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Abstract: With the expansion of the scale of electric power, high-quality electrical energy remains a
crucial aspect of power system management and operation. The generation of reactive power is the
primary cause of the decline in electrical energy quality. Therefore, optimization of reactive power in
the power system becomes particularly important. The primary objective of this article is to create a
multi-objective reactive power optimization (MORPO) model for distribution networks. The model
aims to minimize reactive power loss, reduce the overall compensation required for reactive power
devices, and minimize the total sum of node voltage deviations. To tackle the MORPO problems
for distribution networks, the improved sparrow search algorithm–particle swarm optimization
(ISSA-PSO) algorithm is proposed. Specifically, two improvements are proposed in this paper.
The first is to introduce a chaotic mapping mechanism to enhance the diversity of the population
during initialization. The second is to introduce a three-stage differential evolution mechanism to
improve the global exploration capability of the algorithm. The proposed algorithm is tested on the
IEEE 33-node system and the practical 22-node system. The results indicate a reduction of 32.71%
in network losses for the IEEE 33-node system after optimization, and the average voltage of the
circuit increases from 0.9485 p.u. to 0.9748 p.u. At the same time, optimization results in a reduction
of 44.07% in network losses for the practical 22-node system, and the average voltage of the circuit
increases from 0.9838 p.u. to 0.9921 p.u. Therefore, the proposed method exhibits better performance
for reducing network losses and enhancing voltage levels.

Keywords: multi-objective reactive power optimization; network loss; sparrow search algorithm;
particle swarm optimization

1. Introduction

The field of reactive power optimization in modern power grids is constantly evolving
and improving as technologies progressively shift towards intelligence, real-time operation,
and coordination to address the complexity and variability of power system operation.
This enhances the operational efficiency, economic viability, and reliability of the grid.
Reasonable strategies for reactive power control and allocation can reduce energy con-
sumption and operational costs in the power grid, ultimately enhancing the stability and
economic efficiency of the power system. Conversely, the insufficiency of reactive power
and improper distribution in the power distribution system may result in increased line
losses and voltage fluctuations. However, the modern reactive power optimization (RPO)
field also faces various issues and challenges, including those presented by demand growth,
the limitations of traditional reactive power compensation devices, and the intricate grid
topology, among other challenges [1].

The RPO of distribution networks in the power system is a subproblem of the optimal
power flow problem. RPO can be achieved by manipulating the reactive power for the
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power system, thereby enhancing the efficiency of the power system [2]. The primary
objective of RPO is to achieve optimal operating conditions while satisfying the given
constraints by harmonizing and optimizing control variables such as generator voltage
values and transformer voltage ratios, which aim to reduce network losses and improve
voltage levels [3,4].

In general, RPO models presented a single-objective function, such as minimizing
reactive power losses or optimizing reactive power distribution. In recent years, with the
increasing demands for grid stability and reliability, researchers have begun to explore
multi-objective optimization problems. In addition to minimizing reactive power losses,
reactive power optimization models also considered other objective functions, such as
improving voltage stability, power factor, and reactive power balance. Therefore, the
optimization problem has evolved from a single-objective RPO problem to a multi-objective
reactive power optimization (MORPO) problem [5,6]. The MORPO problem is essentially a
nonlinear optimization problem with multiple constraints, variables, and objectives [7,8].

To address this issue, numerous scholars have proposed various solutions, which
are mainly divided into two categories: classical optimization techniques and artificial
intelligence optimization technologies. The classical optimization techniques consist of
gradient methods [9], interior point methods [10], linear programming [11], and nonlinear
programming methods [12]. To solve multi-objective problems, the traditional approaches
generally transformed the MORPO problem into a single-objective optimization problem
by using weighted methods [13], ε-constraint methods [14], and fuzzy decision-making
methods [15]. However, there are inherent drawbacks to traditional methods, such as
computational complexity, limited flexibility, and the inability to solve constrained prob-
lems involving nonlinear and discontinuous functions. Therefore, artificial intelligence
optimization algorithms have gradually been employed to tackle multi-objective optimiza-
tion problems. Recently, the MORPO problem has been successfully addressed through
the implementation of metaheuristic optimization methodologies, with examples such
as particle swarm optimization (PSO) [16,17], the sine cosine algorithm (SCA) [18], the
sparrow search algorithm (SSA) [19], the imperialist competitive algorithm (ICA) [20], the
cuckoo search algorithm (CSA) [21,22], the genetic algorithm (GA) [23], the beetle antenna
search (BAS) algorithm [24], the NSGA-II algorithm [25], the grey wolf optimization (GWO)
algorithm [26,27], the bacterial foraging optimization (BFO) algorithm [28], etc.

The PSO algorithm, known for its low memory requirements and fast convergence,
has been widely adopted in the field of MORPO due to its advantages [29]. In reference [30],
an improved RPO algorithm was proposed by considering the minimization of power loss
as the primary objective function, which was achieved by enhancing the strategy of inertia
weight and the acceleration coefficients. In reference [31], the L-index was incorporated to
enhance the stability of static voltage in electrical power systems. Confronted with intricate
multi-objective dilemmas, such as minimizing power loss and L-index, the implementation
of a crossover operator was introduced to augment the diversity of PSO. Additionally, a
chaotic sequence based on logical mapping was utilized in PSO instead of a random se-
quence to enhance its global search capability and exploitation ability. In reference [32], the
potential effects of integrating distributed generation (DG) into the power distribution net-
work were discussed. An improved second-order oscillatory PSO algorithm was presented
to enhance the efficiency and convergence properties of multi-objectives. It should be noted
that multiple iterations are required to converge for the PSO algorithm. Consequently, this
can lead to the PSO algorithm easily becoming trapped in a local optimum solution [33].

The SSA is a novel nature-inspired algorithm that draws inspiration from the behavior
of sparrows [34]. It has gained widespread discussion among scholars and is currently
under active research. In reference [35], a multi-objective optimization model was estab-
lished including investment cost, environmental sustainability, and power supply quality
as the objective functions. Subsequently, the Levy flight strategy was incorporated into
the SSA to enhance the ability of the multi-objective sparrow search algorithm to escape
local optima. In reference [36], a chaotic sparrow searches algorithm (CLSSA) based on



Energies 2024, 17, 2001 3 of 22

the logarithmic spiral strategy and the adaptive step size strategy was proposed. The ex-
perimental findings demonstrate the commendable practicality of the proposed approach
in addressing engineering quandaries. In reference [37], this article aims to integrate an
improved point selection strategy with the SSA. The issue of convergence degradation in
solving high-dimensional multi-objective optimization problems has been resolved and
the performance of the algorithm is improving. Based on the above research, it can be
observed that despite the excellent performance of the SSA in optimization problems, it has
some inherent drawbacks, such as slow convergence speed and the possibility of becoming
trapped in local optima.

According to the aforementioned research, this paper proposes a method for MORPO
in distribution networks using the improved sparrow search algorithm–particle swarm
optimization (ISSA-PSO) algorithm. The specific findings and contributions of the paper
can be summarized as follows:

(1) This paper establishes a MORPO model, where the objective function consists of
minimizing active power loss, minimizing total compensation of reactive power compensa-
tion devices, and minimizing the sum of node voltage deviations.

(2) Inspired by the aforementioned research, this paper presents the ISSA-PSO algo-
rithm to address the low convergence accuracy in PSO while incorporating the strong
global search capability and efficiency of SSA. This algorithm incorporates two notable
enhancements: The first enhancement introduces the incorporation of a tent chaotic map-
ping mechanism to initialize the population, aiming to enhance its diversity. The second
enhancement introduces a three-stage differential evolution mechanism to enhance the
algorithm’s global exploration capability.

(3) The effectiveness of the ISSA-PSO algorithm is proved by simulation using the IEEE
33-node system and the practical 22-node system. Compared with the SSA, PSO algorithm,
and SSA-PSO algorithm, the proposed strategy has better performance in terms of tracking
speed, accuracy, and dependability.

2. MORPO Model

The essence of MORPO in distribution networks is essentially the resolution of a non-
linear problem that contains both equality and inequality constraints. By incorporating the
actual characteristics of the power system into the reactive power problem and considering
given parameters such as impedance values and load conditions of the distribution lines,
the control variables are optimized to satisfy the constraints set for the objective function.
Consequently, the distribution network achieves an optimal operational state through
MORPO. The mathematical model is defined as follows:

min f (u, x)
s.t.g(u, x) = 0

h(u, x) ≤ 0
, (1)

where min f (u, x) is the objective function; g(u, x) = 0 is the equality constraint; and
h(u, x) ≤ 0 represents the inequality constraint.

2.1. Selecting the Objective Function

(1) From an economic perspective, the minimization of active power losses in the
distribution network system is considered as the first objective function. The expression
can be formulated as follows:

minPloss = min∑i∈n
j∈i Gij·

[
U2

i + U2
j − 2UiUj·cos (θ i − θj

)]
, (2)

where Ploss indicates the active power loss in the power grid; n is the number of branches;
G is line conductivity; and U and θ are the amplitude and phase angle of voltage.
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(2) The second objective function aims to minimize the total amount of compensation
for the installed compensating devices in the power system; the expression is as follows:

min f = min∑Nc
i=1 (αi·QCi) + β·Ploss, (3)

where αi is the power factor correction coefficient for the annual reactive power consump-
tion of node i; Nc is the selected number of compensation nodes; QCi is the compensation
amount under node i; and β is the cost factor of network loss with power generation.

(3) The third objective function is to minimize the total sum of nodal voltage deviations
in the power system; the expression is as follows:

dU =

∣∣∣∣∣
√[

Uj(x) − ∆Uij(x)

]2
+
[
δUij(x)

]2
− UN

∣∣∣∣∣/UN , (4)

where N is the total number of nodes; UN is the rated voltage; ∆Uij is the longitudinal
component of voltage drop; and δUij is the lateral component of voltage drop.

The penalty functions are incorporated into the establishment of the MORPO model,
transforming the multi-objective problem into a single-objective one, ensuring a more
accurate optimization of the model. The explanation of a penalty function is as follows.
When all inequality constraints are satisfied, the penalty term equals zero. However, as soon
as any inequality constraint is not satisfied, the corresponding penalty term is generated,
and the larger the deviation, the greater the value of the penalty term. This effectively
increases the objective function, serving as a punishment for not meeting the constraints.
When the penalty factor is sufficiently large, the optimization process can only minimize
the penalty function by gradually approaching zero. This compels the previously violated
variables or functions to converge or return within the specified limits of their constraints.
Utilizing mathematical models that integrate systemic economic benefits and security, we
can formulate a precise expression:

Fmin = Ploss + δV ·∑m (
∆Vi

Vimax − Vimin
)

2
+δQ·∑n (

∆QGi
QGimax − QGimin

)
2
, (5)

where the second item pertains to the penalty for excessive voltage at the PQ node; the
third item pertains to the penalties for exceeding the limits of reactive power compensation;
m is the set of nodes for all generators in this system; δV is the penalty factor for PQ node
voltage violation; ∆Vi is the deviation of the voltage at the i node; QGi is compensation
amount under node i; and δQ is the penalty factor for overcompensation of reactive power.

The specified conditions for punitive measures are as follows:

∆Vi =


Vimin − Vi (Vi < Vimin)
0 (Vimin < Vi < Vimax)

Vi − Vimax (Vimax < Vi)
, (6)

∆QGi =


QGimin − QGi (QGi < QGimin)

0 (QGimin < QGi < QGimax)
QGi − QGimax (QGimax < QGi)

, (7)

where Vimax and Vimin are the upper and lower bounds of nodal voltage; and QGimax and
QGimin are the upper and lower reactive power compensation capacity.

2.2. Constraint Condition

(1) Equality constraint condition

The formulation of equation constraints is intended to ensure the conservation of active
and reactive power within the system. To ensure the secure and stable operation of the power
system, certain measures must be implemented. The equation of constraint is as follows:
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{
Pi = PGi − PLi = Ui∑n

j=1 Uj·
(
Gijcos δij + Bijsin δij

)
Qi = QGi − QLi = Ui∑n

j=1 Uj·
(
Gijsin δij +Bijcos δij

) , (8)

where P and Q are active power and reactive power; δ is the phase angle difference;
PGi and QGi are the active power output and reactive power output of the generator node; and
PLi and QLi are the active load, reactive load, and reactive compensation capacity of nodes.

(2) Inequality constraint condition

In the process of optimization and adjustment, the voltage at the generator’s nodes VG,
the compensating capacity of the parallel capacitors QC, and the tap changer T of the
transformer are regarded as control variables, while the reactive power output of the node
voltage is judged as the changeable state.

The inequality constraints for controlling variables are as follows:
VGmin ≤ VG ≤ VGmax

Tmin ≤ T ≤ Tmax
QCmin ≤ QC ≤ QCmax

. (9)

The inequality constraint conditions of the state variables are as follows:{
QGmin ≤ QG ≤ QGmax

Vdmin ≤ Vd ≤ Vdmax
, (10)

where VG is the voltage at the terminals of the generator and VGmin, VGmax are the corre-
sponding upper and lower thresholds; T, Tmin, and Tmax are the relative positioning and
upper/lower limit values of the tap changer systems in the transformers; QG is the reactive
power output of a generator and QGmin, QGmax are the upper and lower limits; and QC is
the voltage at the node and QCmin, QCmax are the corresponding upper and lower limits.

3. The Improved Particle Swarm Optimization–Sparrow Search Algorithm
3.1. Sparrow Search Algorithm

The SSA is an intelligent algorithm inspired by the hunting behavior of sparrows. It
possesses excellent capabilities for local exploration and global optimization. The process
of sparrow predation can be divided into two primary roles: the discoverer and the
follower. The discoverer, characterized by a higher energy level, provides the direction
to the food source for the population. The remaining individuals serve as followers who
trail the discoverer in search of food, and they may even become involved in disputes
over resources. Moreover, a certain proportion of sparrows possess the ability of vigilant
surveillance, allowing them to evade potential predators.

The discoverer undertakes the task of foraging for sustenance and guiding the collec-
tive migration of the entire population. Therefore, the discoverer may explore sustenance
in a more extensive realm than the one inhabited by the joiner. The formula for updating
the position of the discoverer is as follows:

Xt+1
i,j =

{
Xt

i,j· exp
(

−i
α·itermax

)
i f R2 < ST

Xt
i,j + Q·L i f R2 ≥ ST

, (11)

where Xt
i,j is the i-th individual in the j-th dimension value following t iterations; R2 is the

early warning value; α represents random numbers, α ∈ (0,1]; ST is the safety threshold,
ST ∈ (0.5,1]; Q represents random numbers obeying the normal distribution; and L is a
matrix consisting of elements that are all 1.

If R2 < ST, this means the absence of predators, prompting the observer to engage in
an extensive exploration mode. Otherwise, if R2 ≥ ST, all the sparrows must expeditiously
migrate to alternative safe havens upon the discovery of predators in their vicinity.
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Once the sparrows perceive that the discoverer has identified a region with splendid
nourishment, they will relinquish their current location and migrate to the discoverer’s
position to contend for the food resources. In the event of their successful occupation of the
designated vantage point, the discoverer shall be rewarded with nourishment. Otherwise,
they shall persist in adhering to the established regulations. The formula for the position of
the follower update is as follows:

Xt+1
i,j =

 Q·(
Xt

worst−Xt
i,j

i2 ) i f i > n/2

Xt+1
P +

∣∣∣Xt
i,j − Xt+1

P

∣∣∣·A+·L i f i ≤ n/2
, (12)

where XP is the optimal position occupied by the discoverer, and Xworst is the current
worst-case global position.

According to the aforementioned formula, the mathematical model can be expressed
as follows:

Xt+1
i,j =


Xt

best + β·
∣∣∣Xt

i,j − Xt
best

∣∣∣ i f fi > fg

Xt
i,j + K·(

∣∣∣Xt
i,j−Xt

worst

∣∣∣
( f i− fw)+ε

) i f fi = fg

, (13)

where Xbest is the current global optimal position; β represents the step size control param-
eters, conforming to a Gaussian distribution of random numbers with a mean of 1 and a
variance of 1; fi is the present fitness value of the sparrows; fg is the current global best
fitness value; fw is the present minimum fitness value in the global range; and ε is the
minimum constant selected to avoid errors in the division by zero.

3.2. Particle Swarm Optimization

PSO is an algorithm of collective intelligence, conceived in the spirit of bird foraging
behavior. This algorithm solves optimization problems by emulating the foraging behavior
of avian species traversing multidimensional search spaces. In the PSO algorithm, the solu-
tion to a problem is represented as the position of a particle, with each particle representing
a candidate solution in the problem space. The Formulas (14) and (15) express the updates
for velocity and position in the PSO algorithm, respectively.

vt+1
i = ω·vt

i + c1·randi
(

pbest − xt
i
)
+ c2·randi

(
gbest − xt

i
)
, (14)

xt+1
i = xt

i + vt+1
i , (15)

where vt
i is the velocities of the i-th particle at the t and t + 1 iterations; c1 and c2 are

acceleration factors; pbest and gbest are the local and global optimal positions of particles;
rand1 and rand2 are random numbers ranging from 0 to 1; and ω is the inertia weight.

The advantages of the PSO algorithm include ease of implementation, obviating
the need to calculate gradient information, applicability to both continuous and discrete
optimization problems, etc. However, the PSO algorithm has some certain drawbacks, such
as its susceptibility to becoming trapped within local optima, its sensitivity to problem
initialization, etc.

3.3. Sparrow Search Algorithm–Particle Swarm Optimization

In order to tackle the problem of limited local search capacity and insufficient search
accuracy in PSO, the SSA is introduced. To tackle the problems of search stagnation and the
challenge of breaking free from a limited search space, a subgroup of the PSO population
known as sparrows is incorporated, which are further classified into discoverers, trackers,
and sentinels.

The formula is then updated as follows:

vid = ω·vid + c1·r1(pid − xid) + c2·r2

(
pgd − xgd

)
, (16)
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where ω is the weight coefficient, with an initial value of 0.5; c1 and c2 are the pursuit of
knowledge, with an initial value of 0.1 and 0.5; pid is the individual optimal position; pgd is
the global optimal position; and r1 and r2 are random numbers.

The formula for updating the position of each discoverer is defined as follows:

Xt+1
i,j =

{
Xt

i,j· exp( −i
α·tmax

) i f A > Ts

Xt
i,j + Q·L i f A ≤ Ts

, (17)

where Xt
i,j is the coordinate information of sparrow i in dimension j in the t-th generation,

where j = 2; α is a random number; A is an alert value, A ∈ [0,1]; Ts is the safety threshold,
Ts ∈ [0.5, 0.7]; and Q represents random numbers obeying the normal distribution.

When A < Ts, it indicates the absence of danger nearly, and the discoverer at this
moment may engage in a search within a broader spatial range. When A ≥ Ts, the observer
perceives danger, and some sparrows follow the discoverer’s actions as a follower. However,
upon the discovery of food, these followers will approach and contend with the finder for
sustenance. A small portion of the followers, due to insufficiency of sustenance, will fly
to other areas to search for food, replenishing the necessary sustenance. The formula for
updating is defined as follows:

Xt
i,j =

 Q· exp(
xωt

i,j−xt
i,j

i2 ) i f i > n/2

xbt
i,j +

1
J (rand){−1, 1}·

(∣∣∣xbt
i,j − bt

i,j

∣∣∣) i f i ≤ n/2
, (18)

where N is the population, N = 100; xbt
i,j is the best currently discovered food source; and

xωt
i,j is the worst current global food source.

The formula for updating the position of the observer is as follows:

Xt+1
i,j =


x·bt

i,j + β·
(

xt
i,j − xbt

i,j

)
fi ̸= fg

x·bt
i,j + K·(

xt
i,j−xωt

i,j

| fi− fg|+ε
) fi = fg

, (19)

where xbt
i,j is the optimal food source discovered by the population of sparrows; β is the

step size adjustment factor; ε is a minuscule constant; K is a random number, K ∈ [−1, 1];
fi is the present fitness value; and fg is the current global best fitness value.

The weighting factor adopts a sinusoidal variation; the weight factor of the algorithm
is represented by the following equation:

ω(k) =
ωmax − ωmin

k
· sin(π

k
kmax

) +
ωmax + ωmin

k
, (20)

where ωmax = 1, ωmin = 0.5; k represents iterations; kmax is the maximum number of
iterations; and ω(k) is the inertia weight factor for the k-th iteration.

The flowchart of the SSA-PSO algorithm is shown in Figure 1 as follows.
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3.4. The Improved SSA-PSO Algorithm

The SSA-PSO algorithm combines the advantages of both the SSA and the PSO al-
gorithm, significantly improving the algorithm’s optimization accuracy and efficiency.
However, The SSA-PSO algorithm still possesses untapped potential for optimization.
Therefore, this paper undertakes further optimization based on SSA-PSO: the first improve-
ment is the introduction of a chaotic mapping mechanism to enhance the diversity of the
population during initialization, and the second is the introduction of a three-stage differ-
ential evolution mechanism to improve the global exploration capability of the algorithm.

Tent chaotic map

A tent chaotic map is a piecewise linear one-dimensional map. Compared to the
logistic function, it exhibits a uniform power spectral density, probability density, and ideal
correlation characteristics, along with a faster iteration rate. The mathematical expression
is as follows:

xn+1 = a − 1 − a·|xn|, a ∈ (1, 2) (21)

When a ≤ 1, the tent chaotic map is in a stable state; when 1 < a < 2, the tent chaotic
map is in a state of chaotic dynamics; when a = 2, the tent chaotic map is the core of tent
mapping. The mathematical expression is as follows:

xk+1 =

{
2xk, 0 ≤ xk ≤ 0.5

2(1 − xk), 0.5 ≤ xk ≤ 1
(22)

The tent chaotic map exhibits remarkable traversability, and the computation pro-
cessing is suitable for a large magnitude of data sequences. However, the mapping of the
tent function suffers from the drawback of having a small unstable period. Therefore, the
following enhancements for the tent mapping are proposed.

xk+1 =

{
2·(xk + 0.1·rand(0, 1)), 0 ≤ xk ≤ 0.5

2·(1 − (xk + 0.1·rand(0, 1))), 0.5 ≤ xk ≤ 1
(23)

The three-stage differential evolution mechanism (TSDE)

The TSDE is an evolutionary algorithm commonly used for solving optimization
problems. It is an enhanced version of the differential evolution (DE) algorithm. The
essence of TSDE lies in iteratively optimizing individuals to seek the optimal solution. In
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each generation, superior individuals are chosen and preserved by comparing the fitness of
the parent population with that of the offspring population. Simultaneously, less adaptive
individuals are replaced by newly generated individuals. For individuals with lower fitness,
improvement can be achieved by adopting superior mutation and crossover strategies.
Compared to traditional DE algorithms, TSDE incorporates a design consisting of three
stages, which enhances the stability and convergence of the algorithm. Additionally, TSDE
can be customized by employing different mutation and crossover operations tailored to
the characteristics of specific problems. This adaptability and flexibility enable TSDE to
effectively tackle diverse optimization problems. The three stages of TSDE are as follows:

Initialization phase: During this stage, the population needs to be initialized by
generating a set of candidate solutions. Common methods for initialization include random
generation, uniform distribution, or specific initialization based on the characteristics of
the problem. The expression in the initialization phase is as follows:

xi(t + 1) = xi(t) + C · (xi(t)− x1(t)), i ∈ [2, . . . , n], (24)

where C represents consumer factors with Levy flight characteristics.

C =
1
2
· v1

|v2|
, (25)

v1 ∼ N(0, 1), v2 ∼ N(0, 1), (26)

where N (0, 1) is the probability density function of a normal distribution with mean 0 and
standard deviation 1; and v1 and v2 are the standard normal distribution.

Mutation and crossover phase: During this phase, new individuals are generated by
selecting parent individuals and performing mutation and crossover operations. Specifi-
cally, the mutation operation introduces small perturbations to the parent individuals to
obtain new individuals, while the crossover operation combines the new individuals with
the original individuals to produce offspring individuals. The expressions for the mutation
and crossover phase are as follows:{

xi(t + 1) = xi(t) + C ·
(
xi(t)− xj(t)

)
, i ∈ [3, . . . , n]

j = randi([2i − 1])
, (27)

where xj(t) is the optimal individual from the t-th iteration.
Selection phase: During this phase, individuals with higher fitness from both the

parent and offspring populations are chosen as parents for the next generation based on a
predetermined strategy. The expression for the selection phase is as follows:

xi(t + 1) = xi(t) + C · (r2 · (xi(t)− x1(t)) + (1 − r2)
(
xi(t)− xj(t)

)
, i = 3, . . . , n, (28)

j = randi([2i − 1]), (29)

where r2 is a random number, r2 ∈ [0, 1].
The flowchart depicting the process of the ISSA-PSO algorithm is illustrated in Figure 2.
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3.5. Function Test and Result Analysis

(1) Parameter setting
This section uses the Matlab 2019b platform to verify and analyze the computational

performance of the ISSA-PSO algorithm to test functions. All the comparison algorithms
are set to a population of 30, with 200 iteration times.

(2) Test function
In order to verify the performance of the algorithm, this paper selects four standard

test functions for calculation, which are shown in Table 1. To further validate the speed
information of the algorithm, the iterative speed of the proposed ISSA-PSO algorithm is
compared with that of the SSA, SSA-PSO, GWO, WOA, and SCA on four test functions,
as shown in Figures 3–6. From the illustration, it can be observed that ISSA-PSO exhibits
remarkable performance advantages for unimodal test functions. Therefore, the ISSA-PSO
algorithm consistently exhibits the fastest iteration speed when convergence reaches the
optimal value.

Table 1. Test function.

Functions Dimension Range Optimum

f1(x) =
30
∑

i=1
ix4

i + random [0, 1) −1.28 ≤ xi ≤ 1.28 30 [−100, 100] 0

f2(x) = ∑30
i=1|xi|+ ∏30

i=1|xi| 30 [−10, 10] 0

f3(x) = −20exp

(
−0.2

√
1
30

30
∑

i=1
x2

i

)
− exp

(
1

30

30 ∑i

∑
i=1

cos 2πxi

)
+ 20 + e 30 [−32, 32] 8.88 × 10−15

f4(x) = 1
4000

30
∑

i=1
x2

i −
30 ∏ (

xi√
i
)

∏
i=1

cos
(

xi√
i

)
+ 1

30 [−50, 50] 0
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4. Simulation Results

In order to assess the effectiveness of the improved algorithm in terms of optimization
performance, the paper utilizes the IEEE 33-node system and the practical 22-node system
for verification. Firstly, the pre-optimized data of each node are obtained by utilizing
power flow calculation in the node system. Subsequently, optimization is carried out using
the SSA, SSA-PSO, and ISSA-PSO algorithms, respectively. The suitable reactive power
compensation devices are selected for the node system applying the above three algorithms.
Finally, to further validate the feasibility of the proposed method, the network losses and
node voltage are ultimately compared using the SSA, SSA-PSO, and ISSA-PSO algorithms.

4.1. IEEE 33-Node System Simulation Results

The IEEE 33-node system, as depicted in Figure 7, consists of 32 branches and 33 nodes.
The five contact switch branches are, respectively, labeled as follows: 8–21, 9–15, 12–22,
18–33, and 25–29. Node 1 is the equilibrium node, while the remaining 32 nodes are load
nodes. The three-phase reference power value is 10 MVA, the reference voltage is 12.66 kV,
and the total load in the nodal system is 3415 + j2300 kVA.
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This paper aims to compensate for reactive power at appropriate nodes in the system,
taking into account the loads and voltages on each line as depicted in the diagram. The
impedance data for the branches are assumed to be nominal. This paper employs the
Newton–Raphson method to perform power flow calculations on a nodal system. Once the
power flow calculation is completed, the voltage values corresponding to each node can be
obtained prior to optimization, as shown in Table 2.
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Table 2. Voltage of each node in the IEEE 33-node system before optimization.

Node Number Node Voltage Node Number Node Voltage

1 1 18 0.9131
2 0.9970 19 0.9965
3 0.9829 20 0.9929
4 0.9755 21 0.9922
5 0.9681 22 0.9916
6 0.9497 23 0.9794
7 0.9462 24 0.9727
8 0.9413 25 0.9694
9 0.9351 26 0.9477
10 0.9292 27 0.9452
11 0.9284 28 0.9337
12 0.9269 29 0.9255
13 0.9208 30 0.9220
14 0.9185 31 0.9178
15 0.9171 32 0.9169
16 0.9157 33 0.9166
17 0.9137 - -

From Table 2, it is evident that the minimum amplitude manifests at node 18, with a
voltage of 0.9131 p.u., while the maximum amplitude manifests at node 2, with a voltage
of 0.9970 p.u. The voltage value at the last node in the system is 0.9166 p.u., and the
average voltage for the entire system is 0.949 p.u. By analyzing load flow calculations on
the standard IEEE 33-node system, there are certain issues pertaining to the overall voltage
levels throughout the entire network. The voltage levels fall short of the desired ideals,
thereby requiring appropriate compensation measures to enhance the active power within
the power system.

The paper adopts the SSA, SSA-PSO algorithm, and ISSA-PSO algorithm to optimize the
MORPO model, selecting an initial population size of 30 (the population size of producers
accounts for 30 percent of the total population size) and a maximum iteration count of 100; the
learning factor is c1 = 2 and c2 = 2, and the inertia weight is ω = 0.9. The results are shown
in Figures 8–10.
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Figures 8–10 illustrate the three-dimensional data optimized by the algorithm pro-
posed in this manuscript for three different objective functions, wherein the x-axis in the
graph represents the total active power loss of the optimized nodes, while the y-axis repre-
sents the total capacity of the optimized capacitor banks at each node. The z-axis represents
the total voltage deviation of the optimized nodes. However, despite the ability of three-
dimensional images to fully showcase optimized data, the contrast effect is not particularly
prominent. The following sections will individually apply the SSA, the SSA-PSO algorithm,
and the ISSA-PSO algorithm to objective functions in detail to validate the effectiveness of
the proposed method in this article.

To determine the appropriate compensation nodes and capacities, a parallel capacitor
bank is used to switch and compensate for the power at six nodes. The step size for
compensation power is 50 kvar. These six nodes are designated as Q1, Q2, Q3, . . ., Q6.
Table 3 provides the results of the placement and quantity of compensating capacitors
based on the SSA, SSA-PSO, and ISSA-PSO algorithms.

Table 3. The quantity of compensating capacitors for different optimization algorithms.

Compensation Device
Number

SSA SSA-PSO ISSA-PSO
Investment

Nodes Input Quantity Investment
Nodes Input Quantity Investment

Nodes Input Quantity

Q1 10 3 3 0 3 0
Q2 16 4 9 3 7 2
Q3 24 0 15 4 14 6
Q4 31 7 30 8 31 8
Q5 32 5 32 3 32 0
Q6 33 0 33 1 33 2
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Among the selected six nodes, the effect of reactive power compensation on the IEEE
33-node system is found to be the most optimal using ISSA-PSO algorithms. And it can be
seen that the ISSA-PAO-calculated compensation capacity is the lowest, which can significantly
reduce the system cost in practical applications. In the process of RPO, the magnitude of
network loss is a crucial indicator to measure the success of reactive power optimization.
To confirm the effectiveness of the method proposed in this paper, the optimization of the
objective function using the SSA, SSA-PSO, and ISSA-PSO algorithms is compared. The
comparison graph of network loss optimization for the IEEE 33-node system is depicted in
Figure 11. Table 4 presents the optimized results of the total network loss.
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Table 4. Total network loss optimization results.

Optimization Method Before Optimization SSA SSA-PSO ISSA-PSO

Total network loss (kW) 202.7 159.4 139.0 136.4
Network loss reduction rate (%) - 21.36 31.43 32.71

From Figure 11, it can be seen that although all three optimization techniques demon-
strate favorable effects on network loss reduction, the proposed ISSA-PSO algorithm
exhibits the most remarkable reduction. Notably, cables 2, 5, and 27 present significant
decreases in network loss, thereby showcasing the excellent optimization efficacy of the
ISSA-PSO algorithm. Furthermore, it is evident from Table 4 that the ISSA-PSO method
achieves lower network losses compared to the other two methods. Moreover, as indicated
by the findings in reference [30], an enhanced PSO algorithm is able to reduce network
losses by approximately 11%. In contrast, the implementation of the proposed optimization
method in this paper results in a decrease of approximately 33% in network losses, show-
casing a significantly superior optimization effect compared with reference [30]. Therefore,
the proposed approach demonstrates an excellent reactive power optimization capability.

In the process of RPO, another objective function to gauge the effectiveness of the
optimization is the magnitude of node voltages. The comparative diagram of voltage for
each node in the optimized system is illustrated in Figure 12.

As depicted in Figure 12, the minimum bus voltage in the absence of RPO stands at
0.9131 p.u. (located at node 18); nevertheless, it elevates to 0.9644 p.u. after employing the
methods elucidated in this passage for optimization. Aside from node 18, it is apparent
from the graph that other nodes in the system have shown favorable optimization effects.
To facilitate a more intuitive and comprehensive comparison between the voltages before
and after optimization, the average voltage of all nodes in the overall node line is calculated.
The calculated results indicate that the average node voltages after optimization are 0.9658,
0.9655, and 0.9748 utilizing the SSA, SSA-PSO, and ISSA-PSO algorithms, respectively.
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Moreover, the proposed approach in this paper yields the best optimization effect, with
an average node voltage increase of 2.7% after optimization. Hence, the utilization of
the ISSA-PSO algorithm for RPO in the standard IEEE 33-node distribution network has
yielded better outcomes compared with the other two methods.
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4.2. The Practical 22 Node System Simulation Results

In order to further validate the effectiveness of the proposed method in a comprehen-
sive system, the practical 22-node system has been selected for evaluation. The practical
22-node system represented a small portion of an agricultural distribution network within
the Eastern Power Distribution system in India, wherein the base voltage stands at 11 kV [38].
The total reactive power load in the system is 657.4 kvar, and active power loss without
compensation is 17.69 kW. Among these nodes, node 1 serves as the equilibrium point,
while the remaining 21 nodes represent the load nodes. The three-phase reference power
value is set at 10 MVA, and the reference voltage at the primary end of the power network
is 12.66 kV. Furthermore, the total load within the node system amounts to 662.31 + j657.40 kVA.
The practical 22-node system is depicted in Figure 13.
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Figure 13. The diagram of the practical 22-node system.

Similar to the IEEE 33-node system, the system is compensated with reactive power
compensation devices at the appropriate nodes, taking into account the loads and voltage
conditions along each line depicted in the diagram. The average voltage is taken as per
unit value. The voltage values corresponding to each individual node are shown in Table 5
before optimization.
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Table 5. Voltage of each node in the practical 22-node system before optimization.

Node Number Node Voltage Node Number Node Voltage

1 1 12 0.9831
2 0.9969 13 0.9808
3 0.9969 14 0.9756
4 0.9926 15 0.9756
5 0.9925 16 0.9753
6 0.9919 17 0.9743
7 0.9919 18 0.9743
8 0.9918 19 0.9733
9 0.9875 20 0.9731
10 0.9875 21 0.9730
11 0.9831 22 0.9729

Analyzing the results presented in Table 5, it becomes evident that the voltage levels
within the practical 22-node system are suboptimal in nature. The overall active power loss
within the system amounts to 17.7 kW, with the lowest magnitude occurring at node 22,
where the voltage value stands at 0.9729 p.u. The collective mean voltage of the system
amounts to 0.9838 p.u.

The paper adopts the SSA, SSA-PSO algorithm, and ISSA-PSO algorithm to optimize
the MORPO model. The results are shown in Figures 14–16.
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In Figures 14–16, the system is analogous to the practical 22-node system: the x, y, and
z axes represent the total active power loss of the optimized nodes, the total capacity of the
optimized capacitor banks at each node, and the total voltage deviation of the optimized
nodes. Due to the inability to showcase specific optimization effects in Figures 14–16, the
following sections will compare the results obtained after optimizing the objective function
using the SSA, the SSA-PSO algorithm, and the ISSA-PSO algorithm.

Similar to the IEEE 33-node system, the step size for compensation power is 50 kvar.
These six nodes are designated as Q1, Q2, Q3, . . ., Q6. Table 6 showcases the placement and
quantity of compensating capacitors in various scenarios.

Table 6. The quantity of compensating capacitors for different optimization algorithms.

Compensation
Device Number

SSA SSA-PSO ISSA-PSO
Investment

Nodes Input Quantity Investment
Nodes Input Quantity Investment

Nodes Input Quantity

Q1 2 0 2 0 2 0
Q2 2 0 2 0 3 0
Q3 2 1 2 0 5 1
Q4 6 1 3 0 8 1
Q5 16 1 8 0 17 2
Q6 20 4 19 4 21 2

Among the selected six nodes, the effect of reactive power compensation for the prac-
tical 22-node system is found to be the most optimal by applying the ISSA-PSO algorithm.
Moreover, the results of the compensation capacity using the ISSA-PSO algorithm are still
the lowest in the case of the practical 22-node system, resulting in a significant reduction in
system cost in practical applications. The comparison graph of network loss optimization
for the practical 22-node system is depicted in Figure 17. Table 7 shows the optimization
results of total network loss.

As can be seen from Figure 17, although all three optimization techniques show favorable
effects on network loss reduction, the proposed ISSA-PSO algorithm shows the most significant
reduction. It is worth noting that cables 3, 5, 10, and 12 show a significant reduction in network
loss, thus demonstrating the excellent optimization efficiency of the ISSA-PSO algorithm.
Furthermore, Table 7 shows the optimization results of total network loss after applying the
SSA, SSA-PSO, and ISSA-PSO algorithms in an actual 22-bus system. From Table 7, it is evident
that the network loss is 17.7 kW before optimization. After applying the SSA, SSA-PSO, and
ISSA-PSO algorithms, a noticeable decrease in power loss can be observed. Importantly, the
ISSA-PSO algorithm demonstrates the most significant reduction, with an impressive decline
of 44.07%. The effectiveness of this approach surpasses that of other algorithms, demonstrating
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better optimization results. The comparative diagram of voltage for each node in the optimized
system is illustrated in Figure 18.
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Table 7. Total network loss optimization results.

Optimization Method Before Optimization SSA SSA-PSO ISSA-PSO

Total network loss (kW) 17.7 10.2 10.0 9.9
Network loss reduction rate (%) - 42.37 43.50 44.07
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As depicted in Figure 18, the minimum bus voltage in the absence of RPO stands at
0.9729 p.u. (located at node 22). Nevertheless, it elevates to 0.9879 p.u., corresponding to
the implementation of the proposed resolution. Aside from node 22, it is apparent from
the graph that other nodes in the system have shown favorable optimization effects. To
facilitate a more intuitive and comprehensive comparison between the voltages before
and after optimization, the average voltage of all nodes in the overall node line is calcu-
lated. The calculated results indicate that the average node voltages after optimization are
0.9882, 0.9882, and 0.9921 when employing SSA, SSA-PSO, and ISSA-PSO, respectively.
Furthermore, the proposed approach in this paper yields the best optimization effect, with
an average node voltage increase of 0.84% after optimization. Therefore, the ISSA-PSO
algorithm has better optimization outcomes in the practical 22-node system.
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It should be noted that the simulation verification in this article is carried out within
the scope of conventional power distribution grids, assuming only sinusoidal quantities
for voltage and current waveforms. However, in the actual power grid, the voltage and
current waveforms are often influenced by various power quality disturbances, leading to
nonsinusoidal waveforms in the actual power grid. These power quality disturbances include,
but are not confined to, higher-order harmonics, subharmonics, and harmonic distortions,
among others, that can influence the standard functioning of the electricity network and the
efficiency of machinery [39–41]. Therefore, the upcoming research will focus on the implications
of harmonic distortion and voltage distortion issues on the power grid.

5. Conclusions

This paper establishes the MORPO model in the distribution network including
reactive power loss, reactive power devices, and the total sum of node voltage deviations.
Based on the SSA and PSO algorithm, the ISSA-PSO algorithm is proposed for converging
to a global optimal solution effectively. Compared with the SSA and SSA-PSO, the proposed
model has exhibited promising results in the IEEE 33-node system and the practical 22-node
system. The simulation results show that the total network losses of the IEEE 33-node
system decreased from 202.7 kW to 136.4 kW, representing a reduction of 32.71%. In terms
of node voltage, the average voltage magnitude of the lines increases from 0.9485 p.u. to
0.9748 p.u. Similarly, the total network losses of the practical 22-node system decreased
from 17.7 kW to 9.9 kW, resulting in a reduction of 44.07%. Regarding node voltage, the
average voltage magnitude of the lines increases from 0.9838 p.u. to 0.9921 p.u. Therefore,
the proposed algorithm can effectively improve optimization performance by reducing
active power loss and enhancing voltage levels simultaneously. However, the simulation
verification in this study is conducted within conventional power systems without taking
into account the voltage nonliterary issues that arise from the integration of distributed
energy resources into the grid. Our future research will primarily focus on investigating the
effects of harmonic distortion and voltage imbalance in distribution networks on reactive
power optimization.
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