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Abstract: Improving the energy efficiency of buildings is one of the main challenges facing Europe in
the context of climate neutrality policy. In this article, the authors decided to investigate the impact
of thermal insulation of building envelopes and the type of ventilation on the energy efficiency of
multi-family buildings located in different Polish cities. In accordance with EU directives, economic
analyses of the costs incurred during the lifecycle and calculations of CO2 emissions were carried out
for the analyzed facilities. It was determined what measures need to be taken under Polish climatic
conditions in order to meet the requirements for improving the energy efficiency of multi-family
buildings. The multi-criteria analyses presented in this article provide a voice in the discussion
of the issues related to the achievement of the energy performance of buildings with almost zero
primary energy demand (nZEB). Based on the conclusions of the research conducted, it was possible
to develop general recommendations for investors and designers of multi-family residential buildings
characterized by energy efficiency and reduced environmental impact.

Keywords: energy efficiency of buildings; energy performance; non-renewable primary energy;
usable energy; thermal energy; electricity; economic analysis; environmental analysis; renewable
energy sources; alternative energy sources; carbon dioxide emission reduction

1. Introduction

Improving the energy efficiency of buildings is recognized as one of the priorities of the
Energy Union Strategy [1] to ensure affordable, secure and sustainable energy for Europe
and its citizens. The building sector is one of the largest consumers of natural resources
and energy. Buildings consume 30–40% of primary energy and natural resources over their
lifetime (construction, operation, maintenance and demolition) and are responsible for 30%
of global greenhouse gas emissions [2,3]. According to the authors of [4], the building sector
is currently the largest energy end-user in Europe, accounting for about 40% of primary
energy consumption and 36% of greenhouse gas emissions. In particular, the residential
sector consumes more than 1/4 of the total final energy, which is 2/3 of the energy used to
maintain all buildings [5]. Choosing the right design strategy makes it possible to reduce
the energy demand of buildings [6–8] and improve the quality of life of the occupants [9,10].
Assaf and Nour [11] found that the correct application of energy efficiency strategies can
reduce the energy demand of new residential and commercial buildings by 38%. Improving
the energy efficiency of buildings is expected to reduce greenhouse gas (GHG) emissions
and dependence on imported energy, increase energy security, stimulate research and
increase the innovation and competitiveness of the technical solutions offered.

A significant number of buildings in Poland are characterized by high energy con-
sumption, which is related to the low insulation of building envelopes. In addition, most of
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the thermal energy is generated by low-efficiency heat sources, which are characterized by
high emissions of gases and dust [12]. Drastically rising costs of energy consumption [13],
shortages and limitations in the supply of energy carriers in winter periods and poor quality
of energy resources are some of the reasons why homeowners and housing associations
decide to improve the energy efficiency of existing buildings [14–16]. Improving the energy
efficiency of residential buildings is an issue that is widely discussed in the professional and
scientific community. This is due to the fact that residential buildings are among the most
frequently constructed structures [17]. Popularization of the issue of improving energy
efficiency helps to make the investor aware of what elements should be taken into account
in the investment in order to reduce the costs of maintenance and operation of the building.

The European Union has established a policy framework to reduce energy consump-
tion and achieve significant savings in buildings, thereby reducing greenhouse gas emis-
sions. The Energy Efficiency Directive (EED) [18] and the Renewable Energy Directive
(RED) [19] contain important provisions for improving energy efficiency and establish
mechanisms that require Member States to take action to reduce energy consumption.
The introduction of the Energy Performance of Buildings Directive [20] is a major step
forward. The Directive establishes the need to implement nearly Zero Energy Buildings
(nZEB) as a building target from 2018. nZEBs are defined as buildings with very high
energy performance, where the energy demand should be mainly covered by renewable
alternative energy sources. Worldwide, and especially in Europe, there is a strong interest
in nZEB [21–27]. The European Commission is promoting the use of an energy labeling
system for buildings to promote buildings with increased energy efficiency. Each EU
country has introduced its own method of presenting energy characteristics [28–30].

Another important change is the introduction of cost optimization. This legislation
describes a methodology for achieving an optimal level of cost with a minimum level of
energy performance requirements. The optimal cost level is characterized by energy charac-
teristics that result in the lowest costs over the life cycle of a building [31]. The combination
of nZEB design and cost optimization remains challenging and is often conducted only at
the research level [32]. In addition, although several studies have shown that it is possible
to achieve the nZEB goal [33,34], it has not always been proven that the design solutions
chosen are the most appropriate from both an environmental and economic point of view.
In addition, improving the energy efficiency of buildings has mainly focused on reducing
the operating costs associated with heating, ventilation, air conditioning (HVAC) systems,
domestic hot utility water, lighting, etc., while it is estimated that about 30% of the energy
consumed during the life cycle of a building is the energy required to produce the materials
used in its construction [35].

Investors are primarily guided by initial capital expenditures when making financial
decisions about the scope of the investment. This is particularly evident in the case of multi-
family housing in Poland, where some developers try to achieve maximum profit with low
investment costs. Meanwhile, when choosing between different project options, investors
should consider not only the initial investment but also the subsequent operating costs of
the property owners. An important factor in making a decision should be the performance
of a Life Cycle Cost (LCC) analysis, which can be used to examine the profitability of
the investment over the assumed time frame. The financial benefits of using alternative,
high-efficiency heat sources can be investigated using LCC analysis [36]. LCC is a common
indicator used in the selection of optimal solutions for thermal insulation of external walls,
flat roofs, windows, doors, type of ventilation system or heating system [37–47].

The application of cost optimization can lead to optimal solutions for buildings and
technical systems. Many studies have focused only on the selection of optimal thermal
insulation materials and their thickness in the building envelope. Braulio-Gonzalo et al. [43]
analyzed the effect of the thickness of the insulation material installed in the external wall of
a building on the reduction in energy demand during the use phase of a single-family house
in Spain. Jaber and Ajib [39] performed an analysis of the thickness of thermal insulation
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and the dimensions of window joinery, taking into account energy, environmental and
economic aspects of a typical residential building located in a Mediterranean climate.

A number of studies have conducted LCC analyses for nZEBs and passive buildings
that use renewable energy sources for heat and electricity [48–54]. Moran et al. [51] pre-
sented the results of numerous case studies of buildings located in Ireland, focusing on the
life cycle cost and environmental analysis of nZEBs using different heat sources such as gas
boilers, biomass boilers, domestic gas-fired cogeneration units and heat pumps. Kang [50]
developed tools to assess the life cycle costs of nZEBs for rapid decision making at an early
stage of design.

In the paper [55], a model-based multi-criteria decision analysis (MCDA) was carried
out to support policymakers in Greece in energy efficiency policymaking by selecting the
most effective measures for sustainable development.

Kwiatkowski and Rucińska [28] presented a study conducted on multi-family residen-
tial buildings with different shape ratios and ventilation systems located in three different
locations in Poland, depending on the climate. The authors of the study aimed to determine
the energy efficiency classes of multi-family buildings in Poland. Invidiataa et al. [56]
proposed a methodology that combines adaptive thermal comfort, climate change and LCC
analysis to support the selection of the best design strategies to improve the durability of
buildings. The results of these authors’ analyses show that in 2080, there will be an average
53% increase in cooling energy demand and a 49% decrease in heating energy demand
compared to 2017 consumption.

Zvaigznitis et al. [57] proposed a multi-criteria approach based on the Multiple At-
tribute Utility Theory (MAUT) to evaluate energy efficiency alternatives and rank them
according to selected criteria. The method allows a comparative evaluation of alternative
technological measures to reduce electricity and gas consumption, thereby reducing energy
costs and total investment. The article demonstrates the effectiveness of the proposed
method, along with the use of information resulting from the acceptance of variant design
solutions and supporting the process of their selection. To illustrate the energy decision-
making process, the case of a new building in Milan, Italy, is presented. The authors
considered technologies related to the building envelope, equipment and systems, but this
method can only be used to guide decision making for a specific part of the building, such
as the building envelope.

Almutairi et al. [25] conducted a cost–benefit analysis to compare different renovation
business models and showed that cost–benefit analysis can be applied to comprehensive
renovations, reducing annual costs for occupants and ensuring safe, comfortable and
sustainable housing.

Abu Qadourah et al. [58] performed detailed simulation analyses to investigate the
impact of different passive design strategies on the energy demand of typical multi-family
buildings in Amman, Jordan, including wall and roof insulation, window type, shading,
natural ventilation and lighting systems. The main findings of the study showed that
several passive design strategies could be applied to design energy-efficient multi-family
buildings in the Mediterranean climate. The results of this study are useful for policymakers,
architects, engineers and scientists interested in the energy demand of residential buildings.
In addition, the study provides practical knowledge about the current state of energy
demand in multi-family buildings and provides architects and building designers with
the information they need to make decisions about the effectiveness of passive energy
building design strategies. The results of the study contributed to the creation of a new
guide for energy-efficient design in Jordan. As noted above, the residential sector accounts
for a large portion of the world’s energy consumption; most of this energy is used for
heating, cooling and mechanical ventilation systems. The residential sector in Amman
consumes more than 21% of the annual energy consumption, with multi-family buildings
accounting for more than 60% of the sector [59]. With a view to developing energy-efficient
technologies, the study provides an overview of building design criteria that can reduce
the energy demand for heating and cooling multi-family buildings. These criteria are based
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on the adoption of appropriate parameters regarding the orientation and shape of the
building, the layout of partitions, the heat transfer coefficient of windows and glazing, the
insulation materials used, and energy-efficient heating, cooling and lighting systems. By
experimentally measuring the impact of different solutions on total energy demand, the
authors were able to identify the best design ideas. It is a valuable source of information
for investors and designers, as well as those influencing the political and economic space in
the field of energy-efficient construction in Amman.

Mazur et al. [60] conducted a multi-criteria analysis of five systems that can be used to
assess the quality of the HE (Housing Environment) and energy efficiency in temperate
climates: (1) Building For Life 12, (2) Home Quality Mark, (3) Housing Quality Indicators,
(4) Système D’évaluation de Logements (Sel) and (5) NF Habitat-NF Habitat HQE. The
results of this analysis showed that it is possible to identify factors that improve the quality
of the living environment of HE and to prepare objective systems for its measurement that
can be used in practice, e.g., in the design industry, real estate or public administration. In
addition, these systems can be used in legal regulations to shape the development policy of
the city. The multi-criteria evaluation of the buildings took into account improvements in
energy efficiency, noise reduction, water management and air quality.

This literature review shows that there is a great deal of interest among researchers
in the topics discussed in this study. However, the vast majority of the articles cited in
the bibliography are works that are limited to aspects related to the energy efficiency
of buildings in one location. Attempts were made to carry out energy analyses of the
efficiency of heat sources, the impact of thermal insulation on the energy consumption of
buildings and greenhouse gas emissions, but these studies did not refer to buildings located
in Poland. The studies cited here were not characterized by a broad scope, which would
make it possible to compare the energy efficiency of buildings in different locations with
specific climatic (weather) conditions. As it was already shown, there is not much research
on the analyzed topic in Poland. The results of the previously published research by the
authors of this article somewhat fill this knowledge gap, providing information on the
influence of the type of ventilation system, the energy class of building envelopes and the
type of heating system in demand for non-renewable primary energy and greenhouse gas
emissions (including CO2) for an exemplary location in Poland [61]. In the publication [62],
the authors of this article also analyzed the influence of the location of the building in
Poland on the demand for electricity consumed by auxiliary devices of heating systems
(heating system circulation pumps, auxiliary drives of heat sources, drives of control
systems) and on the length of the heating season, as well as on the number of HDD degree
days in the heating season. Interesting results were obtained in the above-mentioned
research, and the emergence of new, interesting scientific threads has become an inspiration
for further research in this field of knowledge. In fact, in our analyses, we wanted to
adopt a comprehensive research approach, taking into account three basic criteria for the
selection of optimal solutions. For the purposes of the current research project, energy,
environmental and economic analyses were carried out for buildings located in 59 Polish
cities. In Poland, energy efficiency is measured by the non-renewable primary energy index
(EP) [38]. The study analyzed the influence of the building’s energy class (external wall
insulation) and ventilation type on aspects related to the building’s energy performance
and energy efficiency improvement, depending on the building’s location in Poland. The
authors of this article hypothesized that the selection of optimal solutions depends not
only on external temperatures, thermal insulation of the building envelope and type of
ventilation but also on the amount of heat gain from solar radiation. Therefore, it was
decided to study how external and internal conditions affect the possibility of making the
most of the benefits of solar radiation. Therefore, it was decided to study how external
and internal conditions affect the possibility of making the most of the benefits of solar
energy. The analyses took into account the impact of the amount of solar radiation on
the reduction in the demand for non-renewable primary energy. The correlation between
the thermal insulation of building envelopes, the type of ventilation in the building, the
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outside temperature and the solar radiation energy was studied in detail. The impact of
these factors on heating energy demand, carbon dioxide emissions and the LCC of the heat
source was analyzed.

The main objective of this study is to examine the impact of the location of a building
in Poland on its energy efficiency, taking into account energy, environmental and economic
criteria for a multi-family residential building. The research and analysis are aimed at
developing general conclusions, guidelines and recommendations for investors and de-
signers of energy-efficient and environmentally friendly multi-family residential buildings
in Poland.

The analyses presented in the article have shown that the optimal solutions, due to the
low index of demand for non-renewable primary energy EP, are not always the optimal
solutions for environmental and economic reasons. The choice of optimal heat source
solutions from an energy, environmental and economic point of view is influenced by the
thermal insulation of the building envelope, the type of ventilation used in the building,
as well as the location in Poland. From an energy point of view, it is advantageous to use
gravitational ventilation, which does not require the use of electrical devices to force the
flow of ventilation air. Analyses have shown that the temperature of the outside air, the
amount of solar radiation falling on the earth’s surface, the latitude, the type of climate
(maritime, continental) and the relief of the land surface determine the usable energy
demand for heating EUH. The calculated annual useful energy demand translates into the
annual demand for final energy and non-renewable primary energy. It also significantly
affects the amount of CO2 emissions, as well as the operating costs associated with heating
the building. The presented analyses can help investors and designers choose optimal
material solutions in building design. The research methodology and assumptions are
presented in Section 2. Section 3 describes the results of the research and analysis. Section 4
describes future research, and Section 5 presents the conclusions of the analyses.

2. Research Methodology
2.1. Description of the Analyzed Multi-Family Residential Building

For the purposes of the study, multicriteria analyses were performed for the design of
a three-story multi-family residential building with a rectangular plane (37.9 m × 12.0 m),
a built-up area of 455 m2 and a height of 9 m [61,62]. The building compactness index
A/Ve is 0.46 [1/m]. The temperature-controlled building area Af is 1051 m2. There are
18 residential units in the building and a parking lot in an unheated garage hall at the level
of the underground floor. Figures 1 and 2 show a visualization of the building.
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Figure 1. Facade of the building. Figure 1. Facade of the building.

The exterior walls are designed to be made of sand–lime brick with polystyrene
insulation. The unheated garage is planned to be covered with a 24 cm thick monolithic
reinforced concrete slab, thermally insulated with mineral wool panels, while the flat roof
over the top floor is designed as a 24 cm thick reinforced concrete slab insulated with
polystyrene panels. The project provides window joinery made of aluminum profiles with
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a 3-pane package and aluminum exterior glazed doors. Ventilation air flows were adopted
in accordance with the legal regulations in force in Poland [63,64].
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The design temperatures of the heated spaces were assumed according to their in-
tended use as per WT [65]: rooms θi = 20 ◦C, kitchens θi = 20 ◦C, bathrooms θi = 24 ◦C,
staircases θi = 8 ◦C and round-the-clock use of the facility.

2.2. Analysis of the Usable Energy Demand for Heating EUH

The energy used for heating EUH is one of the basic indicators of the energy intensity
of buildings and affects the energy efficiency of the building as well as economic and
environmental aspects. It is the energy supplied to maintain the designed air temperature
of different parts of the building. In other words, usable energy is the net energy that
the heat source must produce to maintain the correct air temperature throughout the
temperature-controlled space.

Poland has a warm temperate climate, a mild temperate climate and a cold temperate
climate [61]. A variety of meteorological conditions that determine the average monthly
outdoor temperatures, insolation and location of the building may affect the demand for
usable energy for heating. Therefore, within the framework of this work, balances of the
demand for usable energy for heating and ventilation were made for the same project of a
multi-family residential building located in 59 cities on the territory of Poland. The calcu-
lations were made on the basis of the legal acts in force in Poland [63,66], which describe
the methodology for preparing the energy performance of buildings. The calculations
were performed using the CERTO 2015 building energy modeling software. The CERTO
2015 program is designed to perform energy characteristics of designed buildings, energy
performance certificates and energy balances of heated and cooled buildings in Poland. The
program, which was developed by the Lower Silesian Energy and Environment Agency,
allows for energy modeling of the facility based on the methodology of monthly balances.

The usable energy demand of the building was determined for two energy classes of
the building envelope (A, B) according to the assumptions presented in the paper [61,62].
The main assumptions for the energy classes of the building envelope are presented in
Table 1. Three types of ventilation were considered in the analysis, as shown in Table 2.

Table 1. Energy classes of building envelopes according to [61,62].

Energy Class of Building Envelopes Heat Transfer Coefficients of Building Envelopes

A

exterior walls: U = 0.12 W/
(
m2·K

)
flat roofs: U = 0.10 W/

(
m2·K

)
ceiling above the garage: U = 0.20 W/

(
m2·K

)
windows: U = 0.80 W/

(
m2·K

)
exterior doors: U = 1.00 W/

(
m2·K

)
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Table 1. Cont.

Energy Class of Building Envelopes Heat Transfer Coefficients of Building Envelopes

B

exterior walls: U = 0.2 W/
(
m2·K

)
flat roofs: U = 0.15 W/

(
m2·K

)
ceiling above the garage: U = 0.25 W/

(
m2·K

)
windows: U = 0.90 W/

(
m2·K

)
exterior doors: U = 1.30 W/

(
m2·K

)
Table 2. Types of ventilation in the building according to [61,62].

Indices Indicating the Type of
Ventilation Type of Ventilation

1 mechanical exhaust ventilation with heat recovery
2 mechanical exhaust ventilation
3 gravity ventilation

For the purpose of energy analysis, the building was analyzed in 6 variants of energy
classes: A1, A2, A3, B1, B2 and B3, which are a combination of energy classes described in
Table 1 of building envelopes and ventilation types described in Table 2.

2.3. Energy Analysis of the Building

For the energy classes B1, B2, B3, A1, A2 and A3, the demand for final energy EK and
non-renewable primary energy EP was analyzed. The heat source considered is a glycol-
water heat pump powered by a photovoltaic system with an output of 22.5 kWp. Such a
system is currently the most frequently offered on the Polish market as a modern, energy-
saving and environmentally friendly solution. The efficiencies of the heating system were
assumed in accordance with the methodology for the preparation of energy performance
certificates in force in Poland [63] and are presented in Table 3.

Table 3. Heating system efficiency for the analyzed energy source [63].

Efficiency Values

Generation efficiency ηH,g 4.00
Accumulation efficiency ηH,s 0.95
Transmission efficiency ηH,d 0.90

Regulation and use efficiency ηH,e 0.85

The efficiencies of the domestic hot utility water preparation system were assumed in
accordance with the methodology for energy certification in force in Poland [63] and are
shown in Table 4.

Table 4. Hot utility water system efficiency for analyzed energy sources [63].

Efficiency Values

Generation efficiency ηH,g 3.00
Accumulation efficiency ηH,s 0.85
Transmission efficiency ηH,d 0.70

To calculate the non-renewable primary energy demand, the coefficients of non-
renewable primary energy wi were assumed according to [63]:

• Electric energy from the external grid wi = 2.5;
• Renewable solar energy (photovoltaic panels) wi = 0.0.



Energies 2024, 17, 2057 8 of 32

2.4. Environmental Analysis

The environmental analysis was performed for the heating system in question, based
on a comparison of emission factors for the buildings in question, designed in different
energy classes. The amount of CO2 emissions were calculated based on the annual final
energy demand for heating, hot water preparation and auxiliary equipment, as well as
the carbon dioxide emission factors for the energy source. Emission factors, according
to [67,68]:

• Electric energy from the external grid 0.708 kg/kWh;
• Renewable solar energy (photovoltaic panels) 0.0 kg/kWh.

To make it easier to compare emission levels with other buildings, the CO2 emission
values are presented in relation to the heated area of the building.

2.5. Economic Analysis

The economic analysis of the use of an energy source for heating and domestic hot
utility water preparation was made on the basis of the costs in the LCC life cycle of the
heat pump. In accordance with the adopted research methodology, the article decided
to compare investment costs, monthly operating costs related to heating and hot water
preparation and LCC values for the analyzed cases. The LCC value was calculated using
the following formula:

LCC = I0 +
T

∑
n=1

(QK,m·OZ,m)
(1+i)

where the following values are used:

I0—investment costs related to the construction of the heat source [EUR];
QK,m—annual final energy demand for heating, hot water preparation and auxiliary equip-
ment [kWh/year];
QZ,m—unit price of energy [EUR/kWh];
i—discount rate;
n—years of operation.

For the calculation of the LCC indicators, the investment costs were assumed according
to the cost estimates developed on the basis of the average market prices valid in Poland.
For the calculation of the operating costs, the prices of the utilities were used, which are
currently valid for multi-family houses in Poland, according to the tariffs of the electricity
suppliers. The price of electricity is EUR 67.90/MWh. The discount rate used is 3%.
The operating costs include additional charges related to personnel costs (supervision),
technical inspection costs and service inspections.

3. Results and Analysis
3.1. Climate Conditions in Poland

The energy analysis of buildings consisted of calculating the usable energy demand
for heating EUH at 59 building locations in Poland. Poland is divided into five climate
zones [69], which differ in the design of outdoor temperature, θe. The designed outdoor
temperatures for each climate zone are shown in Table 5 and Figure 3.

Table 5. Design outdoor temperature θe [◦C] based on [69].

Climate Zone Design Outdoor Temperature θe [◦C]

I −16
II −18
III −20
IV −22
V −24
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3.2. Usable Energy Demand for Heating EUHin Different Climate Zones

The annual energy demand for the adopted multi-family residential building was
calculated for 59 locations in Poland in five climate zones. The studies were carried out for
the same building project in six energy classes (A1, A2, A3, B1, B2, B3). The results of the
analyses for all case studies are presented in Table S1 (Supplementary Materials). Below is
a detailed analysis of the results of the study for a building in energy class A1 in different
locations with varying outdoor air temperatures and solar radiation energy.

The design outdoor temperature for climate zone I is θe = −16 ◦C, according to [69].
In the first climate zone, there are 11 meteorological stations for which analyses of outdoor
temperatures and solar radiation were performed. The average annual outdoor temperature
for the locations in climate zone I θe(r) is 8.3 ◦C. The minimum average annual outdoor
temperature θe(r) occurs in the cities of Lębork, Łeba, Szczecinek and Ustka and amounts to
7.9 ◦C. The maximum average annual outdoor temperature θe(r) is 8.9 ◦C in Świnoujście. In
addition, the amount of solar radiation energy falling on the earth’s surface in individual
cities located in the first climatic zone was analyzed. The analyses show that the maximum
amount of solar radiation is in Świnoujście: 984 [kWh/(m2·year)]. The minimum amount
of solar radiation occurs in Kołobrzeg and amounts to 826 [kWh/(m2·year)]. The detailed
distribution of mean annual temperatures and total irradiation for locations in climate zone
I is shown in Figure 5.
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Figure 5. Solar radiation energy
[
kWh/

(
m2·year

)]
and the average annual outdoor temperature

θe(r) [◦C] for locations in climate zone I.

For the residential building of energy class A1, the calculations of the usable energy
demand for heating (EUH) were carried out, the results of which are shown in Figure 6. The
lowest annual usable energy demand for heating (EUH = 7.92 [kWh/(m2·year)]) is found
in Świnoujście (northwest Poland). This is due to the fact that this city is characterized by
the highest amount of solar radiation and the highest average annual outdoor temperature
θe(r) among the locations analyzed in climate zone I. The highest annual demand for usable
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energy is found in Łeba (northern Poland), for which the EUH is 12.53 [kWh/(m2·year)]
because this locality is characterized by a low average annual outdoor temperature θe(r)
and a low level of solar radiation. The lowest value of solar radiation is found in Koło-
brzeg, 826 [kWh/(m2·year)], but due to the occurrence of higher external temperatures in
relation to other towns, e.g., Łeba, the value of annual usable energy for heating is EUH. is
8.36 [kWh/(m2·year)] and is not the lowest in Zone I. Energy analyses show that the de-
mand for usable energy for heating depends not only on the external temperature but also
on the profits from solar radiation.
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Figure 6. Annual usable energy demand for heating EUH for locations in climate zone I[
kWh/

(
m2·year

)]
For climate zone II, the design outdoor temperature is θe = −18 ◦C. There are

15 meteorological stations in this zone, for which analyses of outdoor temperatures and
solar radiation were performed (see Figure 7). The average annual outdoor temperature
for the locations in climate zone II θe(r) is 8.2 ◦C. The minimum average annual outdoor
temperature θe(r) is 7.9 ◦C in Chojnice. The maximum average annual outdoor temperature
θe(r) is 9.0 ◦C in Legnica. It should be noted that the average annual outdoor temperature
in Legnica (climate zone II) is higher than in the cities located in climate zone I. The amount
of solar radiation energy falling on the earth’s surface in individual locations in climate
zone II was also analyzed. The analyses show that the maximum amount of solar radiation
is in Kołobrzeg (central Poland), 1000

[
kWh/

(
m2·year

)]
. The minimum amount of solar

radiation is in Chojnice, 826
[
kWh/

(
m2·year

)]
.

Calculation analyses of usable energy demand for heating were performed for a
multi-family residential building in energy class A1 (see Figure 8). The lowest annual
demand for usable energy for heating EUH among cities located in climate zone II is
8.80

[
kWh/

(
m2·year

)]
in Legnica (southwest Poland), where the highest average annual

outdoor temperature is θe(r) = 9.0◦C. The highest annual demand for usable energy is in
Chojnice (northern Poland), for which the EUH is 14.30

[
kWh/

(
m2·year

)
] because this

location is characterized by the lowest average annual outdoor temperature θe(r) and the
lowest level of solar radiation among the building locations analyzed in this zone. The
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highest value of solar radiation in climatic zone II occurs in Koło (1000
[
kWh/

(
m2·year

)
],

but due to the occurrence of lower external temperatures in relation to other towns, e.g.,
Legnica, the value of annual usable energy for heating EUH is not the lowest in the
considered zone.
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Figure 7. Solar radiation energy
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and average annual outdoor temperature θe(r)

[◦C] for locations in climate zone II.
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Figure 8. Annual usable energy demand for heating EUHfor locations in climate zone II[
kWh/
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Calculation analyses of usable energy demand for heating EUH were performed for a
multi-family residential building in energy class A1 (see Figure 8). The lowest annual usable
energy demand for heating EUH among cities in climate zone II is 8.80

[
kWh/

(
m2·year

)]
in Legnica (southwestern Poland), where the highest average annual outdoor temperature
is θe(r) = 9.0◦C. The highest annual demand for usable energy is in Chojnice (northern
Poland), where the EUH is 14.30

[
kWh/

(
m2·year

)
] because this location is characterized

by the lowest average annual outdoor temperature θe(r) and the lowest level of solar
radiation among the analyzed building locations in this zone. The highest value of solar
radiation in climatic zone II occurs in Kołobrzeg (1000

[
kWh/

(
m2·year

)
]), but due to the

occurrence of lower outdoor temperatures in relation to other cities, e.g., Legnica, the value
of annual usable energy for heating EUH is not the lowest in the considered zone.

For climate zone III, the designed outdoor temperature is θe = −20 ◦C. There are
24 meteorological stations in the third climate zone. The analysis of the meteorological data
is shown in Figure 9. The average annual outdoor temperature for the locations in climate
zone III θe(r) is 8.0 ◦C. The minimum average annual outdoor temperature θe(r) is 7.2 ◦C
in Zamość (eastern Poland). The maximum average annual outdoor temperature θe(r) is
9.0 ◦C in Tarnów (southern Poland). It should be noted that the average annual outdoor
temperature in Tarnów (climate zone III) is higher than in some cities located in climate
zones I and II. In addition, the amount of solar radiation energy falling on the earth’s
surface in individual localities located in climate zone III was analyzed. The analyses show
that the maximum amount of solar radiation occurs in the city of Racibórz (southern Poland
−Upper Silesia), 1087

[
kWh/

(
m2·year

)]
. The minimum amount of solar radiation occurs

in the city of Toruń (northern Poland) and is 868
[
kWh/

(
m2·year

)]
.
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Figure 9. Solar radiation energy
[
kWh/

(
m2·year

)]
and mean annual outdoor temperature θe(r) [◦C]

for locations in climate zone III.

Calculation analyses of usable energy demand for heating EUH were performed for
a multi-family residential building in energy class A1 (see Figure 10). The lowest annual
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demand for usable energy for heating EUH amounting to 7.82
[
kWh/

(
m2·year

)]
was

obtained for a building located in Nowy Sącz (southern Poland), where there are relatively
high outdoor temperatures (θe(r) = 9.0 ◦C) and high solar radiation (1062

[
kWh/

(
m2·year

)]
.

The highest annual usable energy demand is in Włodawa (eastern Poland on the border
with Belarus), 15.28

[
kWh/

(
m2·year

)]
. This location is characterized by a relatively low

average annual outdoor temperature θe(r) and low level of solar radiation among the
locations analyzed in climate zone III. The highest value of solar radiation in climate zone
III occurs in Racibórz (1087

[
kWh/

(
m2·year

)]
), but due to the occurrence of lower outdoor

temperatures in relation to other cities, the value of annual usable energy for heating EUH
is not the lowest in the considered zone.
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Figure 10. Annual usable energy demand for heating EUHfor locations in climate zone III[
kWh/

(
m2·year

)]
.

In climate zone IV, the calculated outdoor temperature is θe = −22 ◦C. There are
seven weather stations in this zone. The analysis of meteorological data is shown in
Figure 11. The average annual outdoor temperature for the locations in climate zone IV
θe(r) is 7.4 ◦C. The minimum average annual outdoor temperature θe(r) is 6.9 ◦C in Olsztyn
(Warmia and Mazury, northeastern Poland). The maximum average annual outdoor
temperature θe(r) is 8.1 ◦C in Lesko (southeastern Poland). In addition, the amount of solar
radiation energy falling on the earth’s surface in individual locations in climate zone IV was
analyzed. The analyses show that the maximum amount of solar radiation occurs in the
city of Lesko (southeast Poland), 1020

[
kWh/

(
m2·year

)]
. The minimum amount of solar

radiation occurs in the town of Mikołajki (Warmia and Mazury, northeastern Poland) and is
850

[
kWh/

(
m2·year

)]
.

Calculation analyses of usable energy demand for heating EUH were performed
for a multi-family house in energy class A1 (see Figure 12). The lowest annual us-
able energy demand for heating 9.02

[
kWh/

(
m2·year

)]
is in Lesko (southeast Poland),

where the highest outdoor temperature (θe(r) = 8.1 ◦C) and the highest solar radiation
(1020

[
kWh/

(
m2·year

)]
) are found. The highest annual usable energy demand is in

Kętrzyn (Warmia and Mazury, northeastern Poland), EUH=16.84
[
kWh/

(
m2·year

)]
. This

city is characterized by low outdoor temperatures and low solar radiation among the
analyzed locations in climate zone IV. The lowest value of solar radiation in climate zone IV
is found in Mikołajki 850

[
kWh/

(
m2·year

)]
, but due to the occurrence of higher external
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temperatures compared to other cities, the value of annual usable energy for heating EUH
is not the highest in the considered zone.
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Figure 11. Solar radiation energy
[
kWh/

(
m2·year

)]
and average annual outdoor temperature θe(r)

[◦C] for locations in climatic zone IV.
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Figure 12. Annual usable energy demand for heating EUH for locations in climatic zone IV[
kWh/

(
m2·year

)]
.

The design outdoor temperature for climate zone V is θe = −24 ◦C. In this climatic
zone, there are two meteorological stations for which the calculation analyses of the usable
energy demand for heating EUH were carried out. The analysis of the meteorological
data is shown in Figure 13. The average annual outdoor temperature for the locations in
climate zone V is θe(r) = 5.9 ◦C. The minimum average annual outdoor temperature θe(r) is
in Suwałki (Podlasie, northeastern Poland), 5.4 ◦C. The maximum average annual outdoor
temperature θe(r) is 6.3 ◦C in Zakopane (southern Poland, Tatra Mountains). The amount of
solar radiation energy falling on the earth’s surface in individual localities located in climate
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zone V was analyzed. The analyses show that the maximum amount of solar radiation is in
Zakopane 1007

[
kWh/

(
m2·year

)]
. The minimum amount of solar radiation is in Suwałki

and amounts to 838
[
kWh/

(
m2·year

)]
.
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Figure 13. Solar radiation energy
[
kWh/

(
m2·year

)]
and average annual outdoor temperature θe(r)

[◦C] for locations in climate zone V.

The lowest annual demand for usable energy is in Zakopane (Tatra Mountains, south-
ern Poland), where EUH is 12.70

[
kWh/

(
m2·year

)]
. The highest annual demand for usable

energy is in Suwałki (northeastern Poland), where the EUH is 19.79
[
kWh/

(
m2·year

)]
. The

results of the energy analyses are shown in Figure 14.
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Figure 14. Annual usable energy demand for heating EUH for locations in climate zone V[
kWh/

(
m2·year

)]
.

Detailed energy analyses of the annual demand for usable energy for heating show
that the lowest energy demand occurs in the southern and southeastern parts of Poland.
This is due to the fact that there is a lot of sunlight in these regions, which results in higher
profits from solar radiation. In the western part of Poland, the values of the demand for
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usable energy for heating EUH are also at a low level, which is related to the influence
of a temperate maritime climate and higher external air temperatures in relation to the
northeastern areas of Poland. The highest demand for usable energy for heating occurs in
the eastern and northeastern parts of Poland, which is due to low external air temperatures
and lower solar radiation values compared to the southern part of Poland. A summary
of the usable energy demand for different climatic zones and a description of the location
characteristics are presented in Table 6.

Table 6. Minimum and maximum annual energy demand in different climate zones.

Climate Zones Design Outdoor
Temperature θe[◦C]

Energy Demand
[kWh/

(
m2·year

)
] Location Location Characteristics

I −16
Minimum 7.92 Northwest Świnoujście, seaside town, flat terrain,

warm temperate climate

Maximum 12.53 North Łeba, seaside town, center of the Polish
coast, warm temperate climate

II −18
Minimum 8.8 Southwest Legnica, town west of Wrocław, flat

terrain, warm temperate climate

Maximum 14.3 North Chojnice, town in Pomerania, flat area,
warm temperate climate

III −20
Minimum 7.82 South Nowy Sącz, mountainous terrain,

continental temperate climate

Maximum 15.28 East Włodawa, flat terrain, eastern border of
Polish, cool temperate climate

IV −22
Minimum 9.02 Southeast Lesko, foothills, continental temperate

climate

Maximum 16.84 Northeast Kętrzyn, flat terrain with moraine hills,
cool temperate climate

V −24
Minimum 12.7 South Zakopane, mountain terrain, temperate

climate

Maximum 19.79 Northeast Suwałki, flat terrain with moraine hills,
cool temperate climate

3.3. Usable Energy Demand for Heating EUH and Domestic Hot Utility Water EUW for the Three
Selected Locations in Poland

In the next part of the research analysis, the annual demand for usable energy for
heating EUH was compared with the annual demand for usable energy for domestic hot
utility water EUW for three selected cities: Białystok (Northeast), Warsaw (Central Poland)
and Zielona Góra (West).

The analysis of meteorological data for the three selected locations is shown in
Figure 15. The minimum value of the average annual outdoor temperature occurs in
Białystok (θe(r) = 6.9 ◦C), while the minimum value of solar radiation falling on the earth’s
surface occurs in Zielona Góra (878

[
kWh/

(
m2·year

)]
). The maximum value of average

annual outdoor temperature occurs in Warsaw and Zielona Góra (θe(r) = 8.2 ◦C), while
the maximum value of solar radiation falling on the earth’s surface occurs in Warsaw
(978

[
kWh/

(
m2·year

)]
).

Comparative analyses of usable energy demand for heating and domestic hot utility
water preparation were performed, the results of which are presented in Figure 16. For
each of the three locations of the building, the annual demand for usable energy for hot
utility water preparation, EUW = 27.53

[
kWh/

(
m2·year

)]
. In Bialystok, for the considered

building of the A1 energy class, the annual demand for usable energy for heating EUH
is 16.54

[
kWh/

(
m2·year

)]
, which is 38% of the total usable energy demand. For the

considered building of energy class A3 in Białystok, the annual usable energy demand for
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heating EUH is 34.73
[
kWh/

(
m2·year

)]
, which is 56% of the total usable energy demand.

For the analyzed building of energy class B1 in Bialystok, the annual demand for usable
energy for heating EUH is 26.56

[
kWh/

(
m2·year

)]
, which is 49% of the total usable energy

demand. For a building located in Warsaw, the annual usable energy demand for heating
EUH is 14.43

[
kWh/

(
m2·year

)]
, which is 34% of the total usable energy demand. For a

building in the A1 energy class in Zielona Góra, the annual demand for usable energy for
heating EUH is 11.33

[
kWh/

(
m2·year

)]
, which is 29% of the total usable energy demand.
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Figure 15. Solar radiation energy
[
kWh/

(
m2·year

)]
and average annual outdoor temperature θe(r)

[◦C] in the analyzed cities.
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Figure 16. Annual usable energy demand for heating and hot utility water, EUH and
EUW

[
kWh/

(
m2·year

)]
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3.4. Energy, Environmental and Economic Analysis for a Building in Different Energy Classes
3.4.1. Energy Analysis

For the building located in Zielona Góra, a comparison of the annual final energy
demand for different energy classes is presented in Figure 17. It was assumed that the
building is supplied with heat by a glycol-water heat pump fed from the power grid and a
photovoltaic system with a capacity of 22.5 kWp.
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Figure 17. Annual final energy demand EK of buildings with different energy classes in Zielona Góra[
kWh/

(
m2·year

)]
.

Detailed energy analyses show that the highest final energy demand for heating is
characterized by a building in energy class B3 (partitions meeting the minimum legal
requirements and with natural ventilation). The final energy demand for this building
is EKH = 12.86

[
kWh/

(
m2·year

)]
. The lowest final energy demand for heating is char-

acterized by a building of energy class A1 (external building envelopes with increased
thermal insulation and mechanical supply and exhaust ventilation with heat recovery).
The annual final energy demand for such a building is EKH = 3.90

[
kWh/

(
m2·year

)]
. It

should also be noted that in buildings equipped with mechanical ventilation, the amount
of energy consumed by auxiliary equipment necessary to ensure the operation of tech-
nical equipment (central heating circulation pumps, fans, etc.) increases. The annual
final energy demand for water heating, regardless of the energy class of the building, is
EKW = 15.42

[
kWh/

(
m2·year

)]
.

Comparative analyses of the annual non-renewable primary energy demand EP for the
studied building types were carried out (Figure 18). Detailed energy analyses show that the
building in energy class B1 (EP = 60.15

[
kWh/

(
m2·year

)]
) has the highest primary energy

demand for heating and hot utility water production. Despite the good thermal parameters
of the building envelope, a building in energy class A1 is not an energy-efficient solution.
The annual primary energy demand EP for this building is 52.15

[
kWh/

(
m2·year

)]
. This

includes the need to provide additional electricity to operate the fans in the air handling
unit. The lowest primary energy index EP is characterized by a building in energy class
A3, EP = 37.95

[
kWh/

(
m2·year

)]
, which has increased the thermal insulation of building

envelopes and natural gravity ventilation (no additional fans consuming electricity).
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3.4.2. Environmental Analysis

The environmental analysis was based on the calculation of CO2 emissions for in-
dividual variants of thermal insulation of building envelopes and types of ventilation
(Figure 19). The analyses show that the lowest carbon dioxide emissions are characterized
by buildings in energy class A1, while the highest CO2 emissions are characterized by
buildings in energy class B3. Comparing the results of the energy and environmental
analysis, it can be concluded that energy-efficient solutions are not always environmen-
tally effective. A building in energy class A1 is characterized by the lowest value of the
carbon dioxide emission factor, but it is not a building with the lowest value of the demand
for non-renewable primary energy EP. This is due to the fact that in Poland, the non-
renewable primary energy index for electricity is wel = 2.5 and the emission factor for CO2 is
0.708 [kg/kWh].
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3.4.3. Economic Analysis

The economic analysis was carried out on the basis of 10-year LCC life cycle cost
ratios calculated for individual variants of thermal insulation of building envelopes and
types of ventilation (Figure 20). The heating system for a building in energy class B1
(LCC = EUR 320,678) has the highest life cycle costs over 10 years, and the heating system
for a building in energy class A3 (LCC = EUR 220,043) has the lowest life cycle costs over
10 years. By comparing buildings in different energy classes, it can be concluded that the
optimal energy solution is also the optimal environmental and economic solution.
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3.5. Energy, Environmental and Economic Analyses for Selected Locations in Poland

Energy, environmental and economic analyses were performed for the adopted multi-
family residential building designed in six energy classes (A1, A2, A3, B1, B2, B3) and
located in 59 localities in Poland. The energy analysis of the building was carried out on
the basis of calculation indices of annual final energy demand EK and indices of annual
demand for non-renewable primary energy EP. These are the two basic indicators defin-
ing the energy efficiency of buildings in Poland. The results of the annual final energy
demand EK for all analyzed case studies are presented in Tables S2–S7 (Supplementary
Materials). Meanwhile, the results of annual non-renewable primary energy demand EP for
all analyzed case studies are presented in Tables S8–S13 (Supplementary Materials). Envi-
ronmental analysis was performed based on carbon dioxide emissions to the environment.
Detailed results of CO2 emissions for the building at different locations are presented in
Table S14 (Supplementary Materials). The economic analysis was performed based on the
LCC, which considers the investment and operating costs of the heat source over a 10-year
period. The investment costs for the installation of the heat source and the PV system for
the building in 59 locations for six energy class variants are presented in Table S15. The
operating costs of the heat source in the building for all case studies analyzed are presented
in Table S16, while the LCC values are presented in Table S17.

Sections 3.5.1–3.5.3. present detailed energy, environmental and economic analyses
for seven building locations in Poland (Bialystok, Gdansk, Krakow, Szczecin, Warsaw,
Wroclaw, Zielona Gora) designed with envelope energy class A and mechanical ventilation
with heat recovery (building energy class A1).

3.5.1. Energy Analysis

For the purposes of the article, comparative analyses were carried out for a building
supplied with heat by a glycol-water heat pump fed from the grid and a photovoltaic
installation with a capacity of 22.5 kWp. Energy analyses were carried out for 7 locations of
the building in Poland (Białystok, Gdańsk, Kraków, Szczecin, Warsaw, Wrocław, Zielona
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Góra) designed with partitions of energy class A and mechanical supply and exhaust
ventilation with heat recovery (building energy class A1).

Figure 21 shows a comparison of the studied locations in terms of average annual
indoor temperatures and the amount of solar radiation. The minimum average annual
outdoor temperature θe(r) is in Białystok, 6.9 ◦C, while the maximum average annual
outdoor temperature θe(r) is in Szczecin, 8.8 ◦C. In addition, the amount of solar radi-
ation energy falling on the earth’s surface in individual localities was analyzed. The
analyses show that the maximum amount of solar radiation occurs in the city of Krakow,
1064

[
kWh/

(
m2·year

)]
, while the minimum amount of solar radiation occurs in the city of

Szczecin 863
[
kWh/

(
m2·year

)]
.
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Figure 21. Comparison of solar radiation energy
[
kWh/

(
m2·year

)]
and mean annual outdoor

temperature θe(r) [◦C] for the analyzed locations.

As shown in Figure 22, the annual usable energy demand for hot utility water EUW
is 27.53

[
kWh/

(
m2·year

)]
, regardless of the location of the building. The lowest usable

energy demand for heating EUH among the considered cities was found for Gdańsk and
Szczecin, EUH = 8.94

[
kWh/

(
m2·year

)]
and EUH = 8.85

[
kWh/

(
m2·year

)]
, respectively.

These are cities located in the north of Poland in the first climate zone, characterized by
a high average annual outdoor temperature. The energy balance, including heat losses
and gains, shows that despite the low solar radiation values for these locations, buildings
built to the same standard in the north of Poland are the least energy-intensive. The
building in Białystok EUH = 16.54

[
kWh/

(
m2·year

)]
(northeast Poland, climate zone IV)

is characterized by the highest usable energy demand for heating. The high energy demand
for heating results from the occurrence of low outdoor temperatures and relatively low solar
radiation in northeastern Poland. It is worth noting that despite the high solar radiation
values in Krakow (southern Poland), due to lower outdoor temperatures than in climate
zone I, the building located there is not as energy efficient as the buildings located in the
north of Poland.

Analyses of the final energy demand for a building supplied with heat by a glycol-
water heat pump have been carried out and the results are presented in Figure 23. The
research shows that the final energy demand for domestic hot utility water preparation
EKW for each of the analyzed locations is 15.42

[
kWh/

(
m2·year

)]
. The lowest final energy

demand for heating among the analyzed cities is characterized by Gdańsk and Szczecin, for
which the annual final energy demand for heating is EKH = 3.08

[
kWh/

(
m2·year

)]
and

EKH = 3.04
[
kWh/

(
m2·year

)]
, respectively. The highest final energy demand for heating
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is characterized by the building located in Białystok, EKH = 5.69
[
kWh/

(
m2·year

)]
. The

annual demand for auxiliary energy (pumps, regulators, fans) for each location is at a
similar level and ranges from 13.95 to 13.99

[
kWh/

(
m2·year

)]
.
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Figure 23. Annual final energy demand EK
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for a building with energy class A1

for selected locations.

Comparative analyses of the demand for non-renewable primary energy EP have been
carried out for a building supplied with heat by a glycol-water heat pump fed from the
grid and a photovoltaic installation with a capacity of 22.5 kWp, the results of which are
presented in Figure 24. The analyses took into account the energy production of the PV
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system, the amount of which depends on the amount of radiation falling on the earth’s
surface in each of the locations studied. The detailed energy analyses show that the lowest
demand for non-renewable primary energy for heating and hot utility water is characterized
by buildings located in the south of Poland (Krakow and Wroclaw), for which the annual
demand for non-renewable primary energy EP is 46.12 and 46.87, respectively. This is
due to relatively higher external temperatures than in other locations and the fact that the
southern territory of Poland is sunnier compared to other regions. The highest index of
non-renewable primary energy EP is characterized by a building located in Białystok, for
which the EP = 55.65

[
kWh/

(
m2·year

)]
.
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3.5.2. Environmental Analysis

Environmental analyses of CO2 emissions have been carried out for buildings located
in 7 locations in Poland (see Figure 25). Detailed ecological analyses show that the lowest
CO2 emissions are for buildings located in the south of Poland (Krakow and Wroclaw),
for which the annual emission factor is 3.19

[
kg/

(
m2·year

)]
and 3.39

[
kg/

(
m2·year

)]
,

respectively. These buildings are located in regions with a lot of sunlight, which translates
into greater electricity production and a greater reduction in carbon dioxide emissions. The
highest annual factor of CO2 emissions was obtained for a building located in Bialystok,
for which the emission is 5.85

[
kg/

(
m2·year

)
]. It is worth noting that the distribution of

carbon dioxide emissions for individual locations converges with energy efficiency, which
in Poland is defined as the index of non-renewable primary energy (EP).
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Figure 25. CO2 missions rate
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kg/
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for a building with energy class A1 for selected

locations.

3.5.3. Economic Analysis

The economic analysis, consisting of capital and operating costs, plays a key role in the
investor’s decision on the scope of energy efficiency improvement work. The investment
costs associated with installing a heat and power source for each site are shown in Figure 26.
The capital cost of installing a heat and power source depends on the climate zone in which
the building is located. The lowest investment costs are for buildings located in climate
zone I (Szczecin, Gdansk). Buildings located in climate zones II (Wroclaw, Zielona Góra)
and III (Kraków, Warsaw) are characterized by higher investment costs. The building in
climate zone IV (Bialystok) is characterized by the highest investment costs.
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Figure 26. Investment costs related to energy and heat source [EUR] for a building with energy class
A1 for selected locations.

Analyses of the operating costs of the studied building in different locations in Poland
are presented in Figure 27. Economic analyses show that the lowest operating costs are
characterized by buildings located in the south of Poland (Krakow and Wroclaw), where the
costs are 1.23

[
EUR/

(
m2·year

)]
and 1.24

[
EUR/

(
m2·year

)]
, respectively. The building in

Białystok has the highest operating costs, with costs of 1.32
[
EUR/

(
m2·year

)]
. Comparing

the operating costs with the values of the demand for non-renewable primary energy EP
for the analyzed cases, it can be concluded that the energy consumption of buildings affects
the cost of heating the building.
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Figure 27. Operating costs
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for a building with energy class A1 for selected

locations.

For the purposes of the study, a comparison of the 10-year LCC for heat and energy
sources in buildings located in the analyzed locations was made (see Figure 28). The LCC
analyses show that the lowest costs are characterized by a building located in Wroclaw in
the amount of EUR 291,619, which is related to low investment costs (lower thermal output
for climate zone II) and lower operating costs related to the high use of solar energy, which
powers the photovoltaic system. Slightly higher LCC costs occur for a building in climate
zone I (Gdansk), which is related to the low electricity demand for heating and translates
into lower investment costs. The highest LCC cost is for the building in Bialystok, EUR
305,340.
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Figure 28. The 10-year LCC costs of heat source [EUR] for a building with energy class A1 for
selected locations.

3.6. Summary of Analysis Results

The results of energy, environmental and economic analyses have shown that optimal
solutions due to the low rate of demand for non-renewable primary energy (EP) are not
always characterized by a minimum value of carbon dioxide emissions. The choice of
optimal solutions in terms of energy, environment and economy is influenced by the
thermal insulation of building envelopes, the type of ventilation used in the building, as
well as the location in Poland. Comparing the results of energy demand for buildings
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located in different regions of Poland, it can be seen that the demand for usable energy
for heating EUH . It depends not only on the outside temperature, but also on the amount
of solar radiation falling on the earth’s surface, the latitude, as well as the type of climate
(marine, continental) and the terrain.

4. Discussion and Development of Research

Improving the energy efficiency of buildings aims to protect the environment, includ-
ing improving air quality and reducing greenhouse gas emissions. In order to improve the
energy efficiency of buildings, the energy rating system for buildings introduced by the
EPBD has been defined [71]. In the current geopolitical situation, the use of energy-efficient
solutions is necessary not only to improve air quality but also to reduce the operating costs
of buildings. The Energy Performance of Buildings Directive [20] establishes the need
to implement Nearly Zero Energy Buildings (nZEBs) as a building target from 2018 on-
ward, where energy needs should be met mainly by renewable, alternative energy sources.
The research shows that the amount of energy needed for heating is influenced by many
variables: the quality of the thermal properties of the partitions or the type of ventilation
system. Climatic conditions (outside air temperature and amount of solar radiation) have
the greatest impact on heating energy demand.

In Poland, discussions are underway to define a new methodology for the preparation
of energy performance certificates and limit values defining near-zero energy buildings
(nZEB). Kwiatkowski and Rucińska [28] presented a study aimed at determining the energy
efficiency classes of multi-family buildings in Poland. The authors of the study based their
analyses on three locations in Poland. In our research, we decided to extend the research
by assuming a larger number of analyzed building locations. According to our research,
the differences in usable energy demand for heating can vary up to 50% depending on
the location of the building, which is mainly due to the level of outside air temperatures
and the amount of solar radiation falling on the earth’s surface in different climatic zones
in Poland. This will have a significant impact on the results of the cost optimization of
buildings introduced in accordance with the Directive [20].

Lupato and Marzann [72] have shown in their research that climate and weather
conditions have the greatest impact on the level of energy demand for heating. Researchers
have shown that when old and current weather data are used, the results of calculations
performed on outdated weather data can lead to a large difference between the calculated
values and the actual energy consumption. The weather data used in the calculations were
based on measurements taken between 1970 and 2000, so using more recent weather data
could result in a reduction in the energy demand of buildings.

In the presented studies, only one multi-family residential building of the same area
and with controlled temperature, located in different cities in Poland, was considered. In
future work, multi-family residential buildings of different sizes and locations in relation
to the cardinal directions should be included in the calculations. The study should be
extended to single-family houses, schools, offices, retail stores and hotels. In the current
study, analyses were performed for buildings without cooling systems; therefore, buildings
equipped with air conditioning systems should be tested in future work.

5. Conclusions

The main objective of the study was to investigate the influence of location on the
energy efficiency of a building, which in Poland is defined as the amount of demand for
non-renewable primary energy (EP). Within the framework of this work, balances of the
demand for usable energy for heating and ventilation were made for the same project of a
multi-family residential building located in 59 cities on the territory of Poland, for which
three types of ventilation systems and two standards of thermal insulation of buildings
were provided. The planned building is a typical structure built in Poland.

The research shows that the energy class of the thermal insulation of the building
envelope and the type of ventilation are of great importance for the non-renewable primary
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energy demand. The results of the study show that the use of increased thermal insulation
of the building envelope in relation to the requirements set by the legislation has a positive
effect on improving the energy efficiency of buildings [65]. In addition, the use of natural
gravity ventilation is more advantageous than mechanical ventilation with heat recovery.
This is due to the fact that mechanical ventilation is equipped with air handling units with
fans powered by electricity from the grid. In the case of mechanical ventilation, the authors
of the article recommend the use of renewable energy sources for electricity production
(photovoltaic systems, wind turbines). An important element that has a positive impact on
operating costs and reduces the amount of greenhouse gases emitted into the environment
is the use of alternative, highly efficient heat and energy sources based on renewable
energy sources.

The location of the building in Poland significantly affects the level of energy demand
in the building. The annual demand for usable energy for heating EUH varies from
7.92

[
kWh/

(
m2·year

)]
(northwestern Poland, climate zone I) to 19.79

[
kWh/

(
m2·year

)]
(northeastern Poland, climate zone V). Studies show that the demand for usable energy
for heating has a significant impact on the demand for non-renewable primary energy in a
building. The results of energy, environmental and economic analyses have shown that
optimal solutions due to the low rate of non-renewable primary energy (EP) demand are
not always characterized by the minimum value of carbon dioxide emissions. The choice
of optimal solutions in terms of energy, environment and economy is influenced by the
thermal insulation of building envelopes, the type of ventilation used in the building, as
well as the location in Poland. Comparing the results of the energy demand for buildings
located in different regions of Poland, it can be seen that the demand for usable energy for
heating EUH depends not only on the outside temperature, but also on the amount of solar
radiation falling on the earth’s surface, the latitude, as well as the type of climate (marine
or continental) and the terrain.

The above conclusions can be used as suggestions for designers and should also be
taken into account when defining the limits for Nearly Zero Energy Buildings (nZEB)
in Poland.

It is often difficult to convince investors of solutions that improve energy efficiency, so
it is important for designers to provide them with economic and environmental analyses
that can convince them to use less energy-intensive solutions that are beneficial to the
environment and air quality. Satisfying the energy efficiency requirements should primarily
concern the reduction in the usable energy demand for heating. Therefore, it is worthwhile
to use external partitions with increased thermal insulation. The use of mechanical venti-
lation with heat recovery in the building reduces usable energy demand for heating and
ensures the right microclimate in the rooms. On the other hand, the use of mechanical
ventilation involves the use of fans that consume electricity. In the case of mechanical
ventilation, energy, economic and environmental analyses would have to be carried out to
demonstrate the legitimacy of using a photovoltaic installation or wind turbines to produce
electricity to power the building’s HVAC systems.

Supplementary Materials: The following supporting information can be downloaded at https://ww
w.mdpi.com/article/10.3390/en17092057/s1. Table S1. Annual usable energy demand for heating
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[
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Table S12. Annual non-renewable primary energy demand EP
[
kWh/

(
m2·year

)]
for a B2 energy

class building. Table S13. Annual non-renewable primary energy demand EP
[
kWh/

(
m2·year

)]
for

a B3 energy class building. Table S14. CO2emissions rate
[
kg/

(
m2·year

)]
the adopted building in six

energy classes and 59 locations in Poland. Table S15. Energy and heat source investment cost [EUR]
for the adopted building in six energy classes and 59 locations in Poland. Table S16. Operating costs[
EUR/

(
m2·month

)]
for the adopted building in six energy classes and 59 locations in Poland. Table

S17. The 10-year LCC costs of heat source [EUR]for the adopted building in six energy classes and
59 locations in Poland.
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13. Klemeš, J.J.; Varbanov, P.S.; Ocłoń, P.; Chin, H.H. Towards Efficient and Clean Process Integration: Utilisation of Renewable

Resources and Energy-Saving Technologies. Energies 2019, 12, 4092. [CrossRef]
14. Huang, C.; Ma, J.; Song, K. Homeowners’ Willingness to Make Investment in Energy Efficiency Retrofit of Residential Buildings

in China and Its Influencing Factors. Energies 2021, 14, 1260. [CrossRef]
15. Rosak-Szyrocka, J.; Zywiołek, J. Qualitative Analysis of Household Energy Awareness in Poland. Energies 2022, 15, 2279.

[CrossRef]
16. Vilcekova, S.; Kridlova Burdova, E. Multi-criteria analysis of building assessment regarding energy performance using a life-cycle

approach. Int. J. Energy Environ. Eng. 2014, 5, 83. [CrossRef]

http://ec.europa.eu/energy/consultations/20130702_green%20paper_2030en.htm_European_Commission
http://ec.europa.eu/energy/consultations/20130702_green%20paper_2030en.htm_European_Commission
http://www.iea.org
https://www.researchgate.net/publication/266208027_Climate_change_2013_The_physical_science_basis_in_contribution_of_Working_Group_I_WGI_to_the_Fifth_Assessment_Report_AR5_of_the_Intergovernmental_Panel_on_Climate_Change_IPCC
https://www.researchgate.net/publication/266208027_Climate_change_2013_The_physical_science_basis_in_contribution_of_Working_Group_I_WGI_to_the_Fifth_Assessment_Report_AR5_of_the_Intergovernmental_Panel_on_Climate_Change_IPCC
https://www.researchgate.net/publication/266208027_Climate_change_2013_The_physical_science_basis_in_contribution_of_Working_Group_I_WGI_to_the_Fifth_Assessment_Report_AR5_of_the_Intergovernmental_Panel_on_Climate_Change_IPCC
https://doi.org/10.1016/j.jobe.2015.01.002
https://doi.org/10.1016/j.esr.2019.100412
https://doi.org/10.1016/j.enbuild.2012.02.019
https://doi.org/10.1016/S0378-7788(02)00160-3
https://doi.org/10.1016/j.enbuild.2014.07.028
https://doi.org/10.1016/j.enbuild.2017.04.031
https://doi.org/10.1016/j.enbuild.2016.07.067
https://doi.org/10.3390/en15249327
https://doi.org/10.3390/en12214092
https://doi.org/10.3390/en14051260
https://doi.org/10.3390/en15062279
https://doi.org/10.1007/s40095-014-0083-7


Energies 2024, 17, 2057 30 of 32

17. Moayedi, H.; Mosavi, A. Double-Target Based Neural Networks in Predicting Energy Consumption in Residential Buildings.
Energies 2021, 14, 1331. [CrossRef]

18. EU. Directive 2012/27/EU. European Parliament and of the Council of 25 October 2012 on Energy Efficiency, Amending
Directives 2009/125/EC and 2010/30/EU and Repealing Directives 2004/8/EC and 2006/32/EC. Available online: https:
//eur-lex.europa.eu/eli/dir/2012/27/oj (accessed on 12 November 2012).

19. EU. Directive 2009/28/EU. European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy
from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Available online:
https://eur-lex.europa.eu/eli/dir/2009/28/oj (accessed on 4 June 2009).

20. EU. Directive 2010/31/EU. European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings
(Recast). 2010, pp. 13–35. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0013:0035:
en:PDF (accessed on 16 June 2010).

21. Tori, F.; Bustamante, W.; Vera, S. Analysis of Net Zero Energy Buildings public policies at the residential building sector: A
comparison between Chile and selected countries. Energy Policy 2022, 161, 112707. [CrossRef]

22. Li, X.; Lin, A.; Young, C.-H.; Dai, C.-H.; Wang, C.-H. Energetic and economic evaluation of hybrid solar energy systems in a
residential net-zero energy building. Appl. Energy 2019, 254, 113709. [CrossRef]

23. Bandeiras, F.; Gomes, M.; Coelho, P.; Fernandes, J. Towards net zero energy in industrial and commercial buildings in Portugal.
Renew. Sustain. Energy Rev. 2020, 119, 109580. [CrossRef]

24. Ma, Y.; Zedan, S.; Liu, A.; Miller, W. Impact of a Warming Climate on Hospital Energy Use and Decarbonization: An Australian
Building Simulation Study. Buildings 2022, 12, 1275. [CrossRef]

25. Almutairi, K.; Aungkulanon, P.; Algarni, S.; Alqahtani, T.; Keshuov, S.A. Solar irradiance and efficient use of energy: Residential
construction toward net-zero energy building. Sustain. Energy Technol. Assess. 2022, 53, 102550. [CrossRef]

26. Paoletti, G.; Pascual Pascuas, R.; Pernetti, R.; Lollini, R. Nearly zero energy buildings: An overview of the main construction
features across Europe. Buildings 2017, 7, 43. [CrossRef]

27. Nindartin, A.; Moon, H.-W.; Park, S.-J.; Lee, K.-T.; Im, J.-B.; Kim, J.-H. Influencing of the Building Energy Policies upon the
Efficiency of Energy Consumption: The Case of Courthouse Buildings in South Korea. Energies 2022, 15, 6679. [CrossRef]
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