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Abstract: This paper presents the results of a study on the non-isothermal laminar flow and heat
transfer of oil with Newtonian and viscoplastic rheologies. Heat exchange with the surrounding
environment leads to the formation of a near-wall zone of viscoplastic fluid. As the flow proceeds,
the transformation of a Newtonian fluid to a viscoplastic state occurs. The rheology of the Shvedoff–
Bingham fluid as a function of temperature is represented by the effective molecular viscosity
apparatus. A numerical solution to the system of equations of motion and heat transfer was obtained
using the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. The calculated
data are obtained at Reynolds number Re from 523 to 1046, Bingham number Bn from 8.51 to 411.16,
and Prandl number Pr = 45. The calculations’ novelty lies in the appearance of a “stagnation zone” in
the near-wall zone and the pipe cross-section narrowing. The near-wall “stagnation zone” is along
the pipe’s radius from r/R = 0.475 to r/R = 1 at Re = 523, Bn = 411.16, Pr = 45, u1 = 0.10 m/s, t1 = 25 ◦C,
and tw = 0 ◦C. The influence of the heat of phase transition of paraffinic oil on the development of
flow and heat transfer characteristics along the pipe length is demonstrated.

Keywords: non-isothermal flow; laminar regime; heat exchange; rheology of Newtonian and
viscoplastic fluids; plastic viscosity; yield stress

1. Introduction

The non-isothermal laminar flow of high-viscosity fluid is of interest for the transition
from a Newtonian state to a non-Newtonian (viscoplastic) state. This flow occurs in
underground and submarine offshore main oil pipelines when pumping paraffinic oil [1].

The primary challenges in transporting this fluid through pipelines arise from its
significant viscosity and yield stress, which strongly vary with temperature due to the
presence of asphaltenes, paraffin, and resins [1–4]. Paraffinic oil behaves as a Newtonian
fluid at high temperatures. However, at lower temperatures, the viscoplastic properties of a
non-Newtonian fluid become evident [5,6]. Such oils have a high pour point (ranging from
12 to 30 ◦C). Heat exchange with the environment leads to changes in the physicochemical
properties of the oil along the length of the pipe. The complex rheological characteristics of
paraffinic oil are dictated by a pronounced escalation in plastic viscosity and yield stress as
its temperature decreases [1].

Heat exchange with the surrounding environment can lead to the formation of a
“stagnation zone” in the pipe, where the flow velocity equals zero [1,6,7]. The appearance
of a stagnation zone can lead to two possible scenarios for the development of fluid flow
with complex rheology [1,3]. When there is not enough kinetic and thermal energy in
the flow, the stagnation zone coincides with the active cross-section of the pipeline. This
leads to a sharp rise in hydraulic resistance, effectively causing the pipeline segment to
“freeze” [2,3,5–7].

In the case of sufficient kinetic and thermal energy, the flow velocity increases when
the pipe cross-section decreases, leading to the dissipation of the kinetic energy of the
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flow into thermal energy. The velocity of the flow increases from the wall towards the
center of the pipe, consequently increasing the velocity gradient at the boundary of the
flow—the stagnation zone. In this area, the fluid self-heats due to the released thermal
energy, which directly depends on the square of the velocity gradient. [8,9]. In the theoretical
limit, the flow transitions into a regime known as a “hydrodynamic thermal explosion” [8,9].
Heat losses along the pipe length are reduced due to the stagnant flow near its wall,
acting as a kind of thermal insulation. In practice, the size of the stagnation zone is often
stabilized [2,5].

A number of theoretical studies are devoted to the flow of a non-Newtonian Bingham
fluid [10–12]. The content of the book [10] is a class of mathematical problems of physics
and mechanics expressed through inequalities, problems with one-sided constraints, and
thresholds or yield shear stress. One example of such problems is Bingham’s viscoplastic
fluid with a yield shear stress [10].

The initial boundary value problem associated with the flow of a Bingham fluid is
studied in [11]. The existence and uniqueness of a strong solution are proved under certain
data assumptions. It is also shown that the solution exists global-in-time when the data are
small and that the solution converges to a periodic solution if the external force is periodic
in time [11].

A mathematical model describing the three-dimensional steady-state flow of a Bing-
ham fluid in a bounded domain with threshold slip boundary conditions is studied in [12].
It is considered that flows can slide on solid surfaces when shear stresses reach a certain
critical value. Using the variational inequality approach, a weak formulation of this prob-
lem is proposed. Sufficient conditions for the existence of weak solutions are established,
and their energy estimates are given [12].

In the literature, there are several works on the study of heat transfer of such fluid
for cases of flow in different geometries [13–18]. In [14], the results of laminar flow and
the heat transfer of a viscoplastic fluid in a pipe are presented. However, the rheological
properties of the viscoplastic fluid do not depend on temperature, and the influence of
temperature on flow is not considered [14].

The present study, unlike [14], takes into account the dependence of plastic viscosity
and yield stress on temperature. The system of equations for motion and energy is solved
jointly, considering not only the dissipation of kinetic energy into heat but also the heat
release due to the phase transition of paraffinic oil.

2. Mathematical Model
2.1. Physical Model of a Viscoplastic Fluid

A laminar flow of Newtonian fluid (paraffinic oil) flows into the pipe (see
Figure 1). Then, it cools, spreading along the length of the pipe due to heat transfer
through the pipe wall with the surrounding soil. The Reynolds number is determined by the
fluid viscosity, which depends on the fluid temperature. The Reynolds number is
Re = ρu1R/µp1 = (0.5–1.2) × 103 and the Prandtl number is Pr = µ1CP1/λ1 = 45. The pipe
has an inner diameter of D = 2R = 0.05 m and a length of L = 1 m (L/R = 40).

2.2. Rheological Properties of Non-Newtonian Fluid

The rheological model of the non-Newtonian fluid is determined using the concept
of effective viscosity [19,20]. In the viscoplastic state, the effective viscosity µe f f can be
described by the Shvedoff–Bingham (SB) fluid model [21–24]. The SB model is a sim-
ple model of viscoplastic fluid, linearly combining yield shear stress and plastic viscos-
ity. The effective molecular viscosity µe f f of the SB fluid is expressed by the following
formula [22–24]:

µe f f =

{
µp + τ0

∣∣ .
γ
∣∣−1, if |τ| > τ0

∞, if |τ| ≤ τ0
(1)
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where µP is the plastic viscosity, and τ0 is the yield stress;
.
γ =

√
2SijSij = S is the strain

rate; Sij = 0.5
(

∂Ui
∂xj

+
∂Uj
∂xi

)
is the shear rate tensor. If τ0 = 0, then the fluid is Newtonian; if

τ0 > 0, then the fluid is an SB fluid. We use the strain rate tensor
.
γ as the shear rate.
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Figure 1. Flow configuration scheme: 1—Newtonian fluid flow; 2—non-Newtonian fluid flow.

The main difficulty in numerical modeling of viscoplastic flows with yield stress is
associated with the presence of singular molecular viscosity in regions where the shear rate
is zero. This difficulty is usually overcome by using regularization of the effective viscosity.
In this study, we adopt the approach in [25], where the effective viscosity is approximated
by a continuous function:

µe f f = µp + τ0

[
1 − exp

(
−103|S|

)]
|S| (2)

2.3. The Basic Equations of Non-Newtonian Fluid Flow

The system of equations governing the motion and heat transfer of a steady laminar
flow of a non-Newtonian fluid in a cylindrical coordinate system, accounting for (1), can be
expressed as follows:

∂(ρu)
∂z

+
1
r

∂

∂r
(rρv) = 0 (3)

ρ

(
u

∂u
∂z

+ v
∂u
∂r

)
= −∂p

∂z
+

[
∂

∂z

(
2µe f f

∂u
∂z

)
+

1
r

∂

∂r

(
µe f f r(

∂u
∂r

+
∂v
∂z

)

)]
(4)

ρ

(
u

∂v
∂z

+ v
∂v
∂r

)
= −∂p

∂r
+

[
∂

∂z

(
µe f f

(
∂v
∂z

+
∂u
∂r

))
−

2µe f f v
r2 +

1
r

∂

∂r

(
2rµe f f

∂v
∂r

)]
(5)

∂
(
ρcput

)
∂z

+
∂
(
ρcpvt

)
∂r

=
∂

∂z

(
λ

∂t
∂z

)
+

1
r

∂

∂r

(
λr

∂t
∂r

)
+ 2µe f f

[(
∂u
∂z

)2
+

(
∂v
∂r

)2
+

(v
r

)2
+

(
∂u
∂r

+
∂v
∂z

)2
]

(6)

where u and v are the velocity components of the fluid, respectively; z and r are the axial
and radial coordinates, respectively; p and t are the pressure and temperature, respectively;
ρ, cp, and λ denote the density, specific heat capacity, and thermal conductivity of paraffinic
oil, respectively.
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2.4. Influence of Temperature on Non-Newtonian Fluid Properties

Decreasing the temperature of the oil can induce the crystallization of the paraffin
it contains, leading to the release of phase transition heat. The total latent heat H can be
determined by employing the apparent heat capacity method [26,27]:

cP =


cS, t < tS, in the solid phase
cInt, tS ≤ t ≤ tL, in the transitional zone
cL, t > tL, in the liquid phase

(7)

where cS, cL, and cInt =

{
tL∫

tS

cL(t)dt + χH1→2

}
/(tL − tS) represent the heat capacities of

paraffin in solid, liquid, and transition states, respectively; tL and tS are the initial and
final temperatures of paraffin formation in the oil flow, respectively; χ denotes the paraffin
content in the oil; H1→2 is the specific enthalpy of the phase transition of paraffin. In the
system (7), tL and tS are the initial and final temperatures of paraffin formation in the oil
flow: tL = 25 ◦C; tS = 15 ◦C; H1→2 = 220.0 kJ/kg; χ = 0.15 or χ = 0.30.

Experimental data on the dependency of heat capacity cL, plastic viscosity µP, and
yield stress τ0 of the paraffinic oil on temperature are described by empirical formulas:

cL(t) = (53357 + 107.2 · t)/
√

ρ20, [J/(kg·◦C)] (8)

µP(t) = 0.3585 · exp(−0.1792 · t), [Pa·s] (9)

τ0(t) = 589.56 · exp(−0.567 · t), [Pa] (10)

In Table 1, the values of the yield stress τ0 and plastic viscosity µP vs. fluid temperature
are given.

Table 1. The dependence of yield stress and plastic viscosity of a viscoplastic fluid on temperature [1].

t, ◦C T, K τ0, Pa µP, Pa·s
0 273 589.6 0.3585
5 278 34.62044 0.14634
10 283 2.03286 0.05974
15 288 0.11937 0.02438
20 293 0.00701 0.00995
25 298 4.1156 × 10−4 0.00406
30 303 2.41662 × 10−5 0.00166

The density and thermal conductivity of paraffinic oil exhibit weak temperature
dependence, so we consider them constant. Empirical Formulas (8)–(10) are used for
closing the model.

The solution of the system of equations governing motion and heat exchange is
conducted in dimensionless variables: <z = z/R; r = r/R; U = u/u1; V = v/u1;
P = p/pu2

1; θ = (t − tw)/(t1 − tw). Here, R is the radius of the pipe; u1 represents the
average flow velocity at the pipe inlet; t1 and tw denote the temperatures of the fluid at the
pipe’s inlet and wall, respectively.

The regime parameters of the problem include the Reynolds number Re =ρu1R/µp1
and the Prandtl number Pr =µp1cp1/λ1. The Bingham number Bn = τ0wR/µpwu1 is
determined by the values of yield stress and plastic viscosity at the pipe wall temperature.
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2.5. Boundary Conditions

At the pipe wall, the conditions of no-slip are applied for the fluid velocity. For the
temperature of the fluid flow at the wall, it is set equal to the temperature of the pipe wall:

r = r/R = 1 : U = V = 0, θ = 0 (11)

Symmetry conditions are imposed for all the flow variables at the axis of the pipe:

r = r/R = 0 :
∂U
∂r

=
∂V
∂r

=
∂θ

∂r
= 0 (12)

At the inlet section (z/R = 0), constant velocity and temperature were prescribed across
the entire cross-section of the pipe:

z = z/R = 0 : U = 1, V = 0, θ = 1. (13)

At the outlet section (z = L), the derivatives of all sought parameters in the axial
direction are set equal to zero:

z = L/R :
∂U
∂z

=
∂V
∂z

=
∂θ

∂z
= 0 (14)

Consequently, the set of Equations (1)–(14) with the input and boundary conditions
forms a closed system of equations, enabling the calculation of all required variables.

3. Numerical Method

The system of equations governing motion and heat exchange is solved in the variables
“velocity-pressure components” [28]. The finite volume method on the staggered grid was
used to discretize the equations. The fields for u, v, p, and t had their own separate grids
and, consequently, separate control volumes. For the convective terms of the differential
equations, the power-law scheme recommended by Patankar [28] is applied. For diffusive
flows, the second-order central differences of accuracy [29] are used.

The SIMPLE algorithm was used to solve the system of Equations (3)–(6), with each
iteration consisting of the following steps

1. Solve the discretized energy Equation (6) to determine the values of tij;
2. Solving the discretized momentum Equations (4) and (5) to determine values of uij,vij;
3. Compute the uncorrected mass fluxes at the surfaces. If their values are sufficiently

small, stop the iterations of the SIMPLE algorithm (in this case, a solution is reached);
4. Solve the pressure correction equation based on the continuity Equation (3) to obtain

the cell values of the pressure correction (values of ∆pij);
5. Update the pressure field: pk+1

ij = pk
ij + αP·∆pk

ij, where αP is the under-relaxation
factor for pressure (0.005 ≤ αP ≤ 0.5);

6. Correct the cell values of uij and vij (procedure described by Patankar [28]).

Discretized forms of Equations (3)–(6) are systems of linear algebraic equations with
respect to the values of ∆pij, uij, vij, Tij, respectively. These systems of linear equations
were solved using the line-by-line method, a convenient combination of the Gauss–Seidel
method and the direct method TDMA (for cells’ j-direction at a fixed value of i).

Numerical calculations were performed using our proprietary code. The conver-
gence of the algorithm was tested on grids with the sizes of 750 × 50 and 1500 × 120
control volumes.

4. Discussion of Calculated Data

The non-isothermal flow of paraffinic oil in a pipe with an inner diameter of
D = 2R = 0.05 m is considered. Calculations were performed along the length of the
pipe for L/R ranging from 40 to 60. The average velocity of the paraffinic oil at the pipe
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inlet u1 varied from 0.1 to 0.2 m/s, with its initial temperature set at t1 = 25 ◦C. The pipe
wall temperature was considered equal to the ambient temperature tSoil, ranging from
0 to 10 ◦C. The density of the fluid at the inlet section was ρ1 = 850 kg/m3.

4.1. Validation and Verification of Computational Data

For the verification of calculations, the known results of the laminar flow of SB fluid
can be used. The calculated data [30] of the radial distribution of dimensionless axial
velocity (a) and dynamic viscosity (b) across the pipe section are depicted in Figure 2.
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Figure 2. Profiles of dimensionless axial velocity (a) and dynamic viscosity (b) across the pipe section.
The points are the calculation data from [30]; lines are the authors’ calculation: Re = ρ1Ru1/µ1 = 1000;
Sc = 10; Bn = 5; R1/R = 0.55; q/R = 0.1; µP/µ1 = 10; 1—Bn = 0; 2—Bn = 5.

The calculations were conducted for two mixing fluids—one being a Newtonian fluid
moving in the central part of the pipe (R1/R ≤ 0.55), while a ring flow of Shvedoff–Bingham
fluid is introduced in the near-wall part (R2/R = (R1 + q)/R = 0.65 – 1). The intermediate
mixing layer between the Newtonian and SB fluids has a thickness of q/R = 0.1. It should
be noted that in this instance, the mathematical model was adjusted by incorporating a
diffusion equation with a Schmidt number Sc = µ1/(ρ1DS) = 10 based on data from [30].
Here, subscripts “1” and “2” denote the Newtonian and SB fluids, respectively, and DS is
the coefficient of molecular diffusion. Comparisons were conducted between an isothermal
laminar flow regime of Newtonian fluid (1) and SB fluid with a specified Bingham number
Bn = τ0R/(µ1u1) = 5 (2). A notable quantitative agreement can be observed between the
data obtained from our numerical calculations and the findings reported in [29].

Figure 3 illustrates radial distributions of dimensionless longitudinal velocity and
temperature across the pipe section θm = (tw − t)/(tw − tm) for the laminar flow and heat
transfer of the SB fluid [14].

Comparisons were made under conditions Y = τ0R/(µPu1) = 0 (Newtonian fluid,
curve 1) and Y = 1.99 (SB fluid, curve 2) with a Reynolds number of Re1 = ρRu1/µP = 25. For
the Newtonian fluid, a good agreement was achieved with the data from the calculation [14]
across the entire pipe radius, both for axial velocity and fluid temperature. However, for the
SB fluid, some discrepancy was observed between the results of our numerical calculations
and the data from [14] in the region of y/R ≤ 0.5. Nevertheless, good agreement was
obtained between our calculations and the data from [14] in the core flow region.
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Figure 3. Radial profiles of dimensionless longitudinal velocity (a) and temperature (b) across
the pipe section. The points are the calculation data from [14], lines are the authors’ calculation:
1 − Y = 0 (Newtonian fluid), 2 − Y = 1.99.

4.2. Computational Data for Non-Isothermal Laminar Flow in a Pipe

The computational data were obtained for Reynolds numbers Re =ρu1R/µp1, ranging
from 523 to 1046; Bingham numbers Bn = τ0wR/

(
µpwu1

)
, ranging from 8.51 to 411.16; and

a Prandtl number Pr =µp1cp1/λ = 45.
Figure 4 illustrates profiles of axial velocity U, excess temperature θ across the radius

at different sections, and pressure distribution along the length of the pipe under operating
parameters Re = 523, Bn = 411.16, Pr = 45, u1 = 0.10 m/s, t1 = 25 ◦C, tw = 0 ◦C. The appearance
of the flow stagnation zone is evident, reaching from r/R = 0.475 to r/R = 1 at z/R = 30 (see
Figure 4a). Subsequently, the thickness of this zone remains nearly unchanged, establishing
a core of constant velocities characteristic of the viscoplastic flow of Shvedoff–Bingham
fluid. This is apparent from the axial velocity U profile at z/R = 40 (see Figure 4a).

The profiles of excess temperature were obtained considering the heat dissipation
from kinetic energy and phase transition during paraffin crystallization with parameters
tL = 25 ◦C, tS = 15 ◦C, H1→2 = 220.0 kJ/kg, χ = 0.15. The initial temperature of the paraffinic
oil, θ = 1.0 (t1 = 25 ◦C), gradually decreases to θ = 0.2 (t = 5 ◦C) along the axis of the pipe
due to cooling (see Figure 4b). At t = 5 ◦C, the values of yield stress and plastic viscosity
are τ0 = 34.62 Pa and µP = 0.146 Pa·s (see Table 1), indicating a viscoplastic state of the
paraffinic oil.

The pressure distribution P exhibits a monotonic nonlinear variation along the length
of the pipe (see Figure 4c). The transition from a Newtonian fluid to a viscoplastic state
leads to an increase in dimensionless pressure up to P = 1850 (equivalent to p = 15,500 Pa)
at the initial section for fluid pumping along the pipe length.

Contour plots of axial velocity U, excess temperature θ, and pressure P under these
operational parameters are shown in Figure 5. The maximum value of axial velocity
U is found in the interval from 24 to 32 along the length of the pipe z/R (see Figure 5a).
Subsequently, the maximum value of axial velocity U decreases along the axis of the pipe
from 15.55 to 11.85 (see Figure 4a). In the central zone, a core flow with constant velocity
emerges. The contours of axial velocity U become nearly parallel at the outlet section of the
pipe (see Figure 5a).
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Figure 4. Profiles of axial velocity U (a), temperature θ (b), and pressure distribution P (c) at the
regime parameters: u1 = 0.10 m/s; t1 = 25 ◦C; tw = 0◦C; Re = 523; Bn = 411.16; χ = 0.15.

The contour of the maximum excess temperature θ sharply decreases in the initial
section of the pipe, and subsequently, the decrease stabilizes somewhat (see Figure 5b). The
contour of the minimum value of the excess temperature θ varies along the pipe length (see
Figure 5b). This affects the thickness of the stagnation zone, which increases in the flow
direction (see Figure 5a).

The contours of pressure P remain constant across the pipe section and decrease along
the pipe length (see Figure 5c). Specifically, up to z/R = 8, the pressure P varies almost
linearly, and thereafter, the decrease in P occurs nonlinearly.
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parameters u1 = 0.10 m/s; t1 = 25 ◦C; tw = 0 ◦C; Re = 523; Bn = 411.16; χ = 0.15.

Thus, contour plots of axial velocity U, excess temperature θ, and pressure P clearly
describe, qualitatively and quantitatively, the non-isothermal laminar flow and heat transfer
with the rheology of Newtonian and Shvedoff–Bingham viscoplastic fluid in the pipe.

The calculated data are obtained at the following regime parameters. u1 = 0.10 m/s;
t1 = 25 ◦C; tw = 5 ◦C; Re = 523; Bn = 59.14 are shown in Figures 6 and 7.

The increase in the pipe wall, consequently decreasing the yield stress and plastic
viscosity, affects the distribution of the axial velocity profile U, excess temperature θ, and
pressure P. The maximum value of axial velocity on the pipe axis is Um = 7.5 at z/R = 30
(see Figure 6a). The radius of the stagnation zone is r/R = 0.67, where the axial velocity
is U = 0. Subsequently, the maximum value of axial velocity decreases to Um = 4.5, and
the radius of the stagnation zone increases to r/R = 0.77 at the outlet section of the pipe
z/R = 40, i.e., the thickness of the stagnation zone slightly decreases.
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Figure 6. Profiles of axial velocity U (a), temperature θ (b), and pressure P distribution (c) at the
regime parameters: u1 = 0.10 m/s; t1 = 25 ◦C; tw = 5 ◦C; Re = 523; Bn = 59.14; χ = 0.15.

The core flow with a constant velocity U = Um, typical of viscoplastic flow, is visible at
z/R = 40 (see Figure 6a).

Profiles of excess temperature θ (see Figure 6b) show a slight decrease along the pipe
length compared to the previous case (see Figure 4b).

The distribution of pressure P shows a nonlinear decrease, which is explained by the
fluid transition from Newtonian to viscoplastic (see Figure 6c).

Contour plots of axial velocity U, excess temperature θ, and pressure P are shown in
Figure 7. The maximum value of axial velocity Um is found in the length interval z/R from
23 to 30 (see Figure 7a). In the central region, a core flow with maximum velocity Um is
visible. Subsequently, the contour plots of axial velocity U show a decrease in maximum
velocity on the pipe axis. The contour of the stagnation zone, where the axial velocity is
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U = 0, increases in radius from the wall to a distance of r/R = 0.675. Further, the thickness of
the stagnation zone begins to decrease along the pipe length (see Figure 7a). The contour
plot of excess temperature θ shows a decrease in its magnitude along the pipe length
(see Figure 7b). Cooling of the fluid causes a decrease in temperature, increase in plastic
viscosity, and yield stress along the pipe radius. This accounts for the shape of the axial
velocity profile U, featuring a consistent core within the axial zone. The contour plot of
pressure P illustrates its constancy across the pipe cross-section with the maximum value
at the initial sections of the pipe (see Figure 7c). The contour shows a decrease in pressure
P for the pumping of paraffinic oil along the pipe length (see Figure 7c).
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Figure 7. Contour plots of axial velocity U (a), temperature θ (b), pressure P (c) at operating
parameters u1 = 0.10 m/s; t1 = 25 ◦C; tw = 5 ◦C; Re = 523; Bn = 50.14; χ = 0.15.

In Figures 8 and 9, computational data for axial velocity U, excess temperature θ, and
pressure P are presented at the operating parameters u1 = 0.10 m/s; t1 = 25 ◦C; tw = 10 ◦C;
Re = 523; Bn = 8.51; χ = 0.15.
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Figure 8. Profiles of axial velocity U (a), temperature θ (b), and pressure distribution P (c) at the
regime parameters: u1 = 0.10 m/s; t1 = 25 ◦C; tw = 10 ◦C; Re = 523; Bn = 8.51; χ = 0.15.

In this regime, the Bingham number Bn = 8.51 is much smaller compared to the
previous cases and expresses the viscoplastic state of the fluid. A weak occurrence of the
viscoplastic state can be observed in the profiles of axial velocity U. The maximum velocity
value decreases to Um = 3.8 (see Figure 8a), and the stagnation zone is practically absent.
The wall temperature of tw = 10 ◦C leads to the equalization of the excess temperature
profile θ along the pipe length (see Figure 8b). The pressure P distribution decreases almost
linearly along the pipe length (see Figure 8c).

Contour plots of axial velocity U, excess temperature θ, and pressure P are presented
in Figure 9. One can see a clear illustration of the change in the axial velocity profile of
axial velocity U, excess temperature θ, and pressure P along the pipe length (see Figure 9).
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Figure 9. Contour plots of axial velocity U (a), temperature θ (b), pressure P (c) at operating
parameters u1 = 0.10 m/s; t1 = 25 ◦C; tw = 10 ◦C; Re = 523; Bn = 8.51; χ = 0.15.

Figures 10 and 11 show calculated data of axial velocity U, excess temperature θ, and
pressure P at regime parameters u1 = 0.15 m/s; t1 = 25 ◦C; tw = 0 ◦C; Re = 785; Bn = 411.16;
χ = 0.15.

As can be seen from Figure 10a, the profile of the axial velocity U at section z/R = 10
corresponds to the viscoplastic fluid flow with a core of constant velocity in the axial zone.
The stagnation zone is from r/R = 0.62 to the pipe wall r/R = 1. Furthermore, the stagnation
zone expands and occupies half of the pipe radius from r/R = 0.5 to r/R = 1. The maximum
value of the axial velocity is Um = 13.4 in the flow core along the pipe length from z/R = 35
to z/R = 40.

Increasing the flow velocity to u1 = 0.15 m/s slows the rate of decrease of the excess
temperature θ (see Figure 10b). The temperature remains sufficiently high, t = 10 ◦C,
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near the outlet boundary of the pipe at z/R = 39.90. The pressure distribution P decreases
nonlinearly along the pipe length (see Figure 10c).
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Figure 10. Profiles of axial velocity U (a), temperature θ (b), and pressure distribution P (c) at the
regime parameters u1 = 0.15 m/s; t1 = 25 ◦C; tw = 0 ◦C; Re = 785; Bn = 411.16; χ = 0.15.

Contour plots of the axial velocity U, excess temperature θ, and pressure P clearly
illustrate the variation of the sought parameters along the pipe length (see Figure 11).
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Figures 12 and 13 present the results of calculations for the axial velocity U, excess
temperature θ, and pressure P at regime parameters of u = 0.10 m/s; t1 = 25 ◦C; tw = 0 ◦C;
Re = 523; Bn = 411.16; χ = 0.30.

In this regime, the paraffin concentration is equal to χ = 0.30, which is two times higher
than in the previous cases and increases the latent heat of phase transition. This affects
the profiles of the axial velocity U, excess temperature θ, and pressure P (see Figure 12).
An increase in the heat of phase transition leads to an increase in the axial velocity U. The
maximum value of axial velocity Um = 16 occurs along the pipe length from z/R = 29 to
z/R = 40 (see Figure 12a). The value of the stagnation zone radius is r/R = 0.475 within
the same pipe length interval. Profiles of the excess temperature θ also increase due to
the increase in the heat of phase transition (see Figure 12b). Increasing the heat of phase
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transition reduces the plastic viscosity µP and the yield stress τ0 of paraffinic oil, resulting
in a decrease in the pressure value P along the pipe length (see Figure 12c).
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Figure 12. Profiles of axial velocity U (a), temperature θ (b), and pressure distribution P (c) at the
regime parameters u1 = 0.10 m/s; t1 = 25 ◦C; tW = 0 ◦C; Re = 523; Bn = 411.16; χ = 0.30.

The contour plots clearly illustrate the influence of increasing the heat of phase tran-
sition on the changes in profiles of axial velocity U, excess temperature θ, and pressure
distribution P along the pipe length (see Figure 13).
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Figure 13. Contour plots of axial velocity U (a), temperature θ (b), pressure P (c) at operating
parameters u1 = 0.10 m/s; t1 = 25 ◦C; tw = 0 ◦C; Re = 523; Bn = 411.16; χ = 0.30.

Contour plots of the effective viscosity µeff/µP1 are presented in Figure 14 under
the regime parameters of u1 = 0.10 m/s; t1 = 25 ◦C; tw = 0 ◦C; Re = 523; Bn = 411.16;
χ = 0.15 (a); χ =0.30 (b).

When the concentration of paraffin is χ = 0.15, the distributions of effective viscosity
µeff/µP1 are limited along the pipe length. The maximum value of effective viscosity
occupies most of the pipe (see Figure 14a).

When paraffin concentration is equal to χ = 0.30, the value of latent heat of phase
transition increases. Temperature also increases, and plastic viscosity and yield stress
decrease. The distributions of effective viscosity µeff/µP1 are not limited along the pipe
length, and the maximum value occupies the near-wall region (see Figure 14b).
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5. Conclusions

A mathematical model of the non-isothermal laminar flow of paraffinic oil in a pipe
by heat exchange with the environment has been developed and numerically simulated.
The fluid’s Newtonian characteristics at the pipe’s outset gradually shift to the viscoplastic
behavior typical of Shvedoff–Bingham fluid further along the pipeline.

The value of the axial velocity U in the near-axis zone increased significantly when
the fluid moved along the pipe. In the near-wall region, on the contrary, the axial velocity
U decreases, and the thickness of the region with zero velocity increases. This is due to the
viscoplastic properties of the non-Newtonian fluid. The stagnation zone with zero velocity
gradually increases as the non-Newtonian fluid (paraffinic oil) flows through the pipe.

The excess temperature decreases down the pipe length due to heat exchange with
the surrounding environment, leading to the transition of paraffinic oil into a viscoplastic
state. A significant increase in effective viscosity in the near-wall region of the pipe
is demonstrated.

The pressure remains constant across the section and reaches its maximum value at
the pipe inlet for pumping viscoplastic fluid. The pressure distribution becomes more
nonlinear with an increasing Bingham number and decreases along the pipe length.

Thus, the novelty of the research lies in the transition of a Newtonian fluid into
a viscoplastic state due to heat exchange with the environment. The obtained velocity,
temperature, and pressure distribution profiles express the above transformation in the
properties of non-isothermal laminar flow in a pipe.

One of the potential applications of the obtained results is the non-isothermal laminar
flow of paraffinic oil in main oil pipelines, both underground and in subsea offshore fields.
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Nomenclature

Latin Greek
cp heat capacity, J/(kg·◦C)

.
γ strain rate tensor, 1/s

D pipe inner diameter, m µeff effective (apparent) molecular viscosity, Pa·s
L pipe length, m µp plastic viscosity, Pa·s
R pipe inner radius, m λ thermal conductivity, W/m·◦C
Re Reynolds number, Re = ρu1R/µp1 ρ density, kg/m3

Bn Bingham number, Bn = τ0w R/µpwu1 τ0 yield shear stress, Pa
Pr Prandtl number, Pr = µp1 cp1/λ1 T shear stress, Pa
t temperature, ◦C Subscripts
t1 temperature at the inlet, ◦C 1 initial condition
tW wall temperature, ◦C w wall
p pressure, Pa S soil
u, v axial and radial velocities, m/s
z, r axial and radial coordinates, m
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