
Citation: Udomsuk, S.; Areerak, K.;

Areerak, T.; Areerak, K. Online

Estimation of Three-Phase Induction

Motor Parameters Using an Extended

Kalman Filter for Energy Saving.

Energies 2024, 17, 2115. https://

doi.org/10.3390/en17092115

Academic Editor: Anibal De Almeida

Received: 13 March 2024

Revised: 25 April 2024

Accepted: 27 April 2024

Published: 28 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Online Estimation of Three-Phase Induction Motor Parameters
Using an Extended Kalman Filter for Energy Saving
Sasiya Udomsuk 1, Kongpol Areerak 2,* , Tidarut Areerak 3 and Kongpan Areerak 2

1 The National Electronics and Computer Technology Center, Pathum Thani 12120, Thailand;
sasiya.udo@nectec.or.th

2 School of Electrical Engineering, Institute of Engineering, Suranaree University of Technology,
Nakhon Ratchasima 30000, Thailand; kongpan@sut.ac.th

3 School of Mathematics, Institute of Science, Suranaree University of Technology,
Nakhon Ratchasima 30000, Thailand; tidarut@sut.ac.th

* Correspondence: kongpol@sut.ac.th

Abstract: In this paper, the online estimation of three-phase induction motor parameters using
an extended Kalman filter for energy saving is proposed. The optimal value of the stator current
on the d-axis is calculated to obtain the minimum power loss. Accurate motor parameters are
required to calculate the optimal stator current value for energy saving. Hence, to estimate motor
parameters in real time, an online estimator known as the extended Kalman filter is applied. The
energy consumption results for the motor using the proposed approach (estimated parameters
with extended Kalman filter) are compared with those obtained using the conventional approach
and energy saving (fixed parameters without parameter estimation) approach. As revealed by
the comparison results from implementation in a laboratory, the proposed approach can provide
minimum power losses for the three-phase induction motor drive, and the maximum energy-saving
percentage is 60.18% compared with using the conventional drive approach.

Keywords: three-phase induction motor; parameter estimation; energy saving; extended Kalman
filter; optimal stator current; power loss identification; indirect vector control

1. Introduction

The three-phase induction motor (IM) is widely used in various industries, especially
in electric vehicle (EV) systems, because of its low cost, low maintenance, and high effi-
ciency [1–3]. Energy saving in electrical systems has become a significant issue, especially
in respect of electric motors, because energy saving in an EV system can allow greater
driving distances and help to minimize electricity costs from battery charging. Therefore, in
this paper, an energy-saving method for a three-phase IM is proposed. In previous works,
energy-saving methods such as frequency control [4,5], flux control [6–9], optimal balance
of the stator current on the d-axis (ids) and the q-axis (iqs) [10–13] and ids control [14] were
reported. In the present work, the minimum power loss (Ploss) is computed using the partial
derivative of Ploss with respect to ids that is equal to 0. Using this method, the optimal
ids value for energy saving can be easily determined. However, accurate parameters in
the Ploss equation are important for optimal ids calculation. In the methods described in
previous studies, the motor parameters for calculation are held constant. Normally, motor
parameters change in different operating conditions. Thus, online estimation for updated
parameters in real time is necessary. In the literature, to improve the performance of the
controller in a drive system, the parameter estimation of IM is a common aim [15–17]. How-
ever, the performance improvement of the controller is not the goal of this study; instead,
the focus is on parameter estimation for energy saving in respect of the three-phase IM with
the aim of reducing the electrical energy consumption. Estimation methods identified in the
literature survey include constrained optimization [18], the least-squares method [19–22],
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the extended Kalman filter (EKF) [23–29] and artificial intelligence (AI) techniques [30–32].
The advantages of the EKF are that it can be used on a multi-input and multi-output system
and it is suitable for a time-varying system. Additionally, it has fast convergence even if the
operating points are changed [24]. Conversely, the condition of the constrained optimiza-
tion method is complicated, the least-squares method is sensitive to disturbance signals
and has slow convergence [19] and AI techniques are complex, requiring significant time
for computation [33,34]. Therefore, in this work, the EKF is deemed suitable for parameter
estimation.

The proposed Ploss equation in this paper comprises the motor parameters and power
loss parameters. As suggested by the literature survey, the power loss parameters cannot
be directly measured. Therefore, the adaptive tabu search (ATS) technique [35] is used to
off-line search for the accurate power loss parameters, whereas the motor parameters are
estimated online using the EKF. The online estimation of motor parameters using the EKF
with an energy-saving approach is the new idea proposed in this paper.

It is well known that vector control is widely used for three-phase IM drive systems.
Indirect vector control has been chosen for this work because this technique can approxi-
mate the rotor flux using motor parameters [36,37]. Conversely, direct vector control uses
rotor flux measurement in the control process.

The comparison results from the implementation using three IM drive approaches are
shown in this paper. The proposed method with parameter estimation provides the best
results in terms of the electric energy consumption of the three-phase IM drive. Compared
with the conventional drive in the same condition, the input power consumption of the
motor drive system using the energy-saving approach proposed in this paper is decreased.

The paper is structured as follows. Section 2 describes the power loss equation and
motor testing. In Section 3, the extended Kalman filter is presented. Section 4 explains the
experimental results of the energy saving and presents the discussion. Section 5 summarizes
the proposed method for energy saving and presents conclusions.

2. Power Loss Equation and Motor Testing

In this section, the power loss equation of the three-phase IM is presented. Three
assumptions are made to simplify the IM loss model. Firstly, the leakage inductances
(Lls, L′

lr) can be neglected because these parameters have small values compared with
the magnetizing inductance (Lm). Secondly, the rotor linkage flux (λ′

r) is defined on the
d-axis. Therefore, the rotor linkage on the q-axis (λ′

qr) is zero. Thirdly, the voltage across the
magnetizing inductance on the d-axis can be set to zero. Thus, the simple model including
losses of the IM can be depicted as shown in Figure 1. This model is used to calculate the
total power losses of the IM in this paper. The considered power losses comprise the stator
copper loss (Pscl), the rotor copper loss (Prcl), the iron loss (Pi) and the stray loss (Pstray).
Hence, the power loss of the three-phase IM can be calculated using Equation (1).

Ploss = Pscl + Prcl + Pi + Pstray

= Rs

(
i2ds + i2qs

)
+ R′

ri′qr
2 + Rq f si2q f s + R′

q f ri′q f r
2 + Rstrayi′qr

2 (1)

In this paper, a proposed energy-saving algorithm using indirect field-oriented control
is presented. The minimum value of Ploss can be obtained when the partial derivative of
Ploss with respect to i∗ds equal to 0. Therefore, ids is the significant value concerned in this
paper and Equation (1) can be rewritten in the form of ids. The power loss equation of the
three-phase IM for energy saving is shown in Equation (2) [38].

Ploss = Rdi2ds + Rq

(
TL

Ktids

)2
−

RdqTL

Kt
(2)

where
Kt =

3
2

ZpLm
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Rd = Rs +
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R′
r+Rstray+R′
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)2
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·
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+
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+
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Figure 1. Power loss model of the IM on the dq-axis. 
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Figure 1. Power loss model of the IM on the dq-axis.

The power loss parameters (Rq f s, R′
q f r, Rstray) cannot be measured. Thus, these

parameters are identified off-line using the adaptive tabu search (ATS) technique [38]. The
details for power loss parameter identification using the ATS method can be summarized
as shown in Figure 2.
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Figure 2. Power loss parameter identification using the ATS method. 
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In Figure 2, the cost value (W) can be calculated using Equation (3). This equation is
the root mean squared error between the power loss values from experiment (Ploss(experiment))
and computation (Ploss(computation)) as given in Equation (4).

W =

√
∑ error2

n
(3)

error =
∣∣∣Ploss(experiment) − Ploss(computation)

∣∣∣ (4)

According to Figure 2, the ATS process is used to search the Rq f s, R′
q f r and Rstray

parameters. The new parameters from ATS searching are used to calculate the power loss
(Ploss(computation)). The new Ploss(computation) value is subtracted from Ploss(experiment) again. The
ATS process is operated to tune the Rq f s, R′

q f r and Rstray values until the minimum W value
can be achieved. More details about the ATS method for identifying power loss parameters
can be found in the prior work [38].

The rating of the motor used in this paper is 0.5 hp, VL-L = 380 V, IL = 1.1 A and pole
pairs (Zp) = 2. The motor parameters are Rs = 25.13 Ω, R′

r = 20.79 Ω, Lm = 0.9672 H and
Lls = L′

lr = 0.0866 H. These parameters can be determined from conventional testing (locked
rotor test and no-load test). The details of the conventional testing are as follows.

The equivalent circuit per phase of the motor is shown in Figure 3. There are three
steps in the motor testing procedure for finding the motor parameters.
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Step 1: Measure the stator resistance directly using an ohmmeter. The results from this
measurement are given in Table 1.

Table 1. Results of the stator resistance measurement.

Phase Stator Resistance (Ω)

U 24.80

V 25.10

W 25.50

Average Value 25.13

Step 2: This step involves the no-load test of the motor. The slip is approximately zero
(s ≈ 0) in this step. The equivalent circuit for the no-load test is shown in Figure 4. Lls
and L′

lr are the stator and rotor leakage inductances, respectively. Lm is the magnetizing
inductance of the motor. Rs and R′

r are the stator and rotor resistances, respectively. For the
no-load test in this step, the stator and the magnetizing inductances are calculated using
Equation (5). The phase voltage and current from the no-load testing are equal to 219.5 V
and 0.663 A, respectively. Thus, Lls + Lm is equal to 1.0538 H.

Lls + Lm ≈
Vsϕ

Isϕ2π f
(5)
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Step 3: This step involves the locked-rotor test. The slip is equal to one (s = 1) in this
step. The equivalent circuit for the locked-rotor test is shown in Figure 5. The value of Lm
is much greater than L′

lr. Therefore, Lm is an open circuit. Equations (6) and (7) are used for
the calculation of the equivalent resistance and reactance, respectively. The results for the
locked-rotor test and the values calculated using Equations (6) and (7) are shown in Table 2.

Req = Rs + R′
r =

Vsϕ

Isϕ
cos θ (6)

Xeq = Xls + X′
r =

Vsϕ

Isϕ
sin θ (7)
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Table 2. Results for the locked-rotor test.

Test Point 1 2 3 4 5 6 7 8 Average
Values

Vsϕ 16.12 22.79 30.47 41.00 51.00 60.80 70.30 79.30

Isϕ 0.23 0.33 0.43 0.57 0.72 0.84 0.98 1.11

PF 0.65 0.65 0.65 0.64 0.64 0.64 0.64 0.64

Req 45.60 45.30 46.38 46.04 45.59 46.10 46.10 46.31 45.92

Xeq 53.26 52.69 54.23 55.27 54.73 52.69 55.35 54.14 54.41

From Equation (6), we substitute Rs and Req equal to 25.13 Ω and 45.92 Ω, respectively.
Therefore, the rotor resistance (R′

r) is equal to 20.79 Ω. From the equivalent reactance in
Table 2, the equivalent inductance can be calculated using Equation (8). In this work, the
stator leakage reactance is equal to the rotor leakage reactance. Thus, Lls and L′

lr are equal
to 0.0866 H, as calculated using Equation (9). As shown in Equation (10), Lm is equal to
0.9672 H from Equation (5).

Leq =
Xeq

2π f
=

Xls + X′
r

2π f
= 0.173 H (8)

Lls = L′
lr =

0.173
2

= 0.0866 H (9)
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Lm = 1.0538 − Lls = 0.9672 H (10)

3. Extended Kalman Filter
3.1. Extended Kalman Filter Algorithm

The state equation of the three-phase IM for estimation is shown in Equation (11). The
equation is considered to be in the synchronous reference frame. The state variables are the
stator currents on the dq-axis (ids, iqs) and the rotor fluxes on the dq-axis (λ′

dr, λ′
qr).

dx(t)
dt

= Ax(t) + Bu(t) (11)

where

x = [ids iqs λ′
dr λ′

qr]
T

A =



−
(

Rs
σLs

+ R′
r L2

m
σLs L′

r
2

)
ωs

R′
r Lm

σLs L′
r
2

ωr Lm
σLs L′

r

−ωs −
(

Rs
σLs

+ R′
r L2

m
σLs L′

r
2

)
− ωr Lm

σLs L′
r

R′
r Lm

σLs L′
r
2

R′
r Lm
L′

r
0 − R′

r
L′

r
ωsl

0 R′
r Lm
L′

r
−ωsl − R′

r
L′

r


B =


1

σLs
0

0 1
σLs

0 0
0 0

, u =

[
vds
vqs

]

Equation (11) is the continuous state model. The forward Euler method is utilized
to transform the continuous model into a discrete model. Therefore, the discrete state
model of the three-phase IM is shown in Equation (12), where A(k) = I+ATs, B(k) = BTs,

u(k) =
[
vds(k) vqs(k)

]T , x(k) =
[
ids(k) iqs(k) λ′

dr(k) λ′
qr(k)

]T
and Ts is the sampling time.

x(k + 1) = A(k)x(k) + B(k)u(k) (12)

In this paper, the motor speed and the motor parameters are estimated. Thus, these
values are included as additional state variables [27,29]. The motor parameters in the
model are Rs, R′

r, Lls, L′
lr and Lm. However, Lls and L′

lr can be neglected because these
parameter values are smaller than Lm. Hence, the estimated parameters can be presented
as per Equation (13).

∏(k) = [ωr(k) Rs(k) R′
r(k) Lm(k)]

T (13)

Therefore, the extended state model of the three-phase IM for estimation is shown in
Equation (14).

xe(k + 1) = Ae(∏(k))xe(k) + Be(∏(k))u(k) (14)

where xe(k) = [ids(k)iqs(k)λ′
dr(k)λ

′
qr(k)ωr(k)Rs(k)R′

r(k)Lm(k)]T

Ae(∏(k)) =
[

A(∏(k)) 0
0 I

]
, Be(∏(k)) =

[
B(∏(k))

0

]
From Equation (14), A(Π( k)) and B(Π( k)) comprise the estimated values of the

speed and parameters. Then, the extended model in Equation (14) is the nonlinear model.
This can be written as per Equation (15) and the matrix f(xe(k),u(k), Π(k)) is shown in
Equation (19).

xe(k + 1) = f(xe(k), u(k), ∏(k)) (15)

The measurement equation of the motor for the estimation is given by Equation (16).
z(k + 1) and H are defined by Equations (17) and (18), respectively.

z(k + 1) = Hxe(k + 1) (16)
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z(k + 1) = [ids(k + 1) iqs(k + 1) ωr(k + 1)]T (17)

H =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0

 (18)

f(xe(k), u(k), ∏(k)

=



(
1 −

(
Rs(k)

σ(k)Ls
+ R′

r(k)L2
m(k)

σ(k)Ls L′
r
2

)
Ts

)
ids(k) + ωs(k)Tsiqs(k) +

R′
r(k)Lm(k)

σ(k)Ls L′
r
2 Tsλ′

dr(k) +
ωr(k)Lm(k)

σ(k)Ls L′
r

Tsλ′
qr(k) + 1

σ(k)Ls
Tsvds(k)

−ωs(k)Tsids(k) +
(

1 −
(

Rs(k)
σ(k)Ls

+ R′
r(k)L2

m(k)
σ(k)Ls L′

r
2

)
Ts

)
iqs(k)− ωr(k)Lm(k)

σ(k)Ls L′
r

Tsλ′
dr(k) +

R′
r(k)Lm(k)

σ(k)Ls L′
r
2 Tsλ′

qr(k) +
1

σ(k)Ls
Tsvqs(k)

R′
r(k)Lm(k)

L′
r

Ts ids(k) +
(

1 − R′
r(k)
L′

r
Ts

)
λ′

dr(k) + ωsl(k)Tsλ′
qr(k)

R′
r(k)Lm(k)

L′
r

Ts iqs(k)− ωsl(k)Tsλ′
dr(k) +

(
1 − R′

r(k)
L′

r
Ts

)
λ′

qr(k)

ωr(k)

Rs(k)

R′
r(k)

Lm(k)



(19)

The extended state model of the three-phase IM in Equation (15) is nonlinear [39,40].
Thus, the nonlinear estimator is applied to this problem. The extended Kalman filter (EKF)
is the nonlinear extension of the Kalman filter, and this method is widely used for nonlinear
estimation [23].

Calculation of the EKF comprises two steps, namely, the prediction step and the
correction step. In the prediction step, the predicted state variable vector and the predicted
error covariance matrix at time k+1 are computed using the data at time k. Next, the
correction step calculates the updated state variable vector and the updated error covariance
matrix using the data from the prediction step and the measurement. The values from the
correction step become the data at time k for the prediction step calculation in the next
round [41].

The system model and the measurement model with noise for the online estimation
via EKF can be described by Equations (20) and (21), respectively. From these equations,
the definition and dimension of vectors and matrices in the models are shown in Table 3.

xe(k + 1) = f(xe(k), u(k), ∏(k)) + w(k) (20)

z(k + 1) = Hxe(k + 1) + v(k + 1) (21)

For the initial state variable (xe(0)), its mean value and error covariance matrix are
^
x
+

e (0) = E[xe(0)] and P+(0) = E
[

~
xe(0)

~
x

T
e (0)

]
, respectively. E[xe] is the expected value

of xe or the mean value of xe, and the estimation error can be calculated using
~
xe(0) =

xe(0)−
^
x
+

e (0).
In this paper, the superscript (−) indicates the a priori calculated values and (+)

indicates the a posteriori calculated values. The assumptions for w(k) and v(k) used in
deriving the Kalman filter can be found in [42].
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Table 3. Definitions and dimensions of vectors and matrices in the models.

Symbol Definition Dimensions

x(k) state variable vector
n × 1

w(k) system noise

z(k) measurement vector
l × 1

v(k) measurement noise

A(k) state transition matrix
n × n

Q(k) covariance matrix of w(k)

R(k) covariance matrix of v(k) l × l

u(k) deterministic input vector m × 1

B(k) input matrix n × m

H(k) measurement matrix l × n

The equations and the calculation process of the Kalman filter can be explained as
follows.

The prediction step

The predicted state variable vector (
^
x
−
e (k + 1)) and the predicted error covariance

matrix (P−(k + 1)) can be calculated using Equations (22) and (23), respectively.

^
x
−
e (k+1) =f

(
^
x
+

e (k), u(k), Π(k)
)

(22)

P−(0)(k+1) = F(k)P+(k)FT(k) + Q(k) (23)

Because Equation (22) is a nonlinear model, the first-order Taylor series is used to
linearize this model [43]. Therefore, the state transition matrix is defined by Equation (24).

F(k) =
∂f(xe(k), u(k), ∏(k))

∂xe(k)

∣∣∣∣
xe(k)=x̂+e (k)

(24)

From Equations (22) and (23),
^
x
+

e (k) and P+(k) are the updated state variable and the
updated error covariance matrix at time k, respectively. These values can be determined

using
^
x
+

e (k) = E[xe(k)] and P+(k) = E
[

~
x
+

e (k)
~
x
+

e
T
(k)
]

, and the a posteriori estimation error

can be calculated using
~
x
+

e (k) = xe(k)−
^
x
+

e (k).
The correction step

The updated state variable vector (
^
x
+

e (k + 1) ) and the updated error covariance matrix
(P+(k + 1) ) can be calculated using Equations (25) and (26), respectively.

^
x
+

e (k + 1) =
^
x
−
e (k + 1) + K(k + 1)(z(k + 1)− H(k + 1)

^
x
−
e (k + 1)) (25)

P+(k + 1) = (I − K(k + 1)H(k + 1))P−(k + 1) (26)

In the above equations, K(k + 1) is the Kalman gain, which is calculated using Equa-
tion (27).

K(k + 1) = P−(k + 1)HT(k + 1)
(

H(k + 1)P−(k + 1)HT(k + 1) + R(k + 1)
)−1

(27)

Figure 6 illustrates the process of the EKF as described in this section and the calcu-
lation process. It is well known that the motor parameters change in different operating
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conditions. Thus, the EKF algorithm is applied to estimate these parameters online in real
time. Hence, the initial state variables vector for the EKF computation is defined using the
values of the motor parameters from conventional testing.
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The initial values for the EKF calculation are set to the following values.
The initial state variables vector:
^
xe(0) = [0 0 0 0 0 25.13 20.79 0.9672]T

The error covariance matrix:
P(0) = diag[1e − 2 1e − 2 1e − 4 1e − 4 1e − 2 1e − 2 1e − 1 1e − 3]
The system noise covariance matrix:
Q(0) = diag[1e − 2 1e − 2 1e−4 1e − 4 1e − 1 1e − 1 1e − 1 1e − 3]
The measurement noise covariance matrix:
R(0) = diag[1e − 4 1e − 4 1e − 4]

The initial values of the covariance matrices (P, Q, R) indicate the convergence speed
of the estimation [17]. Moreover, changing values of the matrices Q and R affect both
the transient and steady-state operation of the estimator [28]. In the method described in
this paper, the selection of these initial values uses trial and error [26,28,39] by observing
the simulation result using the hardware-in-the-loop (HIL) technique. This technique
involves simulation using the Simulink program with a DSP board via MATLAB software
(https://www.mathworks.com/products/matlab.html). The considered system is simu-
lated using Simulink, and the estimation process of the EKF is implemented on the DSP
board. The HIL technique can provide a simulation result that is nearly as accurate as the
result from hardware implementation.

3.2. Convergence Analysis of the Extended Kalman Filter

Using the Lyapunov theorem [44], the convergence of the EKF can be analyzed to
verify the Lyapunov function of the considered system (V(x)). If V(x) follows the Lyapunov
theorem, the considered system is stable and it can converge to the equilibrium point. In
the Lyapunov theorem, V(x) is a positive definite function (V(0) = 0 and V(x) > 0, x ̸= 0)
and ∆V(x) is a negative semi-definite function (∆V(x) ≤ 0 for all x).

V+(k + 1) =
~
x
+T

(k + 1)P+−1
(k + 1)

~
x
+
(k + 1) (28)

Equation (28) is investigated following the Lyapunov theorem. This shows that

V+(k + 1) = 0 when
~
x
+
(k + 1) = 0, V+(k + 1) > 0 when

~
x
+
(k + 1) ̸= 0 and P+(k + 1)

is also a positive definite matrix [45]. In the case of ∆V(x) ≤ 0, Boutayed et al. [46]
presented that the determination of the condition for {V(k)}k−1··· is a decreasing sequence
(∆V = V+(k + 1)− V+(k) ≤ 0).

https://www.mathworks.com/products/matlab.html
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The authors of [46] showed the convergence proof of the EKF by verifying the Lya-
punov function following the Lyapunov theorem. Additionally, their study confirms that
the EKF can converge to the equilibrium point by showing that the a posteriori estimation

error is equal to 0 when the time index approaches infinity ( lim
k→∞

~
x
+
(k)= 0).

4. Experimental Results

There are three cases for the IM drive presented in this section. The setting of i∗ds for
the three cases is different. The conventional approach for the IM drive is Case A. The
energy-saving approaches for IM drives with and without an EKF are Case B and Case C,
respectively. The consuming input power from the three approaches is compared in the
experimental testing. From Figure 7, there are two eZdspTM F28335 boards for the indirect
vector control, parameter estimation, and energy saving calculation. In Case A and Case B,
only one eZdspTM F28335 board #1 is used to implement the indirect vector control and
calculate the energy saving, whereas in Case C, the overall calculation and speed control
are implemented using two boards. For eZdspTM F28335 board #1, the indirect vector
control is implemented on this board. As for eZdspTM F28335 board #2, this board is used
to estimate the parameters online and calculate the energy saving. Moreover, Figure 7
shows the computational time on the microcontroller board for all cases. In Case A, the
computational time for the indirect vector control is 16.2 µs/cycle. In Case B, the calculation
for energy saving is added, and a computational time equal to 20 µs/cycle is used. Thus,
the computational time on eZdspTM F28335 board #1 in Case B is equal to 36.2 µs/cycle. For
Case C, eZdspTM F28335 board #1 uses 16.2 µs/cycle for indirect vector control calculation,
and eZdspTM F28335 board #2 uses 99.8 µs/cycle for online parameter estimation and
energy-saving calculation.
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4.1. Conventional Approach (Case A)

Figure 7 depicts the speed control topology of the three-phase IM described in this
paper. Indirect vector control is applied for a three-phase IM drive in the rotating dq frame.
For the d-axis, the PI controller is used for current loop control, and two PI controllers on
the q-axis are used for speed loop and current loop control. The flux of the three-phase
IM can be controlled by the d-axis, whereas the motor speed and torque can be controlled
by the q-axis [47,48]. The PI controller on the q-axis can control the motor speed tracking
the speed command (ω∗

r ). Additionally, the PI controller on the d-axis can control the ids
following the ids command (i∗ds).

As shown in Figure 7, there are three cases (Case A, B and C) for i∗ds calculation. In Case
A, i∗ds is set to the rating value denoted ids,conv in this paper.

4.2. Energy-Saving Approach without EKF (Case B)

From the power loss equation given in Equation (2), the motor parameters in this
equation for this method are fixed to a constant value. In this section, the calculation of the
energy-saving process is presented. Equation (2) is used to determine i∗ds for the minimum
power loss at any operating point.

The minimum value of Ploss can be calculated using the partial derivative of Ploss with
respect to i∗ds that is equal to 0. Thus,

dPloss
d i∗ds

=
d

d i∗ds

[
Rdi∗ds

2 + Rq

(
TL

Kti∗ds

)2
−

RdqTL

Kt

]
= 0

or
A i∗ds

4 + E = 0 (29)

when A = 2Rd and E =−2RqT2
L/K2

t .
Finally, the solution of i∗ds for the energy saving can be solved using Equation (30). The

i∗ds from this section is called ids,fix. The ids,fix for energy saving is sent to the indirect vector
control of the three-phase IM drive as shown in Figure 7 (Case B).

ids, f ix =
4

√
−E
A

(30)

4.3. Energy-Saving Approach with EKF (Case C)

In Case C, the calculation of i∗ds for energy saving can be achieved using Equation (30)
as per the previous section. However, the motor parameters (Rs, R′

r, Lm) in this case are not
fixed to constant values because these parameters change in different operating conditions.
Thus, using EKF, Rs, R′

r, and Lm are estimated online. The i∗ds for energy saving in this case
is denoted ids,EKF.

For the proposed approach, the diagram of the three-phase IM drive system with
energy-saving calculation is depicted in Figure 7 (Case C). From Figure 7, the voltages (vabc),
current (iabc) and speed (ωr) from the three-phase IM drive system are used for calculation
in the EKF algorithm. The estimated values of Rs, R′

r and Lm from the EKF are used to
determine the ids,EKF value for energy saving, and this ids,EKF is sent to the indirect vector
control process.

Figure 8 depicts the experimental setup of the three-phase IM drive system for Figure 7.
The rating of the three-phase induction motor used in this paper is 0.5 hp. The pendulum
machine and its control unit act as the motor’s load. Moreover, the three-phase rectifier is
used to convert the AC three-phase source to a DC bus voltage. The three-phase inverter
using the IGBT module is the converter that supplies the power to the IM for the drive
system. There are two eZdspTM F28335 boards used in the experimental setup.
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4.4. Results and Discussion

Figure 9 shows the dynamic test of the ids calculation from the energy-saving approach
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1.0 to 2.0 N·m and decreased from 2.0 to 1.0 N·m at a constant speed of 600 rpm. It can be
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The conventional approach and the energy-saving approach with and without an EKF
described in Sections 4.1–4.3 are applied to drive the three-phase IM. For the testing, load
torque (TL) values are in the range 0.5–2.5 N·m. The speeds (N) at any load torque are 300,
600, 900, 1200, and 1390 rpm.

From the experimental testing, the current and voltage values from the three-phase IM
drive using the energy saving approach with and without an EKF do not exceed the rating
of the motor at any operating point. The experimental results of the IM drive approaches
are shown in Table 4.
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Table 4. Experimental results of IM drive approaches.

TL (N·m) N
(rpm)

Case A Case B Case C

Conventional
Approach

Energy-Saving Approach
without EKF

Energy-Saving Approach
with EKF

ids,conv
(A)

Pin,conv
(W)

ids,fix
(A)

Pin,fix
(W)

ids,EKF
(A) Pin,EKF (W)

0.5

300

0.94

96.58 0.59 51.48 0.46 38.46

600 126.18 0.57 72.17 0.41 52.23

900 146.55 0.54 91.97 0.36 68.27

1200 157.32 0.50 110.73 0.31 97.37

1390 145.09 0.48 122.17 0.26 117.14

1.0

300 117.06 0.74 88.65 0.53 74.44

600 160.73 0.72 124.16 0.46 108.57

900 195.75 0.68 162.99 0.43 155.03

1200 228.01 0.65 192.24 0.41 188.68

1390 243.89 0.62 210.67 0.36 220.34

1.5

300 137.90 0.80 119.00 0.53 118.26

600 194.09 0.77 176.00 0.55 149.27

900 251.96 0.73 231.46 0.53 208.70

1200 282.20 0.70 272.54 0.53 223.44

1390 335.89 0.67 312.25 0.58 276.71

2.0

300 170.55 0.82 158.12 0.67 155.25

600 251.20 0.80 229.56 0.65 210.64

900 303.79 0.76 296.74 0.62 288.90

1200 371.92 0.72 370.92 0.60 289.83

1390 392.83 0.70 422.85 0.82 377.72

2.5

300 207.79 0.92 203.18 0.86 183.07

600 295.19 0.90 295.59 0.84 265.09

900 364.88 0.86 382.90 0.74 363.99

1200 445.74 0.82 429.12 0.74 365.52

Figure 10 presents the comparison results of the input power (Pin) consumption from
all approaches. The relationship between the input power and the power loss of the motor
(Ploss) can be explained by Equation (31). From this equation, when the output power (Pout)
is a constant value, the Ploss value depends on Pin. Moreover, the energy consumed (E) by
the motor depends on Pin, as shown by Equation (32), and t is the running time of the IM.
Thus, a decrease in Pin indicates that Ploss and E decrease, and the energy saving of the
motor increases. Additionally, the efficiency (η) value can be defined by Equation (33). In
the case of decreasing Pin, the η value is increased.

Ploss= Pin − Pout (31)

E = Pin×t (32)

η = Pout/Pin (33)
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In Figure 10, it is shown that the electrical energy consumption of the motor using 
the energy-saving approach with an EKF is minimal under any operating conditions com-
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EKF. In particular, at a slight load torque (TL = 0.5 N·m, N = 300 rpm), the proposed 
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In Figure 10, it is shown that the electrical energy consumption of the motor using the
energy-saving approach with an EKF is minimal under any operating conditions compared
with using the conventional approach and the energy-saving approach without an EKF.
In particular, at a slight load torque (TL = 0.5 N·m, N = 300 rpm), the proposed method
can save energy up to 60.18%. The maximum percentage of the energy saving using the
energy-saving approach without an EKF is equal to 46.7% compared with the conventional
approach.

However, the energy-saving percentage is decreased when the load torque is increased.
The average energy-saving percentages achieved using the energy-saving approach with
and without an EKF compared with using the conventional approach are 22.31% and
13.27%, respectively. Thus, the results from the implementation suggest that the three-
phase IM drive using the energy-saving approach with an EKF can provide the best results
in terms of minimum power losses or maximum energy saving percentages. This is because
the appropriate motor parameters estimated by the EKF are used to calculate the stator
current on the d-axis for energy saving at any operating load torque and speed in real time.

5. Conclusions

In this paper, the application of an EKF to estimate three-phase IM parameters on-
line for energy saving has been presented. The input powers of the motor between the
conventional approach and the energy-saving approach with and without EKF have also
been shown. These results indicate that the EKF can be used to estimate the appropriate
parameters at any load torque and speed, and these accurate motor parameters can be used
in the energy-saving approach with the EKF to calculate the stator current on the d-axis
for energy saving. The proposed approach can be applied for other three-phase IM sizes,
although the implementation of the proposed approach in this work was tested with a
0.5 hp three-phase IM in the laboratory. However, the power loss parameters for the new
IM size have changed. Therefore, the parameter identification process using the ATS is
repeated. The hardware implementation of the three-phase IM parameter estimation using
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EKF for energy saving has also been presented in this paper. The speed control topology,
parameter online estimation, and energy-saving calculation were implemented using the
eZdspTM F28335 microcontroller board. The experimental results confirm that the EKF can
obtain the appropriate motor parameters. The calculation of the optimal stator current on
the d-axis value using the parameters from the EKF estimation can provide the minimum
power losses at any load torque and speed compared with using the conventional and
energy-saving approaches without EKF estimation. The maximum energy-saving percent-
age is 60.18% at slight load torque, and the percentage of the energy saving decreases at
high load torque.
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