environment of Matlab®9.12 for its subsequent implementation within
a DRTS scheme under the OPAL-RT® platform. The feasible solution to the OPF problem
is verified from the system performance at the first and second levels of the hierarchical
control structure. The management algorithm (third level) provides the optimal system
operating points by setting the criteria for active power injection on both the AC and DC
sides. Reactive power control is based on the availability of the PVG resource and the
battery energy storage system (BESS) (second level). These criteria are translated into
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references for the operating point of each MG converter, voltage, and current control (first
level). On the other hand, the decoupled structure of the ST allows for the control of the
power flow between the AC and DC sides of the MHM since the third stage of the ST is
considered an active voltage source converter (VSC) whose operating point is set by the
management algorithm.

The rest of this paper is organized as follows: Section 2 proposes the power electronic
interface, modeling, and power flow equation, as well as the workflow of the DRTS ap-
proach; Section 3 presents simulation results and discusses them; while Section 4 concludes
this paper.

2. Power Electronic Interface, Modeling, and Power Flow Equation

This section presents the ST’s modular model and the equivalent model averaged
to implement the simulation model and the power flow equations. Likewise, the third
stage of the ST supports the explanation of the electronic converters’ modeling for coupling
the DER and the DC microgrid with the AC microgrid. On the other hand, the power
electronic interface converters used for the DER on the AC and DC sides are modeled from
the averaged approach proposed in [32,33].

2.1. Smart Transformer Modeling and Control

The ST is a multi-stage, multiport low- and medium-voltage converter for intercon-
nection with hybrid AC-DC systems. In addition to providing services that allow for
the replacement of low-frequency transformers (LFTs), the ST is conceived as an energy
router since it will enable integrating algorithms for the injection or absorption of active
and reactive power, mitigating harmonics, attenuating voltage drops, and limiting the
current in case of short-circuit faults [34], among other aspects that allow for forming
hybrid meshed microgrids.

A multi-stage modular structure is implemented since the first stage of the ST is
connected to the medium-voltage grid. This structure is composed of cascaded H-bridge
converter-type modules to increase the reverse voltage input to the AC-DC converter, thus
obtaining a configuration of Nm modules in series at the converter’s input for each phase
of the medium-voltage network. The parallel medium-voltage DC outputs, one for each
module, are individually connected to the input port of the second stage of the converter,
consisting of a dual active bridge (DAB) converter for each module of the first stage. The
secondary of the DAB is connected to a common DC bus, which has multiple functionalities,
among them, to couple low-voltage DC lines or as a connection port for the input port of
the third stage of the ST, formed from a VSC. Figure 1 shows the modular structure of the
ST converters.
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A hierarchical and decoupled control structure for each stage of the ST is presented
in Figure 2. According to the planned economic dispatch at the third level, the power
balance in each stage of the ST is established at the secondary level. Finally, these power
requirements are translated into set points for each power converter associated with the ST
so that each ST stage can work decoupled, keeping the power balance according to the grid
requirements. Under this approach, the ST can work in two modes of operation concerning
the direction of the power flow, from medium-voltage to low-voltage (buck mode) or vice
versa (boost mode).
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In the first stage of the ST, we typically find a cascaded H-bridge converter. The
voltage controller of this converter sets the modulation index (mMV). This way, power
injection or absorption from the main grid can be controlled. The boost mode adjusts the
MV current injection (iM) into the mains grid according to power quality criteria. The buck
mode regulates the MVDC on the DAB primary. The dq references of the current regulator
(irq, ird) are adjusted by the power flow control mechanism.

The second stage of the ST consists of a dual active bridge integrating a high-frequency
galvanic coupling. The DAB functionality allows for bidirectional power transfer between
the medium- and low-voltage DC ports limited by the maximum power and minimum
power (Pmax; Pmin) from the modulation index (mDAB) of the DAB. This index is set by
the power flow controller based on the required voltage level at MVDC and LVDC from
the conditions set by the power reference block and the ST operating mode, which set the
reference MVr

DC and LVr
DC.

The main component in the third stage of the ST is the voltage source converter (VSC).
In this stage, ports are coupled on the AC and DC sides, allowing for bidirectional power
flow control. In this way, the ST can work as a grid shaper or follower, depending on the
connection and disconnection maneuver of the main grid at the common coupling point.
On the other hand, this stage’s AC and DC ports allow for the connection of DERs on both
AC and DC buses, given the bidirectional control of the ST and the requirements of the
MG. According to the first and second levels, the controller sets the modulation index of
the converter (mLV). For each converter operating mode, the reference voltage and current
(vr

L, irL) are adjusted to maintain the LVAC, where the output of the ST is at a voltage level
and frequency suitable to meet the demands of the MG in grid-former mode and current
source control in grid-follower mode.

The analysis approach of the simulation models of this work is based on low-frequency
models of the electronic converters with the dynamics associated with the response of
the controllers, both voltage and current, and the corresponding steady-state response
according to the static models of the optimal power flow problem. Thus, the switching
elements of each of the ST stages are averaged based on the methodology proposed in [35].
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According to the analysis presented in [36], the equivalent low-frequency model of each
stage of the ST is shown in Table 2, as well as the transfer function of the linearized
small-signal model used to tune the current and voltage controller loops (primary control),
according to the active and reactive power requirements (secondary control) set from the
optimum operating solution in each hourly period (1 h) with a 24 h horizon.

Table 2. ST’s simplified averaged model and transfer function.

Stage Transfer Function Operation
Mode

Control
Objective
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îdMV
ddCHB

=
NmVDABp (LCHBs+RCHB)

(LCHBs+RCHB)
2+ω2

g L2
CHB

îqMV
dqCHB

=
NmVDABp (LCHBs+RCHB)

(LCHBs+RCHB)
2+ω2

g L2
CHB

V̂DAB1
îdMV

=
DdCHB (LCHBs+RCHB)−DdCHB ωg LCHB

Nm D2
dCHB

+3(LCHBs+RCHB)CDABp s

Buck VDABp
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îVSCq
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=
VDABs (LVSCs+RVSC)

(LVSCs+RVSC)
2+ω2

g L2
VSC

Bidirectional
Power Flow iVSC

The control loops for each ST stage are implemented in cascade in the reference plane
dq; the faster dynamics are set for the current loop and the slower dynamics for the voltage
loops. Each control loop is composed of a PI controller, and the tuning process of the
kp and ki constants are performed from the transfer functions in Table 2 using tuning
techniques based on the system’s frequency response, ensuring phase margin and gain
margin conditions per the process shown in [37]. Under these conditions, the ST can work
in either step-down or step-up mode. However, given the nature of the optimization
problem addressed in this work, the first and second stages are set in buck mode, so the
control loops of the first stage seek to regulate the DC medium-voltage output (VDABp ) and
those of the second stage seek to regulate the DC low-voltage output (VDABs ). For its part,
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the third stage acts as an inverter for the bidirectional flow control of active power, both on
the DC and AC sides, by controlling the amplitude and phase of the inverter current (iVSC).

2.2. Power Electronics Interface

PVGs and BESSs are integrated into the microgrid via power electronic interfaces.
Power electronic converters are responsible for integrating DERs and local demands into
the system in a controlled manner. The most common AC microgrid converter is the
VSC, as are DC-DC converters, either unidirectional (PVG) or bidirectional (BESS). As for
the mode of operation of power electronic converters, three models can be distinguished:
grid-forming, grid-following, and grid-supporting. According to this work’s approach, the
converters on the AC side operate in grid-following mode [38]. In contrast, on the DC side,
the second stage of the ST operates as a grid-former since it regulates the DC voltage level,
and the other converters operate in grid-following mode.

Table 3 presents the basic structures of the PEIs used in the MHM. For the connection
of the BESSs on the AC side, a VSC is used, whose dynamics and control are like those
presented by the third stage of the ST, where the objective is to control the charging or
discharging current of the BESS (iBESS). This same VSC structure is used to couple the PVGs
on the AC side; however, in addition to the PI controller in the dq frame, a DC voltage
regulator must be added from a feed-forward compensator [39] coupled to a maximum
power point tracking (MPPT) algorithm. As for the DC side, the bidirectional DC-DC
converter, whose control objective is to regulate the coil current (iBESSL ), is used to couple
the BESS in the DC microgrid, and, for the PVG, a DC-DC boost configuration with an
MPPT algorithm is used, whose objective is to control the current injected into the DC
microgrid according to the DER availability (iPVGL ). All power converter structures are
proposed from equivalent models averaged for subsequent implementation according to
the simulation model.

Table 3. PEI’s simplified averaged model and controller.

PEI DER Equivalent Model Type of Controller

Bidirectional
AC side

BESS
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2.3. Power Flow Modeling

In this paper, the ST, the VSC, and the BESS are optimized for active and reactive
power dispatch control, increasing efficiency and reducing the operational costs of the
HMG. To address the optimal power flow problem, equivalent models relating to the power
flow between the terminals of the ST, VSC, and DC-DC converters are considered.

2.3.1. Voltage-Sourced Converter Power Flow Model

The VSC allows for the control of the active and reactive power independently for
both the PVG and the BESS on the AC side, depending on the expected availability of the
resource in the PVG and the state of charge (SoC) of the BESS during a day of operation.

Three approaches to modeling VSCs are presented in Figure 3. The commutated model
is ideal for converter and control loop performance analysis based on the dynamic response
of the variables of interest in the converter with reasonable accuracy. The averaged model
is a model that represents the dominant converter dynamics (low-frequency component)
suitable for analysis under a simulation approach with a daily operation horizon, and the
power flow model is used to pose and solve the optimization problem, whose optimal
solution sets the operating point of each converter in the system.
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The approach of the power flow equations as a function of the variables on the AC
side—the voltage and phase at the bus BACk (VAC

k ,δk)—and on the DC side—to the voltage
on the bus BDCi (VDC

i )—is realized from power balance Equation (1) according to active
power on the AC side (PACVSC

k ) and active power on the DC side (PDCVSC
i ) together, the

losses (PVSC
Lossi

) associated with the switching of the VSC IGBTs [40] as a quadratic function
of the inverter current (IVSC

Lossi
) (2), and the loss Equation (3), where the coefficients ai, bi, and

ci depend on the power and inverter characteristics.
The apparent power rating (SACVSCmax

k ) limits the dispatch of active and reactive power
in the VSC of the inverter on the AC side. The operating space of the inverter can be seen in
a PQ plane representing the semicircle around the positive active power axis. The behavior
of this semicircle is defined according to the operation of the VSC [41].

PACVSC
k + PDCVSC

i + PVSC
Lossi

= 0 (1)

IVSC
Lossi

=

√
PACVSC

2

k + QACVSC
2

k

VAC
k

(2)

PVSC
Lossi

= ai + bi IVSC
Lossi

+ ci IVSC
Lossi

2
(3)

Figure 4 shows the VSC operating region for the PVG (a) and BESS (b) in the PQ plane.
In this region, a minimum power factor (PFmin), which sets the operating limit of the VSC,
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is considered. Thus, the reactive power (QACVSC
k ) available for dispatch is restricted to the

amount of active power (PACVSC
k ) available in the PVG based on a maximum power point

tracking (MPPT) algorithm, whereas, for the BESS, an operation in the four quadrants of
the PQ plane is observed since the BESS operates in charge (PESS

maxCh
) or discharge (PESS

maxDch
)

mode limited by the maximum active power in the VSC and physical characteristics of
the BESS.
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In both modes of operation, the BESS VSC can control the reactive power injection
QACVSC . So, the operational restrictions of the reactive power injection at all times t, limited
by PFmin defined by the inverter characteristics, are described as follows in (4) and (5).
The OPF algorithm adjusts the control variable QACPVG

k,t and QACESS
k,t at each time instant

according to the following operational constraints.

−tan
(

θ
ACPVG
PFmin

)
PACPVG

k,t ≤ QACPVG
k,t ≤ tan

(
θ

ACPVG
PFmin

)
PACPVG

k,t (4)

−tan
(

θ
ACESS
PFmin

)
PACESSmax

k ≤ QACESS
k,t ≤ tan

(
θ

ACESS
PFmin

)
PACESSmax

k (5)

2.3.2. ST Equivalent Power Flow Model

Given the proposed structure in Table 2 and Figures 1 and 2, a hierarchical and decou-
pled control structure is identified. This structure allows for the integration of independent
and bidirectional power flow control mechanisms, enabling additional freedom for power
flow control on both the AC and DC sides.

Based on Figure 5, an equivalent active VSC of the ST is presented to pose the power
flow equations at the low-voltage ports on both AC and DC sides. Thus, the first (cascade
H-bridge) and second (DAB) stages of the ST are modeled as an equivalent controlled DC
feeder (GDCi ) considering the generator-coupling bus as a slack node that regulates the
voltage on the DC side of the MHM, with an available power (PGDC

i ). For its part, the third
stage (VSC) of the ST allows for controlling the injection of active power (PVSCAC

k ) and
reactive power (QVSCAC

k ) on the AC side or active power (PVSCDC
i ) on the DC side. The

power balance equations are described by (6), (7) for the AC side, and (8) for the DC side.
The active power balance in the VSC is defined in the same way as in (1) to (3) and that of
the reactive power is defined as proposed in (4) and (5).

PGAC
k,t + PACST

k,t − PLAC
k,t − Pk,t(V, δ) = 0 (6)
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QGAC
k,t + QACST

k,t − QLAC
k,t − Qk,t(V, δ) = 0 (7)

PGDC
i,t + PDCST

i,t − PLDC
i,t − PDC

i,t (V) = 0 (8)
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2.3.3. DC-DC Converters Equivalent Power Flow Model

The model representing the power supplied by the PVG on the DC side during each
period is presented in (9).

PPVG(t) = µS Irr(t) (9)

where PPVG(t) corresponds to the maximum power that the PVG can inject in period t,
µS is the productivity coefficient associated with the solar panel and the efficiency of the
converter, and Irr(t) corresponds to the irradiance measured in W/m2 perpendicular to
the surface of the solar panel in each period t.

The BESS power flow model shapes the constraints associated with the energy storage
elements on both the AC and DC sides. The power flow equations for all time to the BESS,
from (10) to (14), are based on the model proposed in [42].

U
ESSDCC
i,t + U

ESSDCD
i,t ≤ 1 (10)

PESSDC
i,t = PESSDCC

i,t ηC −
PESSDC D

i,t

ηD
(11)

0 ≤ PESSDCC
i,t ≤ UESSDCC

i,t PESSDCmax
i (12)

0 ≤ PESSDC D
i,t ≤ U

ESSDCD
i,t PESSDCmax

i (13)

EDCESS
i,t = EDCESS

i,t−1 + PDCESS
i,t ∆t (14)

where, for the ith BESS, U
ESSDCC
i,t represents a binary variable indicating BESS charging,

U
ESSDCD
i,t represents a binary variable indicating BESS discharging, P

ESSDCC
i,t and P

ESSDCD
i,t

represent the charging and discharging power, respectively, and ηC and ηD represent the
charging and discharging efficiency of the BESS and DC-DC converters. Finally, the battery
state of charge is represented by EESSDC

i,t . The model of the kth battery on the AC side is
similar to those presented in Equations (10)–(14), with the corresponding changes to the
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indexes, superscripts, and VSC’s dynamic. The reactive power dispatch of the BESS on the
AC side is given by (5).

2.4. Optimal Power Flow Modeling

Power flow constraints are established on the MHM’s AC and DC sides. On the AC
side, the equations are formulated in polar form from the network admittance matrix
based on the pi model of the line. On the DC side, the equations are developed from the
conductance matrix and the voltage at the DC buses. The array gkl − bkl represents the
series admittance of the line while bklsh

represents its susceptance on the AC side. On
the DC side, the conductance is represented by gij. The active power PAC

kl and reactive
power QAC

kl flowing through the line on the AC side, in per unit (p.u.), is calculated from
(15) and (16).

PAC
kl = gklVAC

k
2 − VAC

k VAC
l (gklCos δkl + bklSin δkl) (15)

QAC
kl = −

(
bkl + bklsh

)
VAC

k
2 − VAC

k VAC
l (−bklCos δkl + gklSin δkl) (16)

where δkl = δk − δl . The active and reactive power balance is presented according to
(17) and (18).

∑
l∈N (k)

PAC
kl = PGAC

k + PPVAC
k + PVSCAC

k − PESSAC
k − PLAC

k (17)

∑
l∈N (k)

QAC
kl = QGAC

k + QPVAC
k + QVSCAC

k − QESSAC
k − QLAC

k (18)

where l ∈ N (k) are the nodes directly connected to node k. The active power PDC
ij flowing

through the line on the DC side, in per unit (p.u.), is calculated from (19). The active power
balance at a node i is given by (20), where j ∈ N (i) are the nodes directly connected to
node i.

PDC
ij = gijVDC

i
2 − VDC

i,t VDC
j gij (19)

∑
j∈N (i)

PDC
ij = PGDC

i + PPVDC
i + PVSCDC

i − PESSDC
i − PLDC

i (20)

The optimization problem aims to minimize the expected operational cost, loss, and
voltage regulation over various time horizons (24 h) while satisfying various physical
constraints of the MHM. Specifically, the objective function ( f ), for all time t, should
include (i) the operation cost ( fcost); (ii) network losses ( floss); and (iii) voltage deviation
( fdVAC ; fdVDC ), due in (21). wc, wl , and wd are the weight factors of network losses (wl),
voltage deviation (wd), and operation cost (wc), and wc + wl + wd = 1.

f = min
T
∑

t=0

(
wc fc,t + wl fl,t + wd( fdVAC,t + fdVDC,t)

)
fc,t = cGAC

k

NGAC

∑
k=0

PGAC
k,t + cGDC

i

NGDC

∑
i=0

PGDC
i,t + cESSAC

k

NESSAC

∑
k=0

(
P

ESSACC
k,t + P

ESSACD
k,t

)

+cESSDC
i

NESSDC

∑
i=0

(
P

ESSDCC
i,t + P

ESSDCD
i,t

)

fl,t =

(
NGAC

∑
k=0

PGAC
k,t +

NGDC

∑
i=0

PGDC
i,t +

NPVGAC

∑
k=0

PPVAC
k,t +

NPVGDC

∑
i=0

PPVDC
i,t

)

−
(

NESSAC

∑
k=0

PESSAC
k,t +

NESSDC

∑
i=0

PESSDC
i,t +

NLAC

∑
k=0

PLAC
k,t +

NLDC

∑
i=0

PLDC
i,t

)

fdVAC,t =
NAC

∑
k=0

(VAC
k,t − VAC

re f )
2; fdVDC,t =

NDC

∑
i=0

(VDC
i,t − VDC

re f )
2

(21)
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where cGAC
k , cGDC

i , cESSAC
k , and cESSDC

i correspond to the costs of energy exchange with
the main medium-voltage grid and the operating costs of the BESS, both on the AC and
DC sides, respectively. On the other hand, NGAC , NESSAC , NPVGAC , NLAC , NGDC , NESSDC ,
NPVGDC , and NLDC relate to the generator set, BESS set, PVG set, and loads set on both AC
and DC sides, respectively.

2.5. Digital Real-Time Simulation Testing

The MIL and SRTS approach is used to test the PEI controllers’ performance and the
MHM power balance based on the solution of the OPF problem. The platform for the
DRTS application is the FPGA-based real-time hardware simulator RCP/HIL from the
manufacturer OPAL-RT® Technology, which provides a reliable real-time digital simulation
tool focused on power system network modeling and associated controls prototyping and
system evaluation, either with averaged or switched models.

Before starting tests with the MHM through DRTS, an MIL simulation approach was
used, in which the behavior and performance of the individual equivalent models in
Tables 2 and 3 were tested, as well as the control loops and dominant dynamics associated
with each PEI and DER. These equivalent models were programmed into the Simulink®

interface of Matlab®9.12 using the Simscape® toolbox (MathWorks, Natick, MA, USA). The
data collected during the MIL simulation served as a reference during the DRTS phase
since this phase integrates the individual models with the control loops to form the MHM
and the benchmarks set by the OPF algorithm.

Under a DRTS approach, the RT simulator must reproduce the internal variables
of the models and generate computational results accurately in the same time frame
as the real physical system would. Thus, RT simulations run all operations during a
fixed sampling period to avoid overloads and overlapping of operations in successive
sampling periods. The models proposed in this work have been implemented in the
OP4510 simulator (OPAL-RT®, Montréal, QC, Canada) with a field-programmable gate
array (FPGA) based on Xilinx® Kintex® 7 (AMD, Wixom, MI, USA). To enforce the models
in the RT simulator, they must pass an MIL process in Simulink® and then be compiled
and optimized in the RT-Lab®2023.1 and executed on the OP4510 platform (OPAL-RT®,
Montréal, QC, Canada). The visualization of the model signals develops on the host
(personal computer) with the general-purpose operating system. On the other hand, high-
performance codes representing the model under analysis are executed on the target node
(RT simulator). Synchronization between the host and the RT simulator is performed via a
UDP/IP communication link.

A conceptual model of the MHM model workflow under a DRTS approach is presented
in Figure 6. The feasible solution to the optimization problem for the daily scheduling
of the MHM is transferred from the third level of the hierarchical control structure to the
second level from a CSV file. In this file, the feasible operating points of each converter
associated with the MHM are set at intervals of 1 h. From the second level, the operating
modes of each converter and the set points for the voltage and current controllers at the
first level of control are determined. Thus, it is necessary to scale the sampling periods
at each control level. Hence, the first level updates the feasible solution every 1 s (1 s of
simulation is equivalent to 1 h), and the second level takes the same time to update the
references. For its part, the primary level works at the same sampling frequency set in the
RT simulator, 100 µs, according to the dominant dynamics of each converter. The signals of
the MHM variables are displayed on the host and stored with the DataLogger tool in the
RT-Lab®2023.1 environment.
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3. Simulation Results and Discussion

This section presents results and discussions on the proposed computational model
to evaluate its performance from an ST-based MHM simulation scheme under a DRTS
approach on the OPAL-RT® platform.

The multiobjective optimal power flow problem posed in (1) through (21) was pro-
grammed in Python 3.9.5. The Spyder 5.4.2 integrated development environment under
the Pyomo 6.5.0 framework was used. The feasible solution at each period was determined
from the Ipopt solver, given the nonlinearities in the power flow equations of the system.
The set of feasible solutions generated by the optimization algorithm was imported from
the DRTS simulation model from a flat file. In this file, an optimal operating point of
each DER’s PEI, each ST stage, and each feeder is related to the demand profiles and PVG
profiles in each hour of operation for a 24 h horizon. Figure 7 shows the load and PVG
profiles in p.u. (50 kW base) that were used to formulate and solve the proposed OPF. The
profiles were imported into the simulation model in Simulink® under the DRTS approach.

The benchmark reported in [43] is taken as a reference, in which the parameters of
the three-phase lines, balancing nominal demand and bus connections of the low-voltage
DS with a radial structure, are related. An equivalent schematic of a modified MHM line
is shown in Figure 8. It comprises four DC buses (blue line), six AC buses (red line), an
ST, and a VSC. The ST allows for the coupling of a second AC medium-voltage feeder on
the first stage of the ST. The MHM consists mainly of loads, a BESS, PVG, and feeders on
the AC and DC sides. The power electronic interface (PEI) of each DER, implemented in
the simulation model, is a low-frequency equivalent model whose dominant dynamics are
associated with the energy storage elements’ power transfer and time constant, according
to the models in Table 3.
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Figure 8. Real-time MHM benchmark’s model.

Two approaches are used to analyze the system performance. The first approach is
oriented to the analysis of the response of the PEI and ST stages according to the primary
and secondary control levels to reference changes in the active and reactive power levels
reflected in the instantaneous response of voltage and current. On the other hand, the
second approach seeks to determine the system performance according to the tertiary level
of control based on the optimal response of the OPF decision variables. These variables
are associated with the power flow to the active (PACST

k,t ) and reactive (QACST
k,t ) power of the

ST, Equations (6) and (7), as well as to the equivalent power of the DC generator at the
ST output (PGDC

i,t ) in (8). Similarly, other variables associated with the active and reactive
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power generation profiles (PGAC
k,t ; QGAC

k,t ) of the AC feeder connected to the C0 bus on the
AC side are taken as reference.

Figure 9 shows the response of the VSC’s voltage and current control loop connected
to the PVGs on the AC side of the MHM. This converter only allows for reactive power
control since the active power depends on the irradiance, according to (9). The VSC is
subjected to changes in the level of reactive power injected into the grid. Figure 9 shows
the phase shift of the current according to the variation in the power factor given by the
reference change between −1.5 kVAR and 1.5 kVAR. This variation in the power factor is
reflected by the phase shift of the current between 2 s and 2.25 s of simulation. The response
of the power control loop has a settling time close to 10 ms. This time is a reference for
scaling the simulation period, and reference changes for a 24 h horizon in 24 s.
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The VSC connected in the third stage of the ST has a particular feature: the DC port
is regulated by a DAB (second stage of the ST). In addition, this converter allows for the
independent control of active and reactive power according to the operating point set by the
EMS. In this way, the response of the control loops at the second and first levels is validated.
Changes are made in the active and reactive power reference points, −2.5 kW to 2.5 kW
and −1.25 kVAR to 1.25 kVAR, respectively. With these changes in active and reactive
power injection, the transient response of the power controller is shown in Figure 10. The
effect of active and reactive power on the voltage and current at the bus connection is also
observed. The reactive power directly affects the voltage amplitude and current phase.
In contrast, the active power has a more significant effect on the current amplitude, thus
allowing for bidirectional power flow control and, at the same time, voltage regulation
according to the optimization objective, voltage deviation reduction. The combination of
the reference changes allows us to validate the performance of the third stage of the ST in
the four quadrants of the pq plane, like the one presented in Figure 4b.
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Figure 10. Controller transient response of ST’s third stage.

The low-voltage DAB output is a reference point since this port of the ST serves as a
coupling point for the DC side of the MHM. This output supplies active power to both the
VSC input of the third stage of the ST and the DC bus of the MHM and, at the same time,
serves as a slack node on the DC side since the DAB control loops regulate the voltage on
the DC bus. Thus, the DAB output is posed as a DC feeder in the power flow equations for
the OPF problem. Figure 11 shows the response of the power supplied to the DAB output
of the ST

(
PGDC

i,t

)
under a DRTS approach. A slight shift is observed between both curves

since the optimal solution is derived from models that only consider static conditions in
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the load and DER’s PEI. On the other hand, the low-frequency equivalent model of the
converters shows proper transient operational responses of the system state variables and
the nonlinear conditions of the power transfer elements, which are typical conditions of
power electronic converters.
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Finally, according to the equations and power balance, the third stage of the ST
functions as a rectifier that, together with the equivalent DC generator at the output of
the DAB, injects active power into the MHM on the DC side to supply the load needs and
optimize the utilization of the BESS according to SoC.

Figures 12 and 13 present the active and reactive power response, respectively, at the
low-voltage output of the ST. The red colored curves represent the feasible operating points
of the ST, set as a reference for the VSC control loops of the third stage of the ST. Regarding
the active power, it is observed that the system response presents a tracking close to the
reference, presenting a deviation between 14:30 h and 19:00 h, given that the peak demand
occurs at this point, according to Figure 7. This scenario produces a change in the operating
point of the PEI and, consequently, affects the performance of the ST control loops.
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On the other hand, the reactive power response shows a tracking close to that expected
based on the reference curves generated by the solver of the OPF problem. In the time
interval, the peak demand occurs between 16:00 and 20:00 h, and the reactive power
injection is increased to compensate for the demand and regulate the voltage. This feature
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shows that an ST is a versatile device for routing power from the AC or DC sides to
compensate for the grid requirements for optimal operation.
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Figures 14 and 15 show the response of both the active and reactive power of the AC
power supply coupled to bus 0 on the AC side. The active and reactive power response
shows a slight deviation concerning the expected value at each time instant based on the
optimal solution and power balance according to the OPF model. Given the dynamics
not contemplated in formulating and solving the OPF problem, this feature is expected.
These variables are representative of the validation of the equivalent models’ accuracy and
the solver’s feasible solution. These variables allow for determining the overall power
balance of the system from the AC side. Since the general power balance presents a high
coincidence with the reference values, it indicates that the balance of each element of the
MHM is adequate.
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Table 4 presents metrics to compare the reference data array with the data obtained
from the real-time model, such as root-mean-square error (RMSE), mean absolute percent-
age error (MAPE), and Pearson’s linear correlation coefficient (Rho).



Energies 2024, 17, 1950 19 of 21

Energies 2024, 17, x FOR PEER REVIEW 20 of 23

coincidence with the reference values, it indicates that the balance of each element of the 

MHM is adequate.

Figure 14. Active power output AC generator.

Figure 15. Reactive power output AC generator.

Table 4 presents metrics to compare the reference data array with the data obtained 

from the real-time model, such as root-mean-square error (RMSE), mean absolute percent-

age error (MAPE), and Pearson’s linear correlation coefficient (Rho).

Table 4. Performance metrics of the real-time model.

Variable RMSE MAPE Rho

𝑃𝑖,𝑡
𝐺𝐷𝐶 109.68 1.025 0.05

𝑃𝑘,𝑡
𝐴𝐶𝑆𝑇 0.9505 0.1078 0.9955

𝑄𝑘,𝑡
𝐴𝐶𝑆𝑇 0.2157 3.1388 0.9996

𝑃𝑘,𝑡
𝐺𝐴𝐶  110.11 0.9463 0.993

𝑄𝑘,𝑡
𝐺𝐴𝐶 40.302 0.5756 0.9948

The error and correlation metrics in Table 4 demonstrate the degree of accuracy of 

the results of the validation process and performance analysis of the DRTS model. Re-

garding the error, variables with a high error compared to others are identified, mainly 

due to the transient component of the system response. In contrast, when observing the 

Pearson coefficient, the analyzed variables present a high linear correlation regarding 

Figure 15. Reactive power output AC generator.

Table 4. Performance metrics of the real-time model.

Variable RMSE MAPE Rho

PGDC
i,t 109.68 1.025 0.05

PACST
k,t 0.9505 0.1078 0.9955

QACST
k,t 0.2157 3.1388 0.9996

PGAC
k,t 110.11 0.9463 0.993

QGAC
k,t 40.302 0.5756 0.9948

The error and correlation metrics in Table 4 demonstrate the degree of accuracy
of the results of the validation process and performance analysis of the DRTS model.
Regarding the error, variables with a high error compared to others are identified, mainly
due to the transient component of the system response. In contrast, when observing the
Pearson coefficient, the analyzed variables present a high linear correlation regarding
signal shape and trend. Thus, it is identified that, even though the signals have an offset,
given the dynamics not modeled in the system, the computational model of the OPF, the
low-frequency equivalent models, and the approximation of the ST as an active VSC are
adequate and accurate approximations for the analysis of these types of systems.

4. Conclusions

A simulation model with an MIL and SIL approach is proposed that seeks to validate
the equivalent power flow model of the ST as an active VSC coupled to a DC generator. An
OPF model is presented from each DER’s ST and PEI power flow models. These results
establish the reference points in each MG converter control loop to set the operating point
for optimal MG operation according to the optimization algorithm.

The decoupled structure of the TS, under a hierarchical control scheme, allowed the
approach of power flow equations to formulate and solve an optimization problem in the
upper control and management layer of the MHM for daily operational planning. In this
way, it was possible to validate the performance of an equivalent low-frequency model
for both the ST with decoupled control loops and the PEIs MHM from the results of the
DRTS tests. Finally, it was possible to apply a methodology for implementing accelerated
DRTS models of the MHM based on an ST to analyze the system response according to the
hierarchical control layer structure under a daily operational planning approach.

As future work, the system needs to validate the performance of the system under an
HILS approach, which integrates specialized ST hardware and enables integration with an
energy management algorithm, thus allowing for the validation control loops and, at the
same time, validating the overall performance of the system with a daily planning horizon.
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On the other hand, to improve the transient response of the control loops of the ST stages,
it is required to implement strategies that integrate feedforward compensation loops.
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