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Abstract: Nuclear Integrated Energy Systems (NIES) have emerged as a comprehensive solution
for navigating the changing energy landscape. They combine nuclear power plants with renewable
energy sources, storage systems, and smart grid technologies to optimize energy production, distri-
bution, and consumption across sectors, improving efficiency, reliability, and sustainability while
addressing challenges associated with variability. The integration of Small Modular Reactors (SMRs)
in NIES offers significant benefits over traditional nuclear facilities, although transferring involves
overcoming legal and operational barriers, particularly in economic dispatch. This study proposes a
novel off-policy Reinforcement Learning (RL) approach with an ensemble reward system to optimize
economic dispatch for nuclear-powered generation companies equipped with an SMR, demonstrating
superior accuracy and efficiency when compared to conventional methods and emphasizing RL’s
potential to improve NIES profitability and sustainability. Finally, the research attempts to demon-
strate the viability of implementing the proposed integrated RL approach in spot energy markets
to maximize profits for nuclear-driven generation companies, establishing NIES’ profitability over
competitors that rely on fossil fuel-based generation units to meet baseload requirements.

Keywords: nuclear integrated energy systems; small modular reactors; economic dispatch; reinforcement
learning; off-policy algorithms; reward engineering; energy spot markets

1. Introduction

Presently, the energy distribution sector is undergoing rapid changes marked by a
growing presence of distributed renewable energy sources such as wind and solar power.
While these sources contribute clean electricity to the grid, they also introduce variabil-
ity, prompting the need for additional complementary energy resources. To address this
evolving energy landscape, Nuclear Integrated Energy Systems (NIES) employ a holistic
approach, integrating nuclear power plants with renewable energy sources, advanced
energy storage systems, smart grid technologies, and other complementary components [1].
These systems aim to enhance overall energy efficiency, reliability, and sustainability by op-
timizing energy production, distribution, and consumption across various sectors [2]. They
facilitate the seamless coordination and utilization of various energy resources, thereby
maximizing the benefits of each while minimizing potential drawbacks [3]. Additionally,
NIES are designed to adapt to changing energy demands and environmental considerations,
ensuring a resilient and responsive energy infrastructure for the future.

The research interest has shifted towards NIES, given the significant and diverse
expected advantages they offer [4]. In addition to offering the grid a reliable, carbon-free,
and dispatchable source of electricity, they also contribute synchronous electromechanical
inertia that improves the grid’s stability and reliability. Moreover, by reducing the carbon
footprint of the industrial sector and leveling energy costs, NIES contribute to environ-
mental sustainability and economic stability. Additionally, NIES offer the opportunity
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for long-term energy planning and investment, providing a stable and predictable energy
supply that can support sustainable economic growth and development. However, it is
crucial to recognize that as renewable energy systems gain global prominence, there may be
unintended consequences for traditional baseload generators, highlighting the importance
of carefully managing the transition to more integrated energy systems [5].

Transitioning from conventional integrated energy systems to those powered by nu-
clear energy necessitates a shift not only from typical nuclear reactors like Light Water
Reactors (LWRs), but also toward newer configurations such as Small Modular Reactors
(SMRs). The integration of SMRs into NIES offers clear benefits compared to traditional
nuclear power plants [6]. To begin with, SMRs present lower capital costs and construction
risks due to their smaller size, factory production, and standardized components, making
them more attractive to investors. Their greater deployment flexibility, which includes
the ability to install them inland, allows for faster construction and lower cooling capacity
requirements, which may lessen the burden on transmission and distribution networks [7].
Moreover, their simplified safety features and easier decommissioning process enhance
their overall operational efficiency and safety. Furthermore, SMRs’ reduced refueling needs
and potential for extended operation without uranium replenishment make them well-
suited for integration into NIES, where reliability and sustainability are paramount [8].
Additionally, their smaller size opens up opportunities for diverse applications beyond
electricity generation, such as water desalination [9], further enhancing their appeal within
integrated energy systems [10]. Therefore, the unique attributes of SMRs make them indis-
pensable components of NIES, offering a more agile, cost-effective, and versatile approach
to nuclear energy generation and beyond. Figure 1 depicts the morphology, interconnec-
tion, and diverse range of energy products facilitated by NIES, further highlighting their
significance in modern energy landscapes.

Figure 1. Integration of nuclear power with renewable energy sources for sustainability and versatility.

As SMRs are introduced into NIES, there are notable regulatory implications regarding
their economic operation. In the short term, certain operational nuclear plants in the
United States are adapting to evolving grid and market dynamics by adjusting their power
output [11]. This strategy, known as advanced economic dispatch, involves reducing
output during periods of high renewable energy generation or low net demand to avoid
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selling electricity at a loss, which is a common issue for traditional baseload plants. This
shift reflects the changing landscape of energy markets, which is driven by technological
advancements and the increasing integration of nuclear power and renewable energy
sources. This integration not only enhances the resilience and flexibility of energy systems
but also facilitates the optimization of energy production and consumption in response to
fluctuating demand and supply patterns.

As nuclear plants adapt to these evolving dynamics, in recent years, we have wit-
nessed a transition from conventional power systems to smart grids, accompanied by
rapid advancements in computer science. This transition has prompted the integration
of sophisticated Artificial Intelligence (AI) algorithms, such as Reinforcement Learning
(RL), to address research challenges within the economic dispatch issue in power systems.
As RL research evolves, the focus has shifted towards addressing reward design complex-
ities, which are crucial for developing robust algorithms capable of navigating complex
environments and optimizing decision-making processes effectively [12]. The bibliography
encompasses several RL techniques tailored for the economic dispatch of conventional
power systems. Among these techniques, the most commonly utilized ones are referred
to as Q-learning-based algorithms [13] and Deep Q-Networks (DQNs) [14]. Q-learning
algorithms, a fundamental RL approach, optimize decision-making processes by iteratively
learning the optimal action-value function. On the other hand, DQNs employ deep neural
networks to approximate the action-value function, allowing for more complex and efficient
learning in large-scale power systems.

In terms of applying Q-learning based methodologies, Ref. [15] presents a novel
Q-learning-based Swarm Optimization (QSO) algorithm. This algorithm approaches op-
timization problems as tasks in reinforcement learning, with the objective of achieving
optimal solutions through the maximization of expected rewards. Integrating Q-learning
and particle swarm optimization, the QSO algorithm imitates the behavior of the global
best individual in the swarm and selects individuals based on accumulated performance.
Similarly, Ref. [16] tackles the necessity of adjusting economic dispatch and Unit Commit-
ment (UC) problems to accommodate the transition to smart grids. The authors reframe
these challenges into a unified framework capable of managing infinite horizon UC com-
plexities. A centralized Q-learning-based optimization algorithm is proposed, operating
online without requiring prior knowledge of cost function mathematical formulations.
Additionally, a distributed version of the algorithm is developed to balance exploration
and exploitation cooperatively, demonstrating effectiveness through theoretical analysis
and case studies.

With regard to the more intricate approach of DQNs in the context of economic
dispatch, the authors of [17] present a Deep Reinforcement Learning (DRL) approach
for Combined Heat and Power (CHP) system economic dispatch, offering reduced com-
plexity and improved adaptability across various operating scenarios. Simulating CHP
economic dispatch issues as Markov Decision Processes (MDP) enables the method to
bypass extensive linearization efforts while preserving device characteristics. Similarly,
Ref. [18] proposes a DRL algorithm for online economic dispatch in Virtual Power Plants
(VPPs), addressing challenges posed by the uncertainty of distributed renewable energy
generation. Utilizng DRL, the algorithm decreases computational complexity while manag-
ing the stochastic aspects of power generation. Implemented within an edge computing
framework, the real-time economic dispatch strategy successfully minimizes VPP costs,
demonstrating superior performance compared to deterministic policy gradient algorithms.
Also, the authors of Ref. [19] propose a scenario-based robust economic dispatch approach
for VPPs to address challenges posed by the complex structure and uncertain characteris-
tics of distributed energy. By incorporating scenario-based data augmentation and deep
reinforcement learning, the strategy reduces conservatism and directly solves nonlinear
and non-convex problems, ultimately minimizing operational costs.

This paper aims to revolutionize economic dispatch in NIES by employing an innova-
tive RL approach, leveraging reward engineering to significantly differentiate our work
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from existing literature. In this study, a novel off-policy RL method is introduced, which
integrates the core principles of the traditional Q-learning algorithm with an ensemble
reward system. This hybrid approach aims to facilitate and accelerate the learning process
of an agent tasked with managing the economic dispatch of a nuclear-driven generation
company, equipped with a commercial SMR. Comparison with conventional economic
dispatch approaches serves as a benchmark for evaluating the proposed method, showcas-
ing its superior accuracy as the agent adeptly learns the economic dispatch portfolio. Our
study enhances the area of energy systems optimization by illustrating the importance of
sophisticated reinforcement learning approaches in tackling the intricate and ever-changing
problems encountered by NIES. Ultimately, this paper seeks to demonstrate the viability
of employing the fused RL approach within a spot energy market to maximize profits for
nuclear-driven generation companies, thereby establishing the profitability of NIES over
competitors relying on fossil fuel-based generation units to fulfill baseload requirements.

The remainder of the paper is organized as follows: Section 2 provides a holistic
overview of the energy market environment under study, together with the underlying
assumptions of this research and mathematical formulations of economic dispatch op-
timization challenges. Also, in Section 2, the RL environment for economic dispatch is
developed, emphasizing the inclusion of the suggested ensemble reward system and the
mathematical formulation of the agent’s optimal policy. Section 3 presents the numerical
results derived from the study, demonstrating the efficacy and accuracy of the proposed
algorithm. Subsequently, Section 4 provides a discussion of the results and offers final
remarks, while Section 5 concludes the paper.

2. Materials and Methods

This section presents a detailed description of the energy market environment under
study, its assumptions, and mathematical formulations for economic dispatch optimization,
along with the development of the RL environment, highlighting the inclusion of the
proposed ensemble reward system and the formulation of the agent’s optimal policy.

2.1. Structure of the Assessed Energy Market Landscape

This subsection outlines the framework of the energy spot market utilized to ana-
lyze the profitability exhibited by the examined GenCos. It is explicitly stated that the
primary objective of this research is the implementation of a novel RL algorithm, enabling
the developed agent to learn the economic dispatch schedule of a GenCo that utilizes a
SMR, rather than the modeling or full simulation of an energy spot market. Additionally,
the assumptions investigated are provided along with the mathematical aspects of the
economic dispatch.

2.1.1. Energy Spot Markets

Energy spot markets are used to buy and sell physical quantities of power in a short-
term timeframe ahead of delivery [20]. Essentially, in electricity markets, it is necessary
to constantly balance the supply and demand. In a spot market, the goods are promptly
delivered by the seller, and payment is made by the buyer “on the spot”, without any
conditions attached to the delivery. This operational framework ensures that neither party
possesses the option to retract from the agreement once it has been initiated, fostering a
swift and decisive transaction process [21]. Overall, energy spot markets play a vital role
in the efficient functioning of energy systems, facilitating the reliable and cost-effective
supply of electricity to consumers while providing opportunities for market participants to
manage risk and optimize their operations.

In this type of market, electrical energy is produced and sold by Generation Companies
(GenCos). They may also sell services such as regulation, voltage control, and reserve, which
are necessary for maintaining the quality and security of the electricity supply. A single
plant or a portfolio of plants of different technologies may be owned by a generating
company. It is evident that every GenCo endeavoring to submit a bid for electricity
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production aims to maximize profitability by efficiently meeting load demand. To achieve
this objective, it is imperative for each GenCo to construct a robust energy portfolio based
on its available fleet of Generation Units (GenUnits), as each unit generates a specific power
output at a specific cost [22]. This cost serves as a determinant of the unit’s production
expense. Consequently, each GenCo should strictly follow a pre-defined generation policy,
which dictates that the GenUnit with the lowest generation cost should be prioritized
and dispatched first to meet subsequent load demands. This policy, known as economic
dispatch, holds paramount importance for the economic viability of GenCos, as it ensures
the maximization of profits [23].

The configuration of our energy market environment is shaped by the constraint that
energy transactions solely take place through a spot market overseen by a central pool entity,
disregarding the possibility of bilateral agreements between the demand and generation
sectors. Initially, the Market Operator (MO) assumes the responsibility of coordinating
bids and offers submitted by buyers and sellers of electrical energy. Upon receiving a
signal from the demand side, comprising both load demand and price parameters, the MO
transmits this information to the supply side, which encompasses a set of N GenCos.
These GenCos are tasked with efficiently generating the required power to fulfill the load
demand, with the premier objective of profit maximization. Each GenCo, in turn, submits
to the market pool details regarding the quantity of energy it intends to produce and the
corresponding price.

2.1.2. Mathematical Formulation of Economic Dispatch Models

Economic dispatch denotes the systematic operation of generation facilities with the
objective of ensuring the reliable provision of energy at minimal expense, while acknowl-
edging the operational constraints in generation and transmission infrastructures [24].
Typically, economic dispatch entails the utilization of the generating unit with the lowest
variable cost, or in the context of a competitive energy market, the unit offering the lowest
price, to increase output in response to rising loads. Conversely, it involves the reduction
of output from the least cost-effective unit as demand decreases [25].

The economic dispatch problem is fundamentally contingent upon the cost function of
the GenUnit [26]. Consequently, understanding the correlation between the cost and output
power of a generating unit is crucial. The cost of generating a specific quantity of energy,
usually measured in MWh, can exhibit significant variation depending on the technological
specifications of the unit. In the short term, certain factors of production remain fixed,
and the expenses associated with these factors are independent of the output quantity,
constituting fixed costs. The expenses that remain constant in constructing a power plant
are commonly denoted as capital costs. These encompass expenditures associated with
the initial construction, installation, and development of the power plant infrastructure,
including equipment and land acquisition. Such expenses are typically accumulated from
the start and tend to remain consistent regardless of the amount of electricity generated by
the plant. On the contrary, the volume of fuel utilized by the plant, along with operational
and maintenance expenses, including the necessary manpower for its functioning, are
intricately linked to the energy output. These expenditures represent the variable costs
associated with the GenUnits.

In this work, the computation of the cost required to produce a specific quantity
of power is conducted solely by accounting for the variable costs, encompassing fuel
expenditures and Operational and Maintenance (O&M) costs associated with the generator.
Additionally, the exclusion of capital costs regarding all GenUnits is presumed, and hence
omitted from consideration. Consequently, the aggregated cost attributed to each GenUnit
is derived by aggregating the fuel costs and the O&M costs. Therefore, the total generation
cost of each GenCo is ascertained by summing the power output from all dispatched
generators, with the output of each generator multiplied by its corresponding total cost,
given by (1) as follows:
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CTotal =
M

∑
i=1

PG
i · (C

F
i + C

O&M
i ) (1)

where M denotes the number of available GenUnits, with PG
i denoting the power output

generated by the ith unit. Moreover, CF
i and C

O&M
i are indicative of the corresponding fuel

and O&M expenses attributed to each individual GenUnit, respectively.
The economic dispatch challenge constitutes a multi-dimensional optimization task

primarily aimed at minimizing the collective expenses associated with active power gener-
ation, as specified in (1). Essential to the completion of this task is the active power output
of each GenUnit, denoted as PG

i . Consequently, the economic dispatch quandary presents
itself as an optimization task, established in (2), while (3) delineates the constraints inherent
to this scenario, as follows:

min {
M

∑
i=1

PG
i · (C

F
i + CO&M

i )} (2)

s.t.:
M

∑
i=1

PG
i = PL +

K

∑
i=1

PD
i

PGmin
i ≤ PG

i ≤ PGmax
i for i = 1, 2, . . . , M

(3)

where M represents the number of GenUnits, reflecting the capacity of the power-generation
infrastructure, while K denotes the number of demand nodes. The term PL express the
losses incurred during the transmission of electricity, highlighting the dissipation of energy.
Additionally, PGmin

i and PGmax
i characterize the minimum and maximum generation capa-

bilities, respectively, of each individual GenUnit, thus delineating the operational range
within which these units can operate effectively.

The income (It) of a GenCo stems from the power it generates, multiplied by the
prevailing electricity price in $/MWh at each given time t, and is expressed in (4), as follows:

It = PD
t · πt (4)

where PD
t is the power demanded and πt is the price at a specific time t. This income is cru-

cial for evaluating the financial performance and viability of the GenCo, reflecting its ability
to leverage market conditions and efficiently allocate resources to meet demand while
maximizing revenue. By effectively managing the generation of electricity in alignment
with market dynamics, GenCos can optimize their income streams and ensure sustainable
operations in the energy sector.

Profit represents the financial advantage gained when the revenue generated from a
business activity surpasses the incurred expenses, costs, and taxes essential for sustaining
said activity. Companies that demonstrate profitability often attract investors due to their
promising returns. Profit, a fundamental metric, is computed by deducting total expenses
from total revenue, acting as an indicator of a company’s financial health and potential for
growth. The applicability of this fundamental concept extends beyond traditional business
domains to encompass sectors like the energy spot market. In this context, Equation (5)
defines profit as follows:

Gt = It − C
Total
t = PD

t · πt −
M

∑
i=1

PG
i · (C

F
i + CO&M

i ) (5)

where Gt encapsulates the profit earned by a GenCo subsequent to dispatching the requisite
GenUnits for the economic dispatch issue at time t. This term reflects the financial gain
realized by the GenCo as a result of its operational decisions in response to economic
dispatch requirements.
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2.1.3. Critical Assumptions Shaping Problem Formulation

This study introduces a novel greedy off-policy algorithm fused with an ensemble
reward system as an RL approach for addressing the economic dispatch challenge encoun-
tered by a nuclear-driven GenCo. However, it is imperative to explicate the fundamental
assumptions underpinning our investigation. These assumptions serve as foundational
principles guiding the agent’s learning process to ascertain the optimal economic dispatch
schedule and ensure the profitability of the GenCo under consideration. The portrait
of these assumptions not only shapes the formulation of the problem but also serves to
unfold the underlying framework of the proposed methodology. Specifically, the following
assumptions are posited:

• The structure of our energy market environment is defined by the constraint dictating
that energy transactions occur exclusively through a spot energy market regulated
by a central entity, thereby excluding the option for bilateral agreements between the
demand side and GenCos. Consequently, the electricity price πt remains consistent at
time t, indicating that prices for the corresponding load demand remain uninfluenced
by negotiations. This results in (4) remaining constant at a specific time t.

• The load demand values consistently stay below the maximum capacity of each GenCo,
thereby negating the necessity for the GenCo to exhaust its entire capacity without the
requirement of determining an optimal economic dispatch schedule. In the event that
the load demand value exceeds the maximum capacity of the GenCos, they would be
obligated to dispatch all their GenUnits without any consideration for optimization.

• GenCos function autonomously, with limited awareness of each other’s portfolios,
thus ensuring fairness. While GenCos may possess information regarding overall
market conditions, such as wholesale electricity prices, they typically lack direct insight
into the dispatch schedules of their rivals. In general, they operate independently
and might lack direct access to the economic dispatch schedules of other GenCos,
particularly if they are viewed as competitors in the electricity market. The economic
dispatch process is often regarded as confidential to prevent manipulation or the
unfair exploitation of advantages in the electricity market.

• GenCos ensure that all their GenUnits are constantly available, thereby eliminating any
uncertainty regarding the generation capabilities of renewable energy resources, which
are heavily reliant on weather conditions. Additionally, the possibility that certain
GenUnits may be unavailable due to maintenance reasons is not taken into account.

Therefore, within the framework of the energy spot market, the adoption of RL
techniques for approaching the economic dispatch method is advocated. It is emphasized
that the aim of this paper is not to propose an energy spot market framework, but rather
to develop an off-policy learning approach embedded with a greedy reward method.
This algorithm is designed to enhance and expedite the learning capabilities of an agent
simulating a nuclear-driven GenCo. Therefore, the proposed RL approach should be
established, along with all the technical details of the proposed algorithm, before the case
study and numerical results of our work are presented.

2.2. Reinforcement Learning Algorithm for Economic Dispatch

Reinforcement learning, a training technique within machine learning, operates on
the principle of rewarding desired behaviors and penalizing undesired ones. Within the
domain of RL, knowledge acquisition occurs through the interaction of agents with their
environment, wherein actions are taken and subsequent rewards or penalties are received
based on those actions [27]. These rewards or penalties serve as feedback mechanisms,
enabling agents to adjust their action strategies, which are referred to as policies [28].
The significance of this approach lies in its capacity to enable agents to autonomously learn
and adapt to the intricacies of their designated environments [29].

In the realm of RL, the fundamental concept revolves around encapsulating the
essential elements of the genuine challenge encountered by a learning agent as it interacts
with its environment to attain a goal. Evidently, such an agent must possess the capability to
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perceive the state of the environment to a certain degree and execute actions that influence
this state. Additionally, the agent must be equipped with one or more goals pertaining to
the state of the environment. The formulation aims to encompass these three fundamental
aspects—sensation, action, and goal—in their most basic forms.

Therefore, to comprehensively outline the proposed RL approach aimed at addressing
the economic dispatch schedule, certain fundamental components for the RL environment
must be established. These fundamental components consist of defining the state space,
which encompasses the possible configurations or conditions of the system; specifying
the action space, which outlines the available choices or decisions that the agent can
make within the environment; and designing a robust reward system, which serves as
the mechanism for reinforcing desired behaviors and guiding the learning process. These
fundamental elements provide the groundwork for developing a precise and efficient
reinforcement learning system that is adapted to handle the intricacies of the economic
dispatch issue.

2.2.1. Establishing the RL Environment for Economic Dispatch Modeling

In this subsection, the RL environment utilized in our study will be elaborated upon.
Within our research framework, a nuclear-driven GenCo is cast as an autonomous agent,
tasked with refining its generation optimization strategy through the acquisition of ex-
pertise. This is noticeably different from antagonist GenCos, which lack RL capabilities.
This research focuses on carefully determining the most effective power output for the
GenCo’s available GenUnits. Consequently, the agent is structured as a GenCo with a
predetermined set of M GenUnits, each serving as a vital component in the overarching
energy-generation process.

Secondly, within our framework, it is absolutely essential to meticulously define the
representation of potential actions included in an action set A which are accessible to
our agent in numerical terms. This entails establishing a clear link between the actions
undertaken by the proposed agent and the generation process of each available GenUnit.
Consequently, the agent must possess the capacity to adjust the generation levels of each of
the M GenUnits. This necessitates that an equal number of potential actions be meticulously
considered for each individual GenUnit, ensuring comprehensive coverage and equitable
treatment across the entire system.

Finally, the definition of the state space S representation must be addressed. It is
imperative that the agent be granted access to all pertinent data crucial for the economic
dispatch procedure and for effectively minimizing the total generation cost of the nuclear-
driven GenCo. Thus, within each state, the agent should be provided with information
regarding both the current generation levels and the generation capacity of each of the M
GenUnits. Furthermore, it is essential that the agent obtains comprehensive information
concerning the cost implications of increasing the generation by 1 MW for each GenUnit.
This entails understanding the costs associated with fuel and O&M expenses, which are
integral components that must be factored into (2) for the purpose of minimizing the
objective function. Furthermore, it is essential for the agent to have knowledge of both the
power demand and the electricity price at a specific time t. This information enables the
agent to accurately estimate the total income outlined in (4). Understanding the value of
load demand helps the agent anticipate the amount of electricity needed by consumers,
while knowledge of the electricity price allows the agent to assess the potential revenue
generated from supplying electricity to the grid. Incorporating these factors into the
optimization process is crucial for maximizing the overall income and effectively managing
the economic dispatch procedure.

2.2.2. Attaining the Optimal Policy in Agent-Driven Economic Dispatch

In RL, a policy is defined as a strategy employed by an agent in the pursuit of goals.
The actions taken by the agent are dictated by the policy, which operates as a function of
both the agent’s state and the environment. In the realm of RL policy training, two primary
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approaches stand out: on-policy learning and off-policy learning [30]. On-policy methods
involve the iterative refinement of a single policy, which in turn generates control actions
within the environment, known as the behavior policy. Essentially, the behavior policy
delineates the policy that is adhered to by the agent when selecting actions within the
environment at each time step [31]. Additionally, there are off-policy methods in which data
from the behavior policy are utilized to train a separate target policy for an optimization
objective. This discrepancy in which the policy is updated with the training data exerts a
profound impact on the learning behavior of the various RL algorithms [32].

In on-policy RL, actions are determined based on observed environmental states
according to a specific RL policy. The results of these actions are gathered and employed
to gradually enhance the parameters of the identical policy. Consequently, on-policy RL
employs a shared behavior and target policy. This policy is tasked with exploring both the
state and action spaces while refining the learning objective using the accumulated data.
Numerous algorithms within the on-policy category incorporate a certain level of variation
in actions. This variation is introduced deliberately to maintain a delicate equilibrium
between the exploration of new possibilities and the exploitation of known information for
optimal decision-making [33].

Conversely, off-policy RL is characterized by the utilization of two distinct strategies
consisting of a behavior policy and a target policy. The behavior policy determines the
actions taken in response to observed environmental states, while the target policy is con-
tinuously refined based on the outcomes of these actions. This approach allows off-policy
RL to separate the process of collecting data from the training of policies. An advantageous
aspect of off-policy methods is their capability to learn an optimal target policy, which may
prioritize maximizing rewards, regardless of the exploratory nature of the behavior policy.
It is common practice in off-policy learning to periodically update the behavior policy with
the latest insights from the target policy to enhance the overall learning process [34].

In our paper, the economic dispatch procedure is intended to be addressed with an off-
policy RL algorithm. On-policy algorithms involve enhancing the current behavior policy
utilized for decision-making, thus acquiring knowledge of the policy’s value executed
by the agent. Conversely, off-policy algorithms are designed to ascertain the value of
the optimal policy and possess the capability to refine policies distinct from the behavior
policy. Therefore, the choice of employing an off-policy RL algorithm in our research is
informed by its potential suitability, particularly in simulation scenarios. This choice is
driven by its inherent tendency to more effectively learn the optimal policy, providing
greater adaptability and robustness in navigating complex decision spaces, while avoiding
being trapped in local minima.

Building upon the preceding discussion, understanding and defining this policy is
fundamental to the success of any RL approach, ensuring effective decision-making in com-
plex environments. Therefore, the identification of optimal actions hinges on establishing a
precise mapping from each state to a probability distribution encompassing the available
actions within that state. This ideal mapping is a fundamental aspect of any RL method-
ology, crucial for effective decision-making. In the realm of sequential decision-making,
problems are commonly formulated as MDPs. The solution to such problems involves
crafting an optimal mapping for each state, denoted as s ∈ S, which delineates a probability
distribution over the action set A available in that state. The mathematical representation
of a policy φ in MDPs is articulated by (6) as follows:

φ : S×A→ [a1, a2, . . . , aM] (6)

where φ represents the policy being defined, S and A denote the sets of all possible states
and actions in the environment, respectively, and [a1, a2, . . . , aM] represents the set of
possible actions that the agent can choose from in response to a given state.

The value function Vφ(s) characterizes the anticipated return R when commencing
from the initial state s0 and then adhering to the policy Vφ(s). This function provides an
assessment of the attractiveness of being situated in a particular state. As agents move
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through different states and implement decisions guided by their policies, it becomes
crucial to assess the effectiveness of these policies. A fundamental aspect of evaluating
policies involves comparing the performance of different action policies. This comparison
process leads to the establishment of dominance relationships among the agent’s policies.
A relationship of dominance can be established among an agent’s action policies. Specifi-
cally, policy φ′ is deemed dominant over policy φ if there is no distribution of rewards that
would lead policy φ to yield higher expected rewards than policy φ′. In instances where
policy φ′ holds dominance over policy φ, the agent consistently prioritizes φ′ over φ. At the
core of the concept of optimality lies the notion that a policy φ′ possessing the highest value
is considered optimal. This condition of optimality is represented by (7) as follows:

V∗φ′′(s) = max Vφ′′(s) = max
φ′′

E[R|s = s0, φ′] (7)

This paper introduces a groundbreaking off-policy approach, which integrates the
backbone of the q-learning algorithm alongside an ensemble learning accelerator. Notably,
the innovation lies in the incorporation of a sophisticated reward system aimed at enhancing
the learning process of the agent tasked with determining the optimal dispatch policy for
the nuclear-based GenCo. The proposed reward system operates on the principle of
incentivizing the agent to make decisions that align with the desired objectives. These extra
rewards play a pivotal role in guiding the agent towards the most advantageous course
of action, as it can learn the optimal policy and facilitate the utilization of appropriate
GenUnits to efficiently address the economic dispatch issue.

2.3. Ensemble Reward Mechanisms for Enhanced and Accelerated Learning

In practical applications of RL, engineers often encounter constraints that limit their
ability to directly manipulate environmental conditions. As a result, the efficacy of con-
ventional engineering interventions is limited, necessitating further methods to effectively
foster learning processes. In this context, reward-shaping techniques emerge as pivotal
mechanisms for modulating the learning trajectory [35]. Reward shaping involves the
strategic introduction of supplementary reward signals at intermediate stages of an RL
task. These additional rewards serve as guidance mechanisms, steering the learning agent
towards desired states or behaviors [36]. Moreover, through strategic design and im-
plementation of intermediate rewards, engineers can accelerate the learning algorithm’s
progression towards optimal policies. This acceleration is particularly crucial in domains
such as power systems, where rapid acquisition of proficient behaviors is imperative for
ensuring efficient, stable, and economic operation [37].

In our setup, agents are required to follow a prescribed set of actions to understand
the optimal economic dispatch schedule. The primary aim of the agent is to effectively
fulfill the load demand while simultaneously developing and refining its decision-making
approach. As a result, the agent should be rewarded for each potential action, indicating
its effectiveness. During the decision-making process, the agent aims to select actions
that maximize its returns while simultaneously boosting the production of the most cost-
effective GenUnit. This entails ensuring that the selected actions align with the optimal
balance between profitability and efficiency. Additionally, it is crucial for the agent to
operate within the generation limits of each GenUnit, thereby preventing any instances of
overgeneration. Once a GenUnit reaches its maximum capacity, it becomes necessary for the
agent to prioritize dispatching the subsequent most cost-effective GenUnit. This proactive
approach ensures a continuous and efficient generation capability within the autonomous
system. To foster such behavior in the agent, it is crucial to establish a system of suitable
rewards and/or penalties. These mechanisms serve as guiding cues, prompting the agent to
consistently make decisions that are in line with the core objectives of maximizing returns
and complying with generation limits [38].

Consequently, the agent should exhibit a proactive approach in its actions, aiming to
satisfy both these objectives effectively. This proactive stance ensures that the agent’s deci-
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sions are guided by the aim of maximizing returns while also adhering to generation limits.
Due to this rationale, an ensemble greedy reward scheme has been devised in our paper to
ensure that the optimal strategy is acquired by the agent more rapidly, without becoming
trapped in local minima, and to ensure that the GenUnits are dispatched not only at the
desired generation level but also in the appropriate sequence.

The agent is awarded additional reward points for adhering to the learned policy [39].
Upon completion of the final action, the environment state is terminated, initiating a
thorough examination to ascertain if the maximum capacity of the least expensive GenUnit
has been reached. Following this, the embedded accelerator mechanism is promptly
activated. If the least expensive GenUnit has been dispatched at the desired generation
level, the agent receives a combined reward, prompting the dispatch of the next available
cost-effective GenUnit. This strategy showcases its notable effectiveness, especially in the
early phases of the RL algorithm when the agent’s actions lack clear direction, highlighting
the efficacy of the proposed approach in managing intricate environments with prolonged
convergence times, thereby accelerating the acquisition of the desired behavioral policy
by the agent. A comprehensive depiction of the proposed reward system is provided in
Figure 2.
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Figure 2. Reward shaping strategies and accelerated policy learning for accurate economic dispatch
using an embedded greedy reward system.

The suggested off-policy technique relies on the foundation of the Q-learning process.
Consequently, in order to define the optimum economic dispatch policy for the designed
agent, the value function Vφ(s) of (7) should be incorporated into the Q-learning procedure
with an additional reward term, with the Q-learning update rule being modified to include
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this extra reward component. This update rule is given by (8), with the Q-learning update
rule being modified to include this extra reward component, as follows:

max
Q

(
Q(s, a) + α

(
E[r|s = s0, φ] + RE + γ max

a′
Q(s′, a′)−Q(s, a)

))
s.t. φ∗(s) = arg max

a
Q∗(s, a) (8)

where Q(s, a) is the Q-value for state–action pair (s, a), α is the learning rate, r is the
immediate reward, γ is the discount factor, maxa′ Q(s′, a′) is the maximum Q-value for
the next state s′ and E[r|s = s0, φ] + RE represents the total reward obtained by following
policy φ from the initial state s0, which is the combination of the expected return under
policy φ and the ensemble reward value RE. This modification ensures that the Q-value
update incorporates both the immediate reward r and the additional reward component
RE, providing a more comprehensive measure of the value of taking a specific action in a
state under optimal policy φ∗.

3. Numerical Results of Case Study

In this section, the case study under examination will be detailed. Firstly, the frame-
work of the studied energy market environment and the participating GenCos will be
described. Following this, the RL environment, in which the agent responsible for the
economic dispatch of the nuclear-driven Genco operates, will be outlined, with its action
space and state space defined. Finally, the efficiency of the proposed ensemble reward
system fused with an off-learning policy will be numerically demonstrated, emphasizing
the greater profitability exhibited by nuclear-driven GenCos compared to those relying on
conventional GenUnits to cover their base load.

In the envisioned energy market setting, three GenCos are engaged in competition,
striving to enhance their profitability while endeavoring to fulfill the entirety of demand
values communicated by the MO. Table 1 accumulates comprehensive data concerning the
capacity of GenUnits within each GenCo under evaluation. Electricity demand experiences
fluctuations throughout the day due to various factors such as time of day, weather condi-
tions, and industrial activities. Certain types of GenUnits, such as natural gas turbines or
hydroelectric plants, possess greater flexibility and can swiftly adjust their output to align
with changes in demand. Conversely, others, like nuclear plants or coal/diesel generators,
offer a consistent baseload supply. The utilization of a diverse array of energy sources
enables GenCos to effectively manage these demand fluctuations by employing various
types of GenUnits to meet load requirements, thereby optimizing reliability, flexibility, cost-
efficiency, environmental sustainability, and grid stability. Each type of GenUnit provides
particular benefits and characteristics that contribute to the establishment of a balanced
and resilient energy system. Thus, each GenCo under study is mandated to possess at least
one GenUnit tasked with addressing the base load, alongside additional GenUnits desig-
nated for handling intermediate loads, and renewable GenUnits designated for managing
peak loads.

Although there are minor differences in the O&M costs and capacities of RES, and due
to the fact that each GenCo operates with its distinct combination of energy sources, it is
not necessary for them to standardize their GenUnits for comparison. Initially, during the
dispatch of RES, generation costs across companies generally exhibit minimal variation.
However, as the demand necessitates the dispatch of baseload generation units, disparities
in profitability become evident, leading to increased generation costs and subsequent
profit differentials. Thus, each GenCo’s unique energy portfolio necessitates flexibility
in unit selection. Furthermore, the capacity of these baseload generation units does not
significantly affect the economic dispatch process, since they typically operate below their
full capacity. Therefore, variations in the capacities of baseload generation units among the
GenCos under study are acceptable and do not hinder the comparability of results.
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Table 1. Generation capacity overview of GenCos under study.

Power Plant GenCoA GenCoB GenCoC

Natural Gas – – 1045
Coal – 1995 –

Nuclear (SMR) 300 – –
Solar – 174 174

Hydropower 338 338 –
Wind 468 – 468

Biomass – – 105

The market conditions being analyzed are evaluated by examining hourly load and
marginal price data specific to a designated region within the PJM power system for the
year 2022. It is imperative for the agent overseeing the economic dispatch of GenCoA to be
proficient in managing this data, as they constitute an integral component of the envisioned
environment. This entails the ability to interpret and utilize the hourly load and marginal
price data effectively to inform decision-making processes regarding the economic dispatch
of generation resources.

In order to address the optimization problem described by (2), it is necessary for the
agent to have access to data regarding fuel costs and O&M costs. These costs have been
sourced from the annual reports of the U.S. Energy Information Administration (EIA)
and have been converted to units of USD/MWh. The combination of all these data sets
defines the majority of the RL environment in this study. Figure 3 provides a graphical
representation of monthly fuel costs for the year 2022 in USD/MWh for each GenUnit under
study. Enriched uranium serves as the conventional fuel choice for the SMR under study,
while alternative materials, such as thorium, may be utilized. It is evident that coal exhibits
the highest fuel cost, while uranium indicates the lowest cost per MWh. It is notable that
the RES under examination demonstrate zero fuel costs. This emphasizes the importance of
considering various energy sources and their associated costs when optimizing the system.

Figure 3. Fuel expenses per month (colorful lines) for the available GenUnits during periods of high
fluctuations (grey dotted lines).

Furthermore, Figure 4 provides a visual representation of the O&M costs associated
with each GenUnit under examination. Despite the relatively low fuel cost of uranium, it is
noteworthy that GenCoA’s SMR displays the highest O&M expenses. Despite their smaller



Energies 2024, 17, 2056 14 of 21

size, SMRs may still incur significant expenses due to the complexity of their designs,
stringent regulatory requirements, and the need to deploy them in remote or off-grid
locations. Furthermore, unlike larger reactors that have longer refueling intervals, SMRs
typically require more frequent refueling due to their smaller size and power output. These
refueling procedures involve shutdowns, labor, and material costs, all of which contribute
to the higher O&M costs. Conversely, GenUnits reliant on fossil fuels, such as gas and
coal, demonstrate comparatively lower maintenance costs. This discrepancy underscores
the diverse cost structures inherent in different types of generation technologies and
emphasizes the importance of considering both fuel and O&M expenses when evaluating
the economic viability of energy-generation options. The agent should possess the capability
to adapt to fluctuations in these data sets, as they directly impact the optimization of
economic dispatch within the power system.

Figure 4. O&M expenses for the GenUnits under study.

Upon the establishment of the RL environment, it becomes imperative to conduct a
thorough examination of the effectiveness and precision of the proposed off-policy learning
approach, which encompasses the ensemble reward system. This comprehensive evaluation
seeks to provide clarity regarding the overall efficacy of the developed agent’s behavioural
policy. Initially, serving as the benchmark for this evaluation is a traditional manual
economic dispatch approach, where supply-side entities systematically organize their
available generators based on ascending order of operating costs, ranging from the least
to the most expensive. By contrasting the outcomes of this traditional method with those
achieved by our developed agent employing the proposed approach, valuable insights into
its effectiveness can be obtained. Figure 5 compiles and presents the economic dispatch
results of the three GenCos for varying load values observed over a 24 h period. It is
apparent from the data that GenCos adeptly manage to meet the load demand in the most
economical manner adapted to their specific operational needs and constraints.
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 ���Figure 5. Economic dispatch performance of three GenCos across varying load demand values over
a 24-h period.

Moreover, it is essential to conduct a comparative analysis between the outcomes
generated by the traditional manual economic dispatch method and those yielded by the
developed agent utilizing our proposed approach. Given the potential system fluctuations
primarily attributed to RES and the imperative to validate the algorithm’s effectiveness
within the designated time frame, the proposed framework operates on the foundational
principle of equipping the agent with an optimal strategy for efficiently allocating its
generating capacity. This capability empowers the agent to adeptly address anticipated
future load demands unaffected by dependence on specific time resolutions. Consequently,
a single training session is necessary for the agent to acquire the capability to adhere to an
economically optimized dispatch schedule aligned with its maximum generation capacity.
Figure 6 provides a graphical representation facilitating the comparison of the economic
dispatch results obtained from the two methodologies across varying load values received
by GenCoA over a 24 h period. This comparative assessment allows for a comprehensive
examination of the efficacy and performance of the developed agent in optimizing economic
dispatch decisions.

Figure 6 vividly illustrates the remarkable accuracy exhibited by the proposed off-
learning RL approach fused with the ensemble reward system, in addressing the economic
dispatch challenges faced by the nuclear-driven GenCo. This high level of accuracy stems
from both the innovative reward system proposed and the strategic approach of training
the agent with GenCoA’s capacity as a reference point. By adopting this training tac-
tic, the agent becomes capable at replicating the optimal economic dispatch schedule of
GenCoA without necessitating training for every individual demand signal it encounters.
Consequently, this approach not only enhances accuracy but also significantly reduces
the execution complexity associated with the proposed method. By minimizing the need
for exhaustive training on varying demand scenarios, the agent can efficiently adapt to
dynamic operating conditions, thereby improving its overall performance and applicability
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in real-world settings. Furthermore, the comparative assessment of the proposed RL ap-
proach against the conventional manual method, which serves as the benchmark, reveals
notable enhancements in both accuracy and efficiency. This enhancement is visible when
examining the accuracy metrics presented in Table 2, showcasing the superior performance
of the RL approach. The Mean Absolute Error (MAE), Mean Squared Error (MSE), Mean
Absolute Percentage Error (MAPE), and the coefficient of determination (R2 Score) are all
crucial indicators for evaluating the performance of the proposed RL model.���������������	
 ��
�������

���������������������
������������������������������������������������������
������� ���Figure 6. Comparative economic dispatch results of both approaches for GenCoA across varying
load demand values over a 24 h period.

Table 2. Accuracy metrics for the proposed RL approach.

MAE (MW) MSE (MW2) MAPE (%) R2 Score

1.333 2.00 0.52 0.333

Having demonstrated the effectiveness of the implemented agent in addressing eco-
nomic dispatch challenges, it becomes essential to demonstrate the increased profitability of
the nuclear-driven generation company relative to the other entities. This effort attempts to
validate the second focal point of the paper concerning the profitability of GenCo utilizing
a SMR to fulfill the base load requirement. Thus, it is imperative to establish that NIES not
only contribute to reducing carbon dioxide emissions but also yield greater profitability.
To achieve this, the total electricity production costs for each GenCo, as defined by (2),
across various load values within a day need to be taken into account. It is evident that
the GenCo with the lowest production costs stands to achieve the highest profitability,
as supported by (5) and the underlying assumptions. Figure 7 presents a depiction of
the total production costs, measured in dollars, for each GenCo undergoing examination.
These costs are determined based on the economic dispatch portfolios utilized by each
entity to fulfill the load demand over a 24 h period.
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As depicted in Figure 7, GenCoB emerges with the highest production costs among
the trio of GenCos under examination. This elevated cost is primarily attributed to the sig-
nificantly higher expenses associated with coal compared to other energy sources within its
energy mix. The prevailing composition of energy sources results in a notably augmented
energy generation cost for GenCoB, rendering it distinctly unprofitable. Furthermore, it is
important to highlight the consistent lower electricity generation costs of GenCoA com-
pared to GenCoC throughout the observed period. This sustained pattern underscores the
superior cost efficiency of GenCoA’s operations relative to GenCoC. Given these noticeable
disparities in production costs, our analytical focus naturally gravitates towards examining
the profitability dynamics of GenCoA and GenCoC. Conversely, the notably higher costs
incurred by GenCoB render it less relevant to our profitability analysis.

Figure 7. Total production costs of the analyzed GenCos for meeting the 24 h load demand.

Figure 8 provides a comprehensive depiction of the profits, measured in dollars, at-
tained by the two most lucrative GenCos within the analyzed cohort. Notably, GenCoA,
which utilizes an SMR, emerges as the obvious profitability leader when compared to
GenCoC, which relies on fossil fuels to cover its energy needs. This disparity in prof-
itability necessitates an investigation of the underlying causes influencing their economic
performance. Traditionally, one may predict that the significant O&M expenses associated
with SMRs will serve as a limiting factor for the profitability of nuclear-driven GenCo
over its fossil fuel-dependent equivalent, GenCoC. However, this research shows that
GenCoA’s competitive advantage is mostly due to the favorable cost dynamics concerning
uranium. Furthermore, despite possessing a more diverse energy mix and the flexibility to
deploy a greater variety of generators, GenCoC confronts a significant rise in the cost of
electricity generation, resulting in lower profits. The fluctuations in GenCoC’s generating
costs are mostly due to the extremely variable nature of natural gas prices throughout 2022.
The high cost of gas and higher O&M expenditures for GenCoC’s biomass generator and
RES contribute to reduced profitability. These combined parameters highlight the delicate
relationship between energy source selection, operating costs, and overall profitability in
the electricity-producing environment.
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Figure 8. Profit comparison of top-performing GenCos: SMR vs. fossil fuel-based operations.

4. Discussion

This research presents a novel off-learning RL approach combined with an ensemble
reward system, offering a promising solution to the economic dispatch challenges encoun-
tered by a nuclear-driven GenCo. This study underscores the critical interplay between
energy-source selection, operational costs, and profitability within the electricity produc-
tion sector, providing valuable insights for decision-makers aiming to optimize economic
dispatch strategies and enhance the overall power-generation performance. The proposed
approach showcases remarkable accuracy, which is attributed to both the innovative re-
ward system and the strategic training tactic that leverages a reference point of GenCoA’s
capacity. By minimizing the need for exhaustive training on varying demand scenarios,
the proposed method not only enhances accuracy but also reduces execution complexity,
thereby improving overall performance and applicability in real-world settings.

Comparative assessments against conventional manual methods reveal significant
enhancements in accuracy and efficiency. The analysis of production costs among GenCos
highlights distinct disparities, with GenCoB exhibiting notably higher costs, primarily due
to its reliance on coal. Conversely, GenCoA consistently demonstrates superior cost effi-
ciency compared to GenCoC, which is attributable to its energy mix and operational strate-
gies. In terms of profitability, GenCoA emerges as the leader, leveraging its nuclear-based
energy generation with favorable cost dynamics concerning uranium. Despite possessing
a more diverse energy mix, GenCoC faces challenges, particularly due to fluctuations in
natural gas prices and higher operating expenses for renewable energy sources.

5. Conclusions

In conclusion, this study introduces a novel off-policy learning RL approach coupled
with an ensemble reward system to tackle economic dispatch challenges within a nuclear-
driven GenCo. Our research sheds light on the intricate interplay among energy source
selection, operational costs, and profitability in the electricity production sector, providing
valuable insights for dispatch strategy optimization. Comparative assessments against
conventional methods underscore significant improvements in accuracy and efficiency.
Analysis of production costs reveals notable disparities among GenCos, with a NIES
emerging as a leader in cost efficiency owing to its SMR-based energy generation.

In future research, the uncertainties associated with various RES will be thoroughly
considered to enhance the real-world applicability of the proposed approach. Incorporating
these uncertainties will enable a more comprehensive understanding of the challenges
faced by GenCos in managing their energy resources efficiently. This approach endeavors
to establish a more generalized energy spot market. Consequently, further refinement of
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the proposed RL algorithm is essential, as is facilitating its adoption by further developed
agents. Consequently, this will lead to the establishment of a robust and efficient multi-
agent system. Additionally, a broader spectrum of economic dispatch strategies will be
developed, with a primary focus on minimizing the generation costs of nuclear-driven
GenCos while simultaneously addressing objectives related to CO2 emissions reduction.
This expanded scope will facilitate the exploration of more sophisticated optimization
techniques and trade-offs within the energy generation sector. Moreover, there will be an
exploration into formulating a hierarchical multi-agent system to control and monitor the
energy-management system of nuclear-driven GenCos. This system will offer a robust
framework for integrating advanced control mechanisms into the proposed environment,
enabling more sophisticated decision-making processes and enhancing overall operational
efficiency. By integrating these advancements, future research endeavors aim to provide
comprehensive solutions for addressing the evolving challenges in economic dispatch and
energy management within the NIES.
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EIA Energy Information Administration
GenCo Generation Company
GenUnit Generation Unit
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MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MDP Markov Decision Processes
MO Market Operator
MSE Mean Squared Error
NIES Nuclear Integrated Energy Systems
O&M Operational and Maintenance
QSO Q-learning-based Swarm Optimization
RL Reinforcement Learning
SMR Small Modular Reactor
UC Unit Commitment
VPP Virtual Power Plant
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