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Abstract: Increasingly stringent pollutant emission regulations and a customer demand for a high-fuel
economy drive the modern automotive industry to hurriedly solve the problem of decarbonization
and powertrain efficiency, leading R&D towards alternative powertrain solutions and fuels. Electri-
fication, today, plays the biggest role in the topic, with Mild Hybrid Electrified Vehicles (MHEVs)
being the most cost-effective architectures, displaying dominance in smaller markets such as Brazil.
One of the biggest challenges for HEVs’ development is the complexity of the hybrid control system,
knowing when to actuate the electric machine, and the optimum power delivery, plus the gearshift
schedule becomes a hard optimization problem that plays a key role in powertrain efficiency and cost
savings for the customer. This paper proposes the implementation of a genetic algorithm (GA) as a
machine learning-based control strategy to determine the torque split and the gear engaged for each
driving condition of an MHEV operation, aiming to optimize fuel consumption. A quasi-static model
of the vehicle was developed in Matlab/Simulink version 2022b, the virtual vehicle was then tested
following the FTP75 and HWFET driving cycles. Simulation results indicate that the control decisions
taken by the GA are qualitatively coherent for all operation conditions, and even quantitatively
coherent in some cases, and that the software has the potential to be used as a control strategy outside
the simulation environment, in future steps of development.

Keywords: hybrid vehicles; virtualization; vehicle simulation; machine learning; genetic algorithm; tuning
automation/automatic calibration; fuel consumption optimization; gear shift control; Matlab/Simulink

1. Introduction

Amid the 19th century, Internal Combustion Engines (ICEs) revolutionized the mo-
bility industry, introducing to modern society a new concept of transportation—the auto-
mobile. Today, the global automotive fleet has exceeded 1.5 billion vehicles [1], making it
one of the largest sectors in the global economy. Nevertheless, undesired byproducts from
this advancement have led to negative environmental impacts and health issues, due to
the emission of greenhouse gases [2]. Additionally, the continual rise in fossil fuel prices
presents another challenge.

Consequently, achieving carbon neutrality [3] and enhancing fuel economy has become
paramount for the automotive industry, pushed by strict emission legislations and con-
sumer preference for economical vehicles, leading R&D towards many solutions including
hardware and software enhancements, alternative fuels, and electrification.
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1.1. The Electrification Path

An electrified vehicle consists of adding one or more electric machines to support
the ICE or to completely supply the propulsion power demand from the driver. When
properly controlled, such powertrains can actuate the electric machines in ways to avoid
engine operation in regions of lower efficiency or when not needed and can even provide
energy recovery during deceleration events (Regenerative Braking). The electrification
level is categorized by the power electronics’ operation voltage, battery energy storage, and
power, which when combined, determines the capability of the electric path and constrain
energy-saving features. Table 1 makes a capability comparison between the six main
EVs architectures, as follows: micro Hybrid (mHEV), mild Hybrid (MHEV), full/strong
Hybrid (fHEV), Plug-in Hybrid (PHEV), Range-Extended Electric Vehicle (REEV), Battery
Electric Vehicle (BEV) [4], and the state-of-the-art Fuel Cell Hybrid Electrified Vehicles
(FCHEVs) [5].

Table 1. xEVs’ capabilities comparison based on electrification level.

Micro HEV Mild HEV Full HEV PHEV REEV BEV

Voltage 12 V 48 V + 300 V + 300 V + 300 V + 400 V +
Elec. System Power 1–2 kW 3–15 kW 15–40 kW 40–120 kW 120 kW + 160 kW +
Battery Capacity ~0.5 kWh 0.4–0.8 kWh 0.8–3 kWh 8–20 kWh 20 kWh + 60–200 kWh +
Start–Stop • • - - - -
Torque Split • • - -
Regenerative
Braking # • • • •
Pure Electric
Driving # • • •
External Charging • • •

• Full capability; # partial capability; - not applicable.

In Brazil the electrified market is very promising and, although the current adhesion
is still incipient, an exponent-like growth in market share has been taking place over the
last five years, as shown in Figure 1a (created using data from [6] (p. 14) and [7]). Amongst
the electrified category, xHEV architecture (micro, mild, and full HEVs) holds the biggest
market share, followed by PHEVs and BEVs, as shown in Figure 1b (created using data
from [7]).
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There are strong prospects for electrified vehicles, in general, and with Ethanol Hybrid
technology (hybrid powertrain where engine is fueled by ethanol) as the main solution to
achieve carbon neutrality and legislation compliance, this can be evidenced by substantial
recent investments from global leading automakers to develop the technology [8,9]. Ethanol
Hybrid technology is not a novel concept [10]; however, just recently, with stringent emission
legislation and government subsides, it became feasible and profitable.
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1.2. Challenges in the Control Strategy

On electrified powertrains, the hardware architecture has the ultimate influence over
the control strategy complexity. The addition of more actuators besides the ICE [4], unlock
new degrees of freedom to be controlled and optimized, enabling a better dynamic response
and a higher powertrain efficiency, at the cost of a more complex hardware and software.
In other words, knowing when the electric machines should help the ICE, the amount of
power to be delivered at each driving condition to have optimal fuel consumption, and the
gear shift schedule for vehicles equipped with computer actuated transmissions [11] are all
complex optimization problems [5].

Currently, the automotive industry relies mostly on rule-based control strategies, such
as in [12], and a great effort has been made by Calibration Engineers to tune controllers’
parameters. The problem with this method is that it requires a huge amount of manual
effort, due to the iteration process, especially when the system is complex.

1.3. Purpose of This Research

A promising approach to shorten development time and improve robustness of cal-
ibration data is to employ computers on the iteration process, this can be carried out by
associating the following two concepts:

• Virtualization: Data-based hardware (engine and e-motors) modeling and model-based
control development, through acquisition of experimental hardware data.

• Tuning Automation: The use of optimization algorithms to iterate and tune the controller
parameters. (e.g., GA and other optimization algorithms) [13].

This paper presents a simplified virtualization of an MHEV and the development of
a genetic algorithm (GA) to act as Automatic Tuner and calibrate the torque split (ratio
between the torque delivered by the Internal Combustion Engine (ICE) and the Belt Starter
Generator (BSG)) and gear engaged, aiming for optimal fuel consumption.

1.4. State-of-the-Art

Currently, the automotive industry mostly relies on rule-based control strategies and
great efforts from Calibration Engineers to tune controllers’ parameters. The concept
of automated tune and the use of machine learning techniques and other optimization
algorithms for the purpose of automatic tuning is still mainly research material.

Table 2 summarizes advances in research related to this manuscript’s content and the
use of genetic algorithms and other techniques to perform similar tasks to those being
proposed.

The proposed paper introduces a novel approach to streamline the development
process of controller tuning and enhance the robustness of calibration data for hybrid
vehicles, which differs from the previous bibliographic review in the following key aspects:

• Integration of Virtualization and Tuning Automation: While the literature review
primarily focuses on discussing existing energy management strategies and optimiza-
tion techniques, this proposal combines the following two concepts: virtualization
and tuning automation. Virtualization involves data-based hardware modeling and
model-based control development, while tuning automation utilizes optimization
algorithms to iterate and tune controller parameters.

• Development of a genetic algorithm for Automatic Tuning: This paper introduces the
development of a genetic algorithm (GA) to serve as an automatic tuner for calibrating
the torque split and gear engagement in the MHEV. Unlike the literature review,
which discussed the application of GAs in optimizing energy management strategies,
this proposal specifically focuses on using a GA to fine-tune controller parameters
for optimal fuel consumption. Additionally, this paper mentions referencing other
optimization algorithms used for similar purposes, indicating a broader exploration
of optimization techniques beyond GAs.
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Table 2. Literature review about GA-based control strategies and other control methods for HEVs.

Reference Highlight of Review

[12,14]

Xu et al. present a comprehensive review of energy management
control strategies for HEVs, emphasizing the need for smarter
systems. The paper evaluates various controls strategies to
optimize energy usage in hybrid vehicles.

[15]

Jalil et al. propose a rule-based energy management strategy
tailored for series hybrid vehicles. The paper introduces a set of
rules governing energy usage to enhance the vehicle’s
performance and efficiency, through control of Power Split and
battery State of Charge (SoC) management.

[16]

Lü and colleagues provide a review focusing on energy
optimization of fuel cell hybrid power systems in hybrid electric
vehicles using genetic algorithms. The paper explores how
genetic algorithms can enhance energy management strategies.

[17]

Denis et al. employs a genetic algorithm that optimizes the power
split strategy for a plug-in, three-wheeler parallel hybrid vehicle.
The paper proposes a methodology to determine the optimal
power distribution between the Internal Combustion Engine and
the electric motor for improved efficiency.

[18]

Chen et al. present an energy management approach for
power-split plug-in hybrid electric vehicles, integrating genetic
algorithms and quadratic programming. Employment of GA to
optimize power threshold for engine to turn on, based on vehicle
fuel rate, SoC, and driveline power demand.

[19]

Ahmadi and Bathaee focus on a multi-objective genetic algorithm
for off-line optimization of the supervisory system for fuel cell
hybrid vehicles. The paper discusses the integration of Fuzzy
Logic Control (FLC) and Operating Mode Control (OMC)
strategies to achieve superior performance.

[20]

Li et al. analyze and optimize the energy management strategy of
a new energy hybrid, 100% low-floor tramcar employing a
genetic algorithm. The study aims to enhance the efficiency and
sustainability of tramcar operations.

[11,21]

Saini et al. propose a genetic algorithm-based approach to
optimize gear shifts for electric vehicles. The paper discusses how
this optimization can improve vehicle performance and
energy efficiency.

2. System Description and Modeling
2.1. Powertrain Architecture

The focus of this work is an MHEV powertrain architecture, such as that in Figure 2,
composed of an ICE and a 48 V Belt Starter Generator (BSG) [22]; in such a system, the
presence of a Starter Motor that is much less powerful than the BSG is also very common,
with the sole purpose of cranking the ICE at key crank (first crank of the drive cycle) or
in any condition that the BSG is not capable of doing so, for example if the 48 V battery
reaches a very low State of Charge (SoC).
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Such a system can operate at the following states:

(1) Engine OFF: Vehicle is at standby, both ICE and BSG are OFF.
(2) Engine Stop and Start (ESS): When the powertrain controller identifies enabling condi-

tions adequate for an engine stop, for example in a traffic jam or when waiting for
a traffic light, the engine is stalled (with -BSG help) and cranked again (with +BSG
help), once a driver request or vehicle request (including critically low battery levels,
system failure, etc.) is detected by the powertrain controllers.

(3) e-Assist: When the torque requested by the driver is provided by both ICE and BSG
(+ICE, +BSG).

(4) ICE only: When the torque requested by the driver is provided only by the ICE (+ICE).
(5) Generator mode: When the torque requested by the driver is fully provided by the ICE

and, in addition to that, some torque is consumed by the BSG, which is working as a
generator to charge the vehicle batteries (+ICE, -BSG).

(6) e-Braking: When the braking torque requested by the driver is fully provided by the
BSG, which is acting as a generator (-BSG).

(7) Aggressive Braking: When the BSG is not capable of provide the total amount of braking
torque being requested by the driver and the mechanical brakes are also engaged.

2.2. Vehicle Specification

The specifications for the MHEV are set out in Table 3, but can be changed by the user.
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Table 3. Vehicle specifications.

Symbol Parameter Value [Unit]

Vehicle
mv Dry Mass 1300 [kg]
Cd Drag Coefficient 0.32 [-]
Af Vehicle Frontal Area 2.35 [m2]
Crr Rolling Resistance Coeff. 0.016
Rw Tire Radius 0.3 [m]

Transmission
Gear Ratios 3.70, 2.22, 1.37, 1.00, 0.74
Final Gear 2.7

ηtrans Mechanical Efficiency 0.97

ICE
τmax,ice Peak Torque @3600 RPM 134 [N.m]
Pmax,ice Peak Power @5000 RPM 64.7 [kW]
řmin,ice Min RPM (idle) 900 [RPM]
řmax,ice Max RPM (redline) 6000 [RPM]

48 V BSG
τmax,bsg Peak Torque ±75 [N.m]
Pmax,bsg Peak Power 1 @2150 RPM 16.9 [kW]
řmin,bsg Min RPM (idle) −5700 [RPM]
řmax,bsg Max RPM (redline) +5700 [RPM]

Rp Pulley Ratio 2 1

Li-Ion Battery Pack [18650 3,14S4P 4]
BV Pack Nominal Voltage 50.4 [V]
BC Pack Capacity 12.8 [Ah]

Bv,max Cutoff Voltage (Discharge) 38.5 [V] 2.75 [V/cell]
Bv,min Cutoff Voltage (Charge) 58.8 [V] 4.2 [V/cell]

1 BSG Peak Power is limited by a field-weakening feature to accommodate inverter capabilities. 2 Ratio between
diameter of BSG pulley and Engine crankshaft pulley. 3 18,650 battery cell: 3.6 V nominal, 3200 mAh (discharge at
1C), cutoff voltages (2.75, 4.2). 4 Pack arrangement—14 cells in series, 4 cells in parallel.

2.3. Simulink Model: Architecture and Software Components

A QuasiStatic, gray-box (equation- and data-driven), inverted simulation model of
the vehicle was developed, as shown in Figure 3, following a similar approach to QSS-
Toolbox 2.0.1 [23]. The intention of such an approach is to obtain the RPM and Torque
demands at the flywheel from the drive cycle data and vehicle specifications only; with
a data-driven model of the Engine and BSG, it is possible to make accurate estimations
of the instantaneous fuel and electric energy consumption of the vehicle, throughout the
drive cycle.
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Figure 3. Simulink model (cover).

The Model is composed of the following software components:

(1) Drive Cycle Source: Provides the Speed profile. For this work, the HWFET (Highway
Fuel Economy Test) and the first 765 s of FTP-75 (Federal Test Procedure at 75◦ F) were
used, both of which are used for validation on light-duty vehicles with the purpose of
simulating Highway (HWFET) and City (FTP-75) conditions, as in Figure 4.
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(2) Vehicle Dynamics model: Calculates the force demand at wheel domain (1) to maintain
the speed profile from the drive cycle. The calculation is based on Aerodynamic Drag
(2), Road Slope (3), Rolling Resistance (4), and Inertial (5) forces.

Ftotal,wheel = Fdrag + Fslope + Frolling + Finertia (1)

Fdrag(v) = cd ×
A f × ρair × v2

2
(2)

Fslope(α) = mv × g × sin(α) (3)

Frolling(α, v) =
[

Crr0 × tanh
(

4 × v
vth

)]
× mv × g × cos(α) (4)

Finertia
( .
v
)
= mv ×

dv
dt

(5)

(3) Driveline Model: Converts the force demand at the wheel domain to the flywheel
domain, based on the following transmission characteristics: gear ratios, transmission
efficiency, and clutch operation. The purpose of Figure 5a is to validate the Simulink
model of the vehicle by comparing the operating point graph (Veh. Speed × Force)
with dynamometer data acquired from a vehicle with similar architecture and charac-
teristics, by obtaining a close match between the two curves, whereby it is possible
to say if the virtualized vehicle model in fact reflects the vehicle which it is trying to
represent. The dynamometer data are from the Honda Accord, acquired from [24].

(4) Arbitrator: This software component uses a genetic algorithm (GA) to perform the
following three most important functions of the model, aiming to minimize fuel
consumption:

• Torque Split Ratio Determination: Receive the total torque demand at the fly-
wheel from the driveline model and calculate, using a genetic algorithm (GA), the
Torque Split Ratio (how the torque demand at the flywheel is delivered between
ICE and BSG) at every timestep of the drive cycle.

• Gear Selection: Select the gear engaged.
• Brake Actuation Split: Calculates how the braking actuation should be delivered

between mechanical brakes and BSG (alternator mode).
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(5) Engine and BSG Model: Figure 6 displays the efficiency maps for both ICE and BSG.
These are data-based models of the actuators (virtualization concept) and represent
what kind of response, in terms of energy consumption (Fuel or Electrical), the actuator
would deliver for a given (Torque and Speed) request.

a. Figure 6a displays the engine map, which is a contour plot (2D visualization of
a surface) for the fuel consumption, with some other valuable additions such as
the Torque Max (red dashed line), which shows the engine torque constrain at
each speed. The Optimum Cons Curve (green solid line with dots) displays the
place of lowest consumption in the contour map.

b. Similarly, Figure 6b displays the equivalent information for the BSG, the ef-
ficiency (in %, since it is an electric machine), and the Torque Max curve to
display the torque constrains for BSG.
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3. The Genetic Algorithm

A genetic algorithm (GA) is a search heuristic evolutionary algorithm [25], inspired
by the process of natural selection and genetics. It is commonly used in optimization and
machine learning to find approximate solutions to optimize and search problems. The
basic idea is to model the process of natural selection, where the fittest individuals (in other
words, the solution which produces the best outcome) in a population are more likely to
survive and reproduce, passing their genetic information to the next generation [26–28].

3.1. Role of GAs as Optimization Algorithms

The point of using a GA is that it is a very robust method. The GA is almost never
the best optimization method for any particular problem, but it works consistently well
across a range of problems or situations, which is a crucial feature for the calibration of an
unknown powertrain. There are some characteristics that make the GA a unique solution
for search and optimization problems [29–31], as follows:

• It does not require smoothness of the objective function, being capable of handling
continuous or discrete functions, and even a mix of both. In fact, it does not necessarily
need to know the objective function, if the application can provide the outputs only
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for the inputs being iterated at a given moment, the algorithm would still work, e.g.,
an instrumented car in a dynamometer.

• It can handle unsteadiness and noise.
• It is particularly good in escaping from local minima, the ergodicity of the evolutionary

operators makes it very effective at performing global search, whenever applied to a
multi-peak objective function.

• It can be applied even when the search space is unknown.
• It has a remarkable balance between exploration and exploitation of the search space.
• It has great flexibility to be hybridized with domain-dependent heuristics to make a

more effective implementation for a specific problem.

3.2. GA Implementation: Working Principles and Parameters

The optimization method described in this paper utilizes a GA with the objective of
optimizing fuel consumption by adjusting the Torque Split Ratio and Gear Selection. The
process is described below (cf. Figure 7) and the parameters used subsequently defined in
Table 4:

(1) Population Initialization: The algorithm generates a certain amount of random binary
vectors called chromosomes. Each chromosome contains all the information regarding
the physical values to be optimized; in this paper, the following two parameters are
contained within a single chromosome: the torque split and the gear. The first 6 bits
from the chromosome carry the information related to the torque split and the last 2
bits carry the information related to the gear.

(2) Evaluation: The chromosomes are converted into the physical values using a built-in
MATLAB function, which converts binary to decimal. The physical value is then
sent as an input to the objective function, which, in this case, is the vehicle model;
however, it could be an instrumented vehicle running in a dynamometer. The objec-
tive function is responsible for providing the solutions, i.e., the instantaneous fuel
and electrical consumption, as well as the battery pack SoC. With this information,
the GA can calculate the fitness (represents how well the chromosome is related to
the optimization goals), which is a normalized weight average of fuel consumption,
instantaneous efficiency, and battery SoC.

(3) Selection: There are mainly three selections, which are fixed percentages of the
population, and are made based on fitness, as follows:

a. The worst chromosomes on the population are deleted.
b. The best chromosomes are allocated on the elite population array.
c. Only at the last iteration of the loop, the very best chromosome is selected and

sent as the output for that timestep of the main simulation.

Table 4. Genetic algorithm Parameters.

Parameter Value

Gen—Number of generations per iteration
cycle. 20

Ptot—Population size. [number of
chromosomes] 18

Nmut—Number of mutations per generation. 4
Ncr—Number of crossovers per generation. 4
Pelit—Elite population size. [% of total
population] 20

Ntot—Number of chromosomes generated per
iteration cycle until an optimal solution is
found.

170 1

Nbit—Number of bits of each chromosome. 10 2

1 Ntot = (Gen-1)*(Nmut + Ncr) + Ptot. 2 The first 8 bits carry the Power Split information and the last 2 bits carry the
gear information.
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this paper.

(4) Crossover: Randomly selects two chromosomes from the elite population, they are
cut at one point and the halves are spliced, creating two offspring; the process repeats
for a calibratable number of chromosome pairs.

(5) Mutation: Takes a certain number of chromosomes from the elite population and
reverses the bit (0 to 1 or vice versa), as on Figure 7 both for Torque Split and gear bits.

(6) Population Sum: Replace the deleted chromosomes from the population for the new
ones from Crossover and Mutation operations.

3.3. GA Visualization

Figure 8 displays, in a simplified manner, the GA operation and general characteristics.
The GA developed in this paper is multi-objective, meaning that it has more than one

objective function, in this case it has two, as follows:

(1) The fuel consumption map of the engine Figure 8a, which provides the instantaneous
fuel consumption for any given ordered pair in the search space (Torque, Speed) within
the constrain limits of the hardware (speed and torque limitations).

(2) The efficiency map of the BSG Figure 8b, which provides the instantaneous efficiency
for any given ordered pair in the search space (Torque, Speed) within the constrain
limits of the hardware (speed and torque limitations).
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Figure 8c shows how the GA iterates until it finds the lowest fuel consumption for
the particular speed being requested by the driver. For each step of the main simulation,
the GA completes one full cycle, composed of a population of 18 chromosomes in an
loop of 20 generations. At the end of each cycle, the GA outputs the winner ordered pair
(Torque, Speed), as well as its respective instantaneous fuel consumption. This same process is
conducted simultaneously on the BSG efficiency map, outputting the winner ordered pair
(Torque, Speed), as well as its respective efficiency. In Figure 8d, it is shown how the Mean
Average Fuel Consumption of the chromosome population converges towards the global
minimum as generations advance. The figure only presents the results for two iteration
cycles; nevertheless, in the 765 s of simulation, 1530 iteration cycles occur, resulting in
30,600 generations and a total of 260,100 chromosomes tested.

4. Results and Discussion

This section intends to evaluate the quality of the control performed by the GA. The
following subsections will present the main simulation results with a brief comment for
each one of them.

4.1. Efficiency Maps with Operating Points

Figure 9 presents the efficiency maps for ICE and BSG, with the operation points
(ordered pair (Speed, Torque)) requested throughout the driving cycle; note that each
operation point is colored to also indicate the gear engaged.
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The expectation is that the point cloud on ICE maps (Figure 9a,b) should be as close as
possible to the “Optimum Cons Curve”. This behavior indicates that, in fact, the control
strategy is actuating the engine to output a torque value that will result in the optimal fuel
consumption for that given RPM. It is important to mention that the GA does not receive
the “Optimum Cons Curve” as an input; it is plotted here for comparison purposes only.

In contrast, a much bigger dispersion on the point cloud is expected on the BSG maps
(Figure 9c,d), since the main purpose of the BSG for a non-performance passenger vehicle
is to optimize fuel consumption and the way to achieve this is to avoid ICE operation in
inefficient zones and disable the engine when no torque is requested (aka. Start and Stop,
refer to Section 2.1). Thus, the controller should always actuate the BSG to complement for
the delta between Driver Torque Request and ICE Torque Output.

Figure 10a,b present a better overview on the point cloud deviation, which is an
important metric to evaluate the quality of the control made by the GA. The expected
ideal scenario would be a perfect match between the point cloud mean (orange line) and
the optimum consumption curve (green line), with as little deviation as possible (orange
shade).
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Figure 10. (a) Engine fuel consumption map with operating point cloud mean and deviation for
FTP75; and (b) HWFET.

The point cloud displayed in Figure 10a, related to FTP75, undershoots the optimum curve
in the low–medium speed range (1000 to 3500 RPM), this is attributed to the time window
between 450 and 700 s of simulation. When the SoC reaches full capacity (Figure 11a, at about
430 s), the powertrain’s ability to enter generator mode is disabled and, subsequently, when the
driver makes low torque requests, they are honored by the ICE alone, rather than by ICE and
BSG in generator mode, as it would normally, to avoid engine operation in a lower efficiency
zone. Alternatively, the torque request could also be honored by the BSG alone; however, they
were slightly higher than BSG’s torque limit. This is a very good takeaway on why charge
sustaining is so important in HEVs, especially for P1 architectures (ICE + BSG) where the electric
motor does not usually have the capability to enter in fully electric mode and discharge the
extra SoC, preventing Generator mode engagement.

Conversely, Figure 10b depicts a significantly better power split control with the
average fuel consumption from the point cloud almost perfectly fitting the optimum
consumption curve and an overall smaller deviation.

Figure 11. Cont.
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Figure 11. (a) Power Split for FTP75; and (b) HWFET.

4.2. Power/Torque Split

Figure 11 presents the Power Split, which is the power contribution of each individual
torque actuator (ICE, BSG, Brakes) for the total power request. Based on the result, the
following cases can be observed:

• Positive torque/power request:

# e-Assist mode: A combination of ICE and BSG (as motor) supplies the torque/power
demand.

# Generator mode: The ICE supplies all the power required for moving the
vehicle and more to actuate the BSG (as generator), recharging the batteries.

• Negative torque/power request: A combination of BSG (as generator) and Brakes
supplies the torque/power demand.

The bar plot (representing the Power Split) is stacked, which means that the sum of all
bars in any given time is equal to 1, which is the total Power request; for example, the very
first bar can be read as a roughly 50–50 split between ICE and BSG (as generator).

4.3. Drive Cycle and Operating Modes

Figure 12 presents the operating modes throughout the driving cycle, recalling, from
Section 2.1, the seven different operating modes in a mild Hybrid (ICE + BSG) powertrain
architecture. The expectation, here, is that the control can balance between the fuel con-
sumption optimization and SoC control, properly managing the e-Assist and Generator
mode, so that the engine can operate efficiently with BSG help and the SoC can be main-
tained relatively close to its target throughout the driving cycle. That being said, it is safe
to say that the results below are really satisfactory, at least for a static simulation, such as in
this work.

4.4. Drive Cycle and Shift Schedule

Figure 13 presents the gear engaged throughout the driving cycle. It may not seem an
ideal shift schedule for a real application, and this would, in fact, be an accurate observation,
as, currently, the fitness calculation for gear selection programmed into the GA only takes
the fuel consumption into account and some important phenomena are not implemented,
such as the following:

• Gear shift cost (transient fuel consumption during gear shift event).
• Hardware durability.
• Gear shift delay.
• Other transient behaviors intrinsic to the Gear Shift process, more on which can be

found in [32,33].
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Besides all the considerations, is safe to say that, in a qualitive way, the GA does a good
job at selecting gears and, more importantly, has the potential (if programmed to take the
behaviors above into account) to actually be a viable control strategy for gear selection of
any computer controlled transmission—Automatic Transmission (AT), Automated Manual
Transmission (AMT), and Continuously Variable Transmission (CVT).

4.5. Other Considerations

Table 5 presents important results from the simulations, among which the “number of
chromosomes tested over the entire simulation” stands out as being particularly significant.
There are mainly two paths to conduct automated calibration, as follows: the “in-vehicle”
approach, where calibration maps are generated in real-time, while the instrumented
vehicle on a dynamometer act as the objective function, providing results for any input in
the search space; and the virtualization approach, where data-based hardware models are
created from experimental acquisitions, essentially defining the objective function.



Energies 2024, 17, 2015 17 of 19
Energies 2024, xx, x FOR PEER REVIEW 17 of 20 
 

 

(a) 

(b) 

Figure 13. (a) Gear shift schedule for FTP75; and (b) HWFET. 

4.5. Other Considerations 
Table 5 presents important results from the simulations, among which the “number 

of chromosomes tested over the entire simulation” stands out as being particularly 
significant. There are mainly two paths to conduct automated calibration, as follows: the 
“in-vehicle” approach, where calibration maps are generated in real-time, while the 
instrumented vehicle on a dynamometer act as the objective function, providing results 
for any input in the search space; and the virtualization approach, where data-based 
hardware models are created from experimental acquisitions, essentially defining the 
objective function. 

The in-vehicle approach incurs significant computational costs; hence, computation-
heavy optimization algorithms like the genetic algorithm (GA) are not the most suitable 
and, instead, methods like the Pattern Search Algorithm or Surrogate Optimization would 
be more appropriate. On the other hand, the virtualization approach has a near-zero 
calculation cost, allowing the use of computation-heavy methods like the GA. 

Table 5. Comparative results for FTP75 and HWFET. 

Parameter FTP-75 1 HWFET 1 

Avg. ICE fuel economy. [km/L] 19.1 16.8 
Generator running [% cycle time]  59.2 53.6 
SoC target deviation [%] 28.6 8.52 
GA avg. convergence time [in generations] 16 12 

Figure 13. (a) Gear shift schedule for FTP75; and (b) HWFET.

Table 5. Comparative results for FTP75 and HWFET.

Parameter FTP-75 1 HWFET 1

Avg. ICE fuel economy. [km/L] 19.1 16.8
Generator running [% cycle time] 59.2 53.6
SoC target deviation [%] 28.6 8.52
GA avg. convergence time [in generations] 16 12
Main simulation timestep. [s] 0.5 0.5
GA iteration cycle. [in generations] 2 20 20
Total simulation time. [s] 765 765
Number of iteration cycles performed over the
entire simulation. 1530 1530

Number of generations over the entire simulation. 30,600 30,600
Number of chromosomes tested over the entire simulation. 260,100 260,100

1 Only first 765 s of the driving cycle. 2 Number of generations calculated per timestep of main simulation.

The in-vehicle approach incurs significant computational costs; hence, computation-
heavy optimization algorithms like the genetic algorithm (GA) are not the most suitable
and, instead, methods like the Pattern Search Algorithm or Surrogate Optimization would
be more appropriate. On the other hand, the virtualization approach has a near-zero
calculation cost, allowing the use of computation-heavy methods like the GA.

5. Conclusions

In this article, a genetic algorithm was developed to act as an automatic control strategy,
actuating torque split and gear selection in a virtualized model of a mild Hybrid vehicle,
aiming to optimize fuel economy.
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The virtualization of the vehicle was conducted through data-based modeling of the
Engine and BSG, which were integrated in a model-based system of the vehicle, running a
quasi-static inverted simulation developed in Simulink and validated using real data from
a dynamometer test acquisition of a similar vehicle.

The genetic algorithm (GA) was developed and integrated as an automatic control
method and was tested for FTP75 and HWFET driving cycles. The control decisions from
the proposed GA were plotted and the analysis indicates that the software has shown to
be a useful tool when applied as a Hybrid Vehicle Simulator. Additionally, the control
decisions made by the GA are coherent for all operation conditions. However, at the current
stage of development, it is not feasible to use it as an automatic calibration tool for a real
application, due to the lack of experimental data and comparison studies with currently
used methods. Nevertheless, it has the potential to be used as an automatic calibration tool.

Future Development

Future work includes a complete virtualization of the hardware (data-based power-
train and vehicle dynamics model) and a comparison study between the proposed solution
and the current approach adopted by the industry. Additionally, the development of a
Graphical User Interface (GUI) for a better software user experience could be carried out in
future work.
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