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Abstract: The organic component of biomass pyrolysis oils is composed of a light fraction (C2–C4
volatiles, sugar- and lignin-derived monomers) and a less polar heavy fraction (pyrolytic lignin/humins,
greater than approximately 200 g/mol). Importantly, this heavy fraction can account for roughly one-
third to one-half of the total pyrolysis oil. While the composition and characteristics of the light fraction
are generally well understood, research is still needed for the characterization of the heavy fraction. Some
important thermodynamic fuel properties of this fraction are the heat of combustion, normal boiling
point, heat of vaporization, and flash point, which are (computationally) estimated in this work with
regularized regression and empirical correlations. The quantification of these properties has implications
on downstream utilization, particularly in the context of co-processing bio-oils with plastic and coal
liquefaction products and/or crude petroleum. Finally, challenges and opportunities for (experimental)
work are discussed for the advancement of sustainable valorization of biomass pyrolysis oils.

Keywords: bio-oil; pyrolytic lignin; normal boiling point; flash point; vaporization enthalpy;
heating value

1. Introduction

A changing energy landscape, environment, and climate has resulted in greater em-
phasis in the global economy on renewable natural resource utilization over fossil fuels [1,2].
In addition to cleaner modes of energy production, there is an ever-present need for the
development of carbon-neutral industrial chemicals and materials [2,3]. As a promising
alternative to petroleum and petrochemicals, biomass pyrolysis is a technology that pro-
duces carbon-rich bio-oil and bio-char that can be upgraded into various high-value final
products [4,5]. Biomass pyrolysis is the thermal deconstruction of lignocellulosic feedstocks
(woody biomass, grasses, and agriculture residues) in the absence of oxygen at tempera-
tures of roughly 300–600 ◦C, which produces either more liquid (fast pyrolysis) or more
char (slow pyrolysis), depending on the heating rate. Further reading on biomass pyrolysis
can be found in several recent reviews [6–17]. A proposed, simplified concept for a biomass
pyrolysis refinery is detailed in Figure 1, in juxtaposition with a refinery schematic for
petroleum and coal conversion to tars and industrial carbon products [3,18].

The composition of biomass fast pyrolysis oil (by weight) is roughly 20–30% water,
10–20% C2–C4 light volatile organics, 10–20% anhydrosugars, 1–5% mono-phenols and fu-
rans, 15–30% pyrolytic lignin, and 15–30% humins and hybrid oligomers [5]. Light volatile
organics include acetol, hydroxyacetaldehyde, acetic acid, and formic acid; anhydrosugars
include levoglucosan and cellobiosan; and mono-phenols and furans include phenol, guaia-
col, cresol, syringol, eugenol, furfural, and furanone [5]. This low molecular weight organic
fraction (<200 g/mol) is generally well-characterized, with opportunities for separation and
commercialization being more well-understood. However, the high molecular weight frac-
tion (>200 g/mol) made up of pyrolytic lignin, humins, and hybrid oligomers is generally
more recalcitrant and difficult for both characterization and upgrading [5,19,20]. Pyrolytic
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lignins herein are the heavy oligomers resulting from lignin pyrolysis reactions and/or
repolymerization, and humins are the more-polar heavy fraction from holocellulose; hybrid
oligomers contain both lignin and holocellulose structural features [21]. Pyrolysis reaction
parameters, like reactor temperature, pressure, and residence time, can have significant
influences on the formation of heavy products, as highlighted in previously published
work on the nature of different bio-oil fractions and properties [22–24].

Figure 1. Simplified process flow diagrams for (top) biomass (lignocellulose) pyrolysis refinery
showing pathways to sugars/anhydrosugars and pyrolytic lignin from liquid-liquid extraction,
liquid for aqueous phase reforming, gas for combustion, and other commodity/fine chemicals; and
(bottom) petroleum and coal refinery showing pathways to heavy oils/tars and industrial carbon
products (not showing light hydrocarbon fractions). Adapted from previously published work by
(top) Fonts et al. (2021) and (bottom) Elkasabi and Mullen (2021) [3,18].

Although bio-oil light volatile organics are more easily separable and can potentially
be commercialized as pure compounds, the remaining fractions have a greater barrier
for valorization [5,25]. Sugars, anhydrosugars, and (anhydro)oligosaccharides derived
from pyrolysis can be upgraded through fermentations or other biochemical conversions;
however, in comparison, this option is not technically feasible for aromatic and/or recal-
citrant pyrolytic lignins and humins. Hydrotreatment has been reported as one option
for upgrading the bio-oil heavy fraction [18,20,26–28]. Other valorization routes include
bio-oil (co)combustion and (co)processing with fossil fuels, particularly heavy oil fuel
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blends [19,20,29–31]. In this framework, pyrolytic lignin from a bio-oil refinery, as shown
in Figure 1, could be utilized as a co-feedstock with vacuum gas oil or coal tar in a fossil
fuel refinery stream shown in Figure 1.

With the consideration of the bio-oil heavy fraction to be further processed as an inter-
mediate product on its own, a greater understanding of its properties as a fuel/commodity
is warranted. The goal of this study is to computationally estimate the fuel properties of this
heavy fraction. Specifically, these properties include the heat of combustion, normal boiling
point, heat of vaporization, and flash point. The heating values and flash points are impor-
tant properties for understanding the performance of liquids in fuel applications [32,33].
The normal boiling point and heat of vaporization are important properties and/or en-
gineering design parameters for understanding vapor-liquid equilibrium phenomena,
like separations via distillation [34,35]. A correlation derived from regularized regression
machine learning is proposed for normal boiling point estimation from adaptable group
contribution, and the remaining properties are estimated based on published empirical
correlations. The novelty in using regularized regression in this way is that it allows for
potential flexibility, modeling over any reasonable set of user-defined group contribution
inputs. Ultimately, this can result in simpler models with good thermophysical/chemical
property estimation performance.

2. Materials and Methods
2.1. High Molecular Weight Biomass Pyrolysis Oil Molecules

The bio-oil heavy fraction molecules analyzed in this study are based on inferred/proposed
structures for biomass pyrolysis-derived oligomers from previously published work [36–38].
The determination of these structures is based on the analysis of biomass pyrolysis oil with mass
spectrometry and other analytical chemistry techniques, where further information is available
in the original publications [36–38]. This dataset is made up of hexose-derived oligomers
(Hexose), pentose-derived oligomers (Pentose), hexose/pentose-derived oligomers (Hex/Pent),
lignin-carbohydrate complex-derived oligomers (LCC), and lignin-derived oligomers (Lignin).
Further details are given in Table 1 and more fully in the Supplementary Material. Table 2
provides details to define abbreviations used throughout the text.

Table 1. Details of heavy biomass pyrolysis oil structures analyzed in this study.

Class n a MW Range b C Range H Range O Range Reference

Hexose 66 162–504 g/mol 6–22 10–32 4–16 [36,37]
Pentose 6 192–282 g/mol 10 8–18 4–9 [37]

Hex/Pent 24 204–407 g/mol 11–18 8–30 4–15 [37]
LCC 10 308–378 g/mol 14–16 16–22 7–11 [37]

Lignin 57 260–810 g/mol 14–40 12–44 4–18 [37,38]
Total 163 162–810 g/mol 6–40 8–44 4–18 --

a: number (n) of compounds in given class; b: range of molecular weight (MW) in given class.

Table 2. Descriptions of abbreviations for main terms in the study.

Abbreviation Description Abbreviation Description

Hexose Hexose-derived oligomers LHV and HHV Lower heating value and higher heating value,
respectively (MJ/kg)

Pentose Pentose-derived oligomers TB
Normal boiling point (K); temperature of vapor-liquid equilibrium

at atmospheric pressure

Hex/Pent Hexose/pentose-derived oligomers SVAP Entropy of vaporization (J/mol-K) at the normal boiling point

LCC Lignin carbohydrate complex compounds HVAP Enthalpy of vaporization (kJ/mol) at the normal boiling point

Lignin Lignin-derived oligomers TFL
Flash point (K); lowest temperature at which combustion can occur

with an ignition source
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2.2. Elemental Analysis and Heat of Combustion Estimation

Elemental analysis of the molecules analyzed in this study is based on the chemical
formula associated with each structure. From the elemental analysis data, the heat of
combustion is estimated. Specifically, two empirical correlations are used for estimating
the lower heating value (LHV, MJ/kg), and two empirical correlations are used for esti-
mating the higher heating value (HHV, MJ/kg) [32,39–42]. These correlations are given in
Equations (1)–(4), where XC, XH, and XO are the mass fractions of carbon, hydrogen, and
oxygen, respectively.

LHV(1) = 38.2Xc + 84.9
(

XH − XO
8

)
− 0.5 (1)

LHV(2) = 33.94XC + 103.3XH − 12.2XO + 0.022 (2)

HHV(1) = 35.5X2
C − 23.2XC − 223XH + 512XCXH + 20.6 (3)

HHV(2) = 34.43XC + 119.2XH − 11.3XO (4)

2.3. Group Contribution Regularized Regression for Normal Boiling Point Estimation

Each studied structure’s normal boiling point (TB, K) was estimated using coupled
group contribution and regularized regression. This type of adaptable group contribution
has been previously applied to estimate Hansen solubility parameters for biomass conver-
sion molecules [43]. Training data for the boiling point model is made up of 182 compounds
for which TB values have been published [44–51]. The classes of compounds included
are naphthalene derivatives (n = 16), polyring compounds (n = 15), benzene derivatives
(n = 15), other 2-ring compounds (n = 8), naphthenic compounds (n = 12), 1-alkanols
(n = 10), monocarboxylic acids (n = 9), n-alkybenzenes (n = 20), terpenes (n = 4), complex
ketones and alkanols (n = 8), phenols (n = 13), alkanoic methyl esters (n = 17), alkanediols
(n = 5), alkyl lactates (n = 5), and other oxygenates (n = 25). More complete details of the
training data set are given in the Supplementary Material.

Each of the compounds in the training data set was parameterized according to the
following fragment groups: CH3, CH2, CH, C*, OH (cyclic), OH (noncyclic), -O- (ether),
=O (carbonyl), where C* is a carbon atom bonded to no hydrogen atoms. Additional
parameters included are the nominal mass and atomic percent values of C, H, and O in the
formula, giving 12 features in total for each compound. The 12 features for each compound
were then subjected to min-max normalization (relative to the whole data set) to rescale
all values between 0 and 1 [52]. Finally, these 12 features are then used as inputs for a
boiling point estimation from regularized regression with Ridge and LASSO models using
the Scikit learn Linear Models library for Python [53]. Further reading on regularized
regression techniques can be found in previously published work [54–57].

The normal boiling point for each heavy biomass pyrolysis oil structure (Table 1)
is estimated using results from regularized regression based on parameterization of the
same 12 features used for the training set. A correction proposed by Stein and Brown was
applied to calculated boiling points, based on the observation by these authors that group
contribution can significantly over-predict estimated boiling points above approximately
500 K [58]. These corrections are given in Equations (5) and (6). More complete details for
calculated values are given in the Supplementary Material.

TB(corr.) = TB − 94.84 + 0.5577TB − 0.0007705T2
B; for TB ≤ 700 K (5)

TB(corr.) = TB + 282.7 − 0.5209TB; for TB > 700 K (6)

2.4. Heat of Vaporization Estimation

The heat of vaporization (HVAP, kJ/mol) for each studied structure was estimated
using correlations recently proposed by Krimizis-Tsastsoulis [59]. These correlations are
derived from Trouton’s Rule, a classical thermodynamics observation that suggests that the
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entropy of vaporization (SVAP, J/mol-K) for any (non-polar) compound is approximately
equal to 88 J/mol-K [59,60]. Krimizis-Tsatsoulis provides three correlations (that are used
herein) for SVAP in terms of TB for non-polar, protic polar, and aprotic polar compounds,
which are given in Equations (7)–(9). The value for HVAP is estimated from the product of
TB and SVAP, as in equation 10. A factor of 1000 is included to account for SVAP units of
J/mol-K and HVAP units of kJ/mol, with TB units of K.

SVAP(non − polar) = 84 + 8.314ln
(

TB
273.15

)
(7)

SVAP(protic polar) = 102.5 + 8.314ln
(

TB
273.15

)
+ 8.314

(
TB

273.15
− 1

)
(8)

SVAP(aprotic polar) = 84 + 8.314ln
(

TB
273.15

)
+ 8.314

(
TB

273.15
− 1

)
(9)

HVAP

(
kJ

mol

)
= SVAP

(
J

mol − K

)
× TB(K)× 1(kJ)

1000(J)
(10)

2.5. Flash Point Estimation

The flash point (TFL, K) for each studied structure was estimated using correlations
available in previously published work, which utilizes thermodynamic properties to calculate
a value for TFL [61–63]. The four correlations utilized herein are given in Equations (11)–(14).
For these calculations, the corrected value from the LASSO model for TB is used, and nC
represents the carbon number for a given formula/structure. In Equation (11), the average
value of protic and aprotic polar HVAP is used (from Equations (8) and (9)). For a liquid mixture
in practice, the flash point is defined as the lowest temperature at which the application of
an ignition source causes vapor ignition for a given sample [64,65]. From a process safety
perspective, the flash point for a mixture will be most conservatively represented by the lowest
estimated flash point among any of its constituent compounds.

TFL = 1.477(T 0.79686
B

)(
H0.16845

VAP

)(
n−0.05948

C

)
(11)

TFL = 0.3544
(

T1.14711
B

)(
n−0.07677

C

)
(12)

TFL = −18.44 + 0.8493TB − 3.723nC (13)

TFL = 4.656 + 0.844TB −
(

0.234 × 10−3
)

T2
B (14)

3. Results
3.1. Elemental Analysis and Heat of Combustion

Results from elemental analysis of structure formulas and their associated LHV and HHV
values are given in Table 3. The reported ranges for LHV and HHV are taken from the mini-
mum and maximum values calculated with Equations (1) and (2) and Equations (3) and (4) for
LHV and HHV, respectively. In general, the set of less-oxygenated lignin-derived structures
tends to have the largest estimated heating values, while the more-oxygenated holocellulose-
derived structures tend to have smaller estimated heating values. High LHV and HHV
values estimated for the Hexose class can be attributed to more highly dehydrated and/or
modified pyrolytic humin structures. These values are broadly consistent with previously
reported experimental results for elemental analyses and heat of combustion for comparable
samples [66–69].
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Table 3. Calculated ranges of elemental analysis, LHV, and HHC values for heavy biomass pyrolysis
oil structures.

Class C Range
(wt.%)

H Range
(wt.%)

O Range
(wt.%)

LHV Range
(MJ/kg)

HHV Range
(MJ/kg)

Hexose 40.4–70.1 4.3–7.5 23.4–53.8 13.1–29.4 14.7–30.7
Pentose 42.6–62.5 4.2–6.4 33.3–51.1 14.8–23.4 16.5–24.0

Hex/Pent 42.1–64.7 3.9–6.4 31.4–51.5 14.7–24.2 16.3–24.7
LCC 47.6–58.4 4.9–6.1 36.4–46.6 16.5–22.4 18.1–23.1

Lignin 57.5–72.3 4.1–6.5 22.7–36.7 20.4–28.9 21.8–29.7
Total 40.4–72.3 3.9–7.5 22.7–53.8 13.1–29.4 14.7–30.7

3.2. Normal Boiling Point

Ridge and LASSO regression models were applied to yield normal boiling point
correlations from the parameterization of the training data and their associated reported
boiling points. The results of these models are given in Table 4, with initial min-max scaling
removed from the coefficients. Intercepts and coefficients are given for the nominal mass
(MW), elemental atomic percents (C%, H%, O%), and number of parameterizing groups
in a given structure (CH3, CH2, CH, C*, OHcyclic, OHnoncyc., Oether, Ocarbonyl) to
calculate TB (with units of K). The models were evaluated in scikit learn using four-fold
cross-validation, giving computed scores in terms of root-mean-squared-error (RMSE) and
coefficient of determination (R2) [70]. The Ridge model had an average (across four folds)
RMSE value of 39 K and an average R2 of 0.72; the LASSO model had an average RMSE
of 35 K and an average R2 of 0.76. These cross-validation metrics (RMSE and R2) serve as
one surrogate for validation against experimental data and uncertainty quantification for
the models. While Ridge regression models yield coefficients for all features/parameters,
the LASSO model reduced coefficients for 6 of the 12 parameters to zero. For this reason,
LASSO is utilized for further analysis due to greater model simplicity from fewer features,
with comparable cross-validation scores relative to Ridge model performance over the
training data set.

Table 4. Coefficients and intercepts of the Ridge and LASSO regression models for estimating TB (K).

Ridge Coeff. Ridge Coeff. Ridge Coeff. LASSO Coeff. LASSO Coeff. LASSO Coeff.

MW: 1.15 CH3: −1.52 OHcyclic: 0.90 MW: 1.16 CH3: −12.79 OHcyclic: 4.53
C%: 1.38 CH2: −1.69 OFnoncyc.: 0.51 C%: 0 CH2: −1.89 OFnoncyc.: 0

H%: −2.33 CH: 1.48 Oether: −0.68 H%: 0 CH: 0 Oether: −6.44
O%: 0.94 C*: 2.00 Ocarbonyl: −0.52 O%: 0 C*: 12.61 Ocarbonyl: 0

Ridge intercept: 234.14 LASSO intercept: 331.62

The heavy biomass pyrolysis oil structures were parameterized according to the same
model features for the application of the LASSO regression results to estimate TB. As
described previously in Section 2.3, resulting TB calculations were corrected according to
Equations (5) and (6). The estimated TB values for heavy bio-oil structures were compared
to two external boiling point correlations in Equations (15) and (16). Equation (15) is from
work by Twu, providing an empirical correlation for TB (units of Rankine) in terms of
molecular weight, where θ is the natural logarithm of the molecular weight, based on
analysis of petroleum and coal-tar liquids [71]. Equation (16) is from work by Boduszynski
and Altgelt, providing an empirical correlation for TB (atmospheric equivalent boiling
point, units of ◦F) in terms of molecular weight (MW) and hydrogen to carbon atomic ratio
(H/C) based on analysis of heavy petroleum fractions [72]. All calculated TB units are
converted to K for data visualization.

TB(Rankine) = exp
(

5.71419 + 2.71579θ − 0.286590θ2 − 39.8544
θ

− 0.122488
θ2

)
− 24.7522θ + 35.3155θ2 (15)
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TB(
◦F) =

 (MW − 170)
(

H
C

)0.9

2.67
× 107


1
3

(16)

Plots of estimated boiling points (both uncorrected and corrected) against molecular
weight are given in Figure 2 for the heavy bio-oil molecules. This figure also shows
training data and estimates from Equations (15) and (16) applied to heavy bio-oil molecule
structures. The effect of correction with Equations (5) and (6) is evident for estimated
TB, where uncorrected values are significantly higher than corrected values at higher
molecular weights and boiling points. The two correlations from the literature also diverge
for molecular weights greater than approximately 300 g/mol. The Boduszynski correlation
(Equation (16)) provides a systematically larger estimate for TB than the Twu correlation
(Equation (15)). This discrepancy among boiling point estimations necessitates further
experimental work to better understand TB’s nature for heavy molecules, especially for
more polar structures with greater oxygen and/or other heteroatomic content. Because
the corrected LASSO TB estimation is qualitatively closer to the Twu and Boduszynski
estimations, particularly for molecular weights greater than 500 g/mol, these values are
used in further analysis for heat of vaporization (HVAP) and flash point (TFL).

Figure 2. Normal boiling point estimations plotted against molecular weight for bio-oil heavy
molecule structures with comparison to empirical correlations given in Equations (15) and (16).

3.3. Heat of Vaporization

The heat of vaporization (HVAP, at TB) is estimated based on correlations detailed
in Equations (7)–(10). To assess their validity, values were calculated and compared to
reported data for HVAP. Results of this analysis are given in the Supplementary Material
for heavy oil fractions, polycyclic aromatic hydrocarbons, and coal liquid fractions [73–75].
These results (Table S4) also compare predicted and experimental data for model validation.
While these families of compounds tend to be better described as non-polar, the heavy
bio-oil molecule structures have significant oxygen content, suggesting at least appreciable
polarity. HVAP values using polar correlations (protic polar, Equation (8); aprotic polar,
Equation (9)) are presented fully in the Supplementary Material. Figure 3 (molar basis)
and Figure 4 (mass basis) have plots of protic and aprotic values for each structure. These
data can be taken as estimates for upper and lower bounds for calculated HVAP, as the
protic values are systematically higher than the aprotic values. In the work from Krimizis-
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Tsatsoulis, which develops the applied HVAP correlations, criteria for the determination
of protic vs. aprotic is described [59]. These criteria suggest that for bio-oil structure
molecular weight less than roughly 300 g/mol, the protic HVAP expression (Equation (8)) is
more appropriate, while the aprotic expression (Equation (9)) may be more appropriate for
heavier structures.

Figure 3. Heat (enthalpy) of vaporization estimations (at TB) plotted against molecular weight for
bio-oil heavy molecule structures (molar basis, kJ/mol) for protic and aprotic correlations.

Figure 4. Heat (enthalpy) of vaporization estimations (at TB) plotted against molecular weight for
bio-oil heavy molecule structures (mass basis, kJ/kg) for protic and aprotic correlations.

In recent work from Fonts et al., the heats of vaporization (at TB) are successfully
estimated for a pyrolytic lignin structure and a humin structure using two different methods
(from Joback and from Riedel) [18,76,77]. Estimates for pyrolytic lignin are 190 (Joback) and
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52 (Riedel) kJ/mol, and estimates for the humin structure are 264 (Joback) and 33 (Riedel)
kJ/mol. While values from the two methods differ appreciably, Fonts et al. suggest that the
smaller estimation for the humin structure (with the Riedel method, 33 kJ/mol) is likely
more accurate than that from Joback. These authors also report HVAP estimations for light
bio-oil molecules (e.g., glycolaldehyde, acetic acid, furfural, vanillin) in the range of roughly
35–65 kJ/mol. The magnitude of these estimates is generally consistent with the trend
shown in Figure 3 if extrapolated to lower molecular weights. It is also important to consider
that estimations of TB (and subsequent correlations relying on TB, like Equations (7)–(10) for
HVAP) may lack physical meaning for TB values in excess of pyrolysis temperature because
these compounds will thermally decompose prior to reaching their boiling temperature [18].

3.4. Flash Point

Results from flash point estimation (TFL) of heavy bio-oil molecule structures are given
in Table 5. As previously mentioned in Section 2.5, the flash point for a mixture will be
most conservatively represented by the lowest estimated flash point among any of its
constituent compounds. In this case, the hexose class provides the lowest minimum value
(375 K or 102 ◦C) among the four flash point correlations (Equations (11)–(14)). This value is
consistent with other relevant, previously reported data on bio-oil flash points. Sipila et al.
report a flash point value of 106 ◦C for high-viscosity hardwood oil, which they describe as
containing low amounts of easily vaporized volatile compounds [78]. Zhang and Wang
similarly report flash points of 94 and 108 ◦C for biomass corncob tar oils [79]. At the higher
end, Al-Soufi et al. report a flash point of 199 ◦C for heavy (petroleum) oil residue with TB
greater than 350 ◦C [80].

Table 5. Calculated minimum, median, and maximum values for the estimated flash point values of
heavy biomass pyrolysis oil structures.

Class Minimum
(K)

Median
(K)

Maximum
(K)

Minimum
(◦C)

Median
(◦C)

Maximum
(◦C)

Hexose 375 447 550 102 173 277
Pentose 390 420 464 117 147 191

Hex/Pent 399 469 538 126 196 265
LCC 441 471 514 168 198 241

Lignin 428 524 674 155 251 400
Total 375 469 674 102 195 400

4. Discussion

Estimates for fuel properties provided herein are based on empirical correlations from
structural features of molecules and/or subsequent indirect correlations estimating the
value of one property based on the value of others. In general, results from regularized
regression presented here correspond well with computational structure analyses and
property estimation work recently published by Garcia-Perez and associates [18,81–83].
However, as in prior work on solubility parameters [43], the advantage of regularized
regression for property estimation is the ability to use unified, simpler models rather than
relying on several (potentially disparate) group contribution methods. In similar but per-
haps more sophisticated work, Sanchez Lengeling et al. utilized a Bayesian approach to
predict solubility parameters, which directly yielded model predictions and their uncer-
tainties as a result of Gaussian process regression computations [84]. This highlights the
capabilities of machine-learning models to estimate both predicted property values and
their associated uncertainties simultaneously.

By using regularized regression and/or machine-learning approaches, a practitioner
can develop flexible models that can be tailored to any given data set. A major constraint
in using published group contribution methods for property estimation is the limitation to
the utilization of only those groups contained within a given model. If those parameters
are not suitable for a given dataset, then model performance may be poor. Many published
group contribution methods may also rely on first-, second-, and third-order groups with a
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large absolute number of parameters, which can be cumbersome in practice for property
estimation. Three recent works that used group contribution for thermochemical/physical
property estimation for bio-oils can be found from Garcia-Perez and associates [18,82,83].
In these studies, property estimation relied on published correlations for the computation
of critical properties, boiling point, and heat of vaporization. The work presented herein
similarly computed thermophysical/chemical parameters but instead relied on a regular-
ized regression approach to generate overall simpler models for normal boiling point, with
comparable performance across estimated properties.

Although there is still no replacement for experimentally determined measurements,
significant utility exists in the presented approach to estimate values for (heavy) molecules
that are difficult to characterize, isolate, or purify. Even if all properties cannot be practically
measured in a laboratory setting, rigorous determination of one property (e.g., normal
boiling point) can increase the confidence in empirical estimation of other properties
based on the initial measurement. Among all others, the heat of vaporization may be the
most difficult to measure experimentally. Examples of high-quality experimental work
to measure HVAP using Knudsen effusion cells can be found in Gourdin for squalane
and Suuberg and Oja for primary coal tars [85,86]. However, the correlations given in
Equations (7)–(10) may provide reliable empirical estimates if there is a high degree of
confidence in TB and some level of chemical intuition about the polarity/non-polarity of
the molecule. A sample of standard methods for measurement of some fuel properties is
given in Table 6, along with associated applications of those methods [73,87–93].

In addition to the properties studied herein, other chemical and/or physical properties
are important for (heavy) pyrolysis oil applications as a fuel/liquid commodity. Some of
these include the pH, total acid number, density, viscosity, and pour point. Further reading
and experimental work measuring these properties and discussing broad considerations for
industrial application of biomass pyrolysis oils can be found in several previously published
works from Oasmaa and coworkers [94–99]. In a historical review of fast pyrolysis bio-oil
production and upgrading, Oasmaa et al. highlight past and ongoing work for norms and
standards related to bio-oil applications and emphasize that further work is still needed in
this regard [100].

Table 6. Standard methods for the measurement of selected fuel properties.

Property Standard Method Example Application Reference

Elemental analysis ASTM D5291

Carbon, hydrogen, and nitrogen content is measured for
vacuum gas oil, dry bio-oil, catalytic pyrolysis oil, and
hydrotreated bio-oil. Oxygen content is calculated by

difference.

[101]

Heat of combustion ASTM D5865, ASTM D4809
HHV measurement for biomass feedstocks and pyrolysis

liquids in a study comparing accelerated aging
procedures to assess bio-oil stability.

[102]

Boiling point a ASTM D86, ASTM D2892;
NIST ADC method(s)

Fast pyrolysis bio-oil from sawmill residues is analyzed
with ADC methods to measure and simulate distillation

curves (temperature vs. distillate volume fraction).
Limitations of the ASTM methods (designed for

petroleum) when utilized for bio-oils are discussed.

[103–108]

Heat of vaporization ASTM E1782

Vapor pressure measurements were carried out using
differential scanning calorimetry for phenolic compounds,

with heat of vaporization being calculated by the
Clausius-Clapeyron equation. An alternative method

using thermogravimetic analysis for (petroleum) oils is
presented in work by Rannaveski and Oja.

[73,109]



Energies 2024, 17, 2011 11 of 16

Table 6. Cont.

Property Standard Method Example Application Reference

Flash point ASTM D93
Flash point measurement using Pensky–Martens closed
cup method for bio-oil produced from pyrolysis of bay

laurel biomass.
[110]

a: The work from Krutof and Hawboldt recommends against these ASTM methods for fast pyrolysis bio-oil and
utilizes the advanced distillation curve methods (ADC) developed by the National Institute of Standards and
Technology (NIST).

Experimental investigation can also provide insight into other thermophysical behav-
iors, like pyrolysis versus boiling at elevated temperatures. For example, it was previously
stated that estimations of TB may lack physical meaning for TB values exceeding pyrol-
ysis temperature (viz., ~400–600 ◦C) because these compounds will pyrolyze prior to
vaporization. This type of phenomenon could be observable in an analytical pyrolysis
experiment monitoring for evidence of endothermic phase change behavior during vapor-
ization. This has been carried out successfully by Shoji et al. for experimental measurement
of TB for levoglucosan and Pecha et al. for levoglucosan and cellobiosan [111,112]. Dis-
tillation techniques are an alternative method to yield narrow-boiling fractions, which
can be further analyzed for thermophysical property measurement (as by Gray et al. for
coal liquids) associated with a known TB range [75]. Additionally, preparative gel per-
meation chromatography can segregate samples by molecular weight ranges. This is the
approach utilized by Suuberg and Oja in vapor pressure measurement of primary coal
tars, with values given for specific apparent molecular weight fractions from the whole
tar sample [86]. Further discussion of the nature of molecular weight metrics for bio-oils
specifically can be found in a recent review from Harman-Ware and Ferrell [113]. Finally,
many existing empirical correlations for fuel properties of liquids are based on analysis
of fossil fuels—petroleum, coal tars, and their associated fractions. Biomass pyrolysis oils
differ most significantly from fossil fuel liquids in the quantity of oxygen present in the
liquid samples. Any empirical correlation or group contribution method developed using
data primarily consisting of hydrocarbons must be assessed critically when applied to
biomass-derived liquids. If renewable natural resources are to play a larger role in the
carbonaceous chemical and fuels industry, then it follows that there is a need for greater
experimental characterization of the properties of oxygenated biomass-derived liquids.

5. Conclusions

This study estimated thermodynamic fuel properties for the heavy fraction (>200 g/mol)
of biomass pyrolysis oil based on analysis of some inferred molecular structures making up
this fraction. These fuel properties are elemental analysis, heat of combustion (HHV and
LHV), normal boiling point, heat of vaporization, and flash point. The normal boiling point
was estimated based on an adaptable group contribution method, which utilized LASSO
regression as a feature selection tool. Other properties were calculated based on available
published empirical correlations. The models presented herein are flexible and non-specific,
and they can be applied to any representative pyrolysis oil sample (or other thermochemical
conversion product), provided sufficient characterization data is available for model inputs.
Estimated normal boiling points ranged from roughly 500–900 K, and heats of vaporization
from 50 to 120 kJ/mol, depending largely on the molecular weight of the analyzed structure.
The flash point was estimated to be roughly 375 K, with LHV and HHV both falling between
15 and 30 MJ/kg. Opportunities for future experimental work to quantify these properties are
identified, underscoring the need for continued laboratory analysis to support more complete
valorization of bio-oils.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/en17092011/s1, Table S1: Summary of heavy biomass
pyrolysis oil structures for analysis; Table S2: SMILES for heavy biomass pyrolysis oil structures;

https://www.mdpi.com/article/10.3390/en17092011/s1
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Table S3: Summary of compounds used for training set of regularized regression Ridge and LASSO
models for normal boiling point estimation; Table S4: Reported heats of vaporization for heavy
oil fractions, polycyclic aromatic hydrocarbons, and coal liquids, in comparison with non-polar,
polar-protic, and polar-aprotic values estimated from Equations (7)–(10) (main text); Table S5: Heat
of combustion estimations for heavy biomass pyrolysis oil structures estimated by the specified
equations from the main text; Table S6: Normal boiling point estimations for heavy biomass pyrolysis
oil structures estimated by Ridge and LASSO regression models, with a corrected LASSO value
given based on Equations (5) and (6) (main text); Table S7: Heat of vaporization estimations for
heavy biomass pyrolysis oil structures estimated by the specified equations from the main text;
Table S8: Flash point estimations for heavy biomass pyrolysis oil structures estimated by the specified
equations from the main text.
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