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Abstract: The stack effect in high-rise buildings, stemming from an inside/outside temperature
difference, may produce a significant pressure difference on the elevator doors, potentially causing
elevator malfunctions. This effect can also be influenced by wind action and human behaviors, e.g.,
opening/closing of building entrances. In this study, a wind tunnel test was conducted to determine
the real wind pressure distribution on a high-rise building in northern China. A numerical simulation
utilizing the Conjunction of Multizone Infiltration Specialists software (COMIS) was carried out to
investigate the pressure difference of elevator doors under the effects of thermal buoyancy, wind
action, and opening/closing of the first-floor lobby entrance. An alternative solution of a locally
strengthened envelope is proposed and validated for the studied building zone. The study reveals
that the opening of the first-floor lobby entrance increases the pressure difference regardless of the
environmental conditions, and the increase of wind speed tends to increase the pressure difference
in winter but decrease it in summer. The proposed countermeasure combination, involving using
revolving doors instead of swing doors, increasing additional partitions, and strengthening the local
building envelope, was found to be synergistic and effective in reducing the pressure difference
inside the building. The research findings offer practical engineering solutions for mitigating elevator
door pressure challenges in high-rise buildings.

Keywords: COMIS simulation; wind tunnel test; pressure difference; high-rise building; pressure
mitigation

1. Introduction

The rapid development of urbanization and construction technology has led to the
emergence of high-rise buildings worldwide. A super high-rise building with a frame-
core tube structure usually integrates a variety of vertical shafts, such as elevator shafts,
duct shafts, and stairwells. These shafts serve as potential pathways for the upward and
downward movement of air throughout the high-rise building [1,2]. In winter, the thermal
buoyancy caused by the large inside/outside temperature difference will drive warm
indoor air to rise through the shafts (e.g., elevator shafts). However, in summer, a reverse
airflow process occurs, wherein cool indoor air flows towards the outside of buildings.
Such an airflow phenomenon in a high-rise building is called the stack effect [3,4] and it
may lead to severe problems in two aspects: one caused by strong flow, e.g., unpleasant
noise [5–7] and the propagation of unwanted contaminants [8,9]; the other resulting from
excessive pressure difference, e.g., malfunction in opening or closing elevator doors [10,11].

To address these challenges, it is crucial to comprehend the potential influence factors
of pressure difference inside buildings, which can be categorized into environmental
factors and human behavior factors. Environmental factors primarily include thermal
buoyancy induced by an indoor/outdoor temperature difference and wind conditions.
The effects of thermal buoyancy and wind on internal pressure difference have been
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extensively studied [7–23], with various empirical prediction formulas proposed [14–18].
The studies showed that the vertical distribution of internal pressure difference due to
thermal buoyancy is not only determined by the inside/outside temperature difference
but also related to the distance from the neutral pressure layer (NPL) [14,19]. However, the
horizontal distribution of the internal pressure difference caused by thermal buoyancy and
wind action on each floor mainly depends on the arrangement of the compartments (e.g.,
envelope, internal partitions, vertical shafts, etc.) and their corresponding airtightness [20].
Using the Conjunction of Multizone Infiltration Specialists (COMIS), Khoukhi et al. [21]
numerically investigated the combined effects of thermal buoyancy, wind speed, and wind
direction on the internal pressure difference and observed significant disturbance in the
pressure difference under strong winds. Tan et al. [22] employed a multizone model and
computational fluid dynamics (CFD) technology to simulate ventilation of buildings under
the combined effects of wind and buoyancy. Based on full-scale experiments, Marcello
et al. [23] analyzed the stack and wind effects on single-sided ventilation.

The influence of human behavior on the pressure difference mainly stems from the
frequent opening and closing of entrances. For a public or commercial building, there is
usually a lobby with a large open area on the first floor. The frequent opening of the entrance
creates a main airflow path. Through numerical simulation, Joonghoon et al. [24,25]
investigated the effect of opening the lobby doors on the pressure distribution and found
that the stack effect became significant when the entrance was open. This suggests that the
effects of human behaviors can be coupled with thermal buoyancy, thereby exacerbating
excessive pressure problems. In fact, both environmental and human behavior factors can
operate simultaneously, and therefore, their combined effects on the pressure difference
should be examined. However, few studies have addressed this aspect.

To mitigate pressure difference, considerable countermeasures have been proposed
to address stack effect problems, which can be mainly classified into two types: “point
to point” methods and global methods. The “point to point” methods aim at changing
the distribution of the pressure difference via improvements within specific floors, e.g.,
implementing revolving doors instead of swing doors on the first floor [25], or increasing
horizontal partitions within a floor where the elevators have excessive pressure difference
problems [19]. However, such methods have an inherent defect that only the improved
positions will be ameliorated and the contribution to the problem mitigation of the overall
building is minor, and they may even transfer the pressure difference from one place to
another; e.g., applying partitions and revolving doors is effective for pressure mitigation
on the target floor with entrances (e.g., first floor), but may increase the pressure difference
on other elevator doors. The global method refers to overall improvements of a building,
including improving the overall airtightness of the envelope [20], setting vertical segmenta-
tion of shafts [26], and using existing HVAC systems [11,27] or elevator cooling systems [28].
However, implementing global methods is quite challenging and expensive, and therefore,
is rarely adopted in practice. For example, the elevator shafts have been segmented for
architectural purposes in the design stage, such arrangement cannot be changed during
occupation. The application of HVAC may have adverse effects on other floors and elevator
cooling systems are costly. Moreover, the improper combination of countermeasures can
lead to negative interactions and such combined effects will weaker than the sum of their
separate effect [20]. Therefore, to solve the over-pressure issue in a more cost-effective way,
a comprehensive scheme based on synergistic combinations of different countermeasures
needs to be proposed.

By using wind tunnel tests and a COMIS simulation, this study investigates the com-
bined effect of thermal buoyancy, wind action (e.g., speed, direction), and the open/closed
state of the first-floor lobby entrance on the vertical and horizontal distribution of pres-
sure difference in a high-rise building. Special attention is paid to the pressure difference
acting on three different types of elevators, and their vulnerable floors are identified. A
new method for internal pressure mitigation by locally increasing the airtightness of the
envelope is proposed and verified. The joint effect of using revolving doors, additional
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partitions, and locally strengthened airtightness of the envelope in reducing excessive
pressure is explained. This study may provide a feasible and economical solution to the
excessive pressure difference problem of high-rise buildings.

2. Description of the Building and Simulation Settings
Overview of the High-Rise Building

The target super high-rise building, with a total height of 360 m (68 floors), shown
in the red box of Figure 1, is located in Jinan, northern China, which may experience a
large indoor/outdoor temperature difference during the summer and winter seasons and
is, therefore, susceptible to the stack effect. The building is enveloped by a curtain wall
and has 5 function zones, 6 refuge layers, and 3 lobby floors. Elevator shafts provide
the most important vertical airflow paths in this building. There are 3 types of elevators
in the building, including short-distance elevators for transportation within respective
zones (i.e., A1–A7), long-distance freight elevators (i.e., B1–B2), and shuttle elevators for
quick transportation between different zones (i.e., C1–C2), as shown by Figure 2. Most
of the elevators will stop at the first floor, where the stack effect is significant and door
malfunction is prone to occur due to excessive pressure difference [10,11].
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3. Simulation Settings

Wind pressure is one of the main factors influencing the flow pattern inside the
building. Therefore, in this study, a wind tunnel test is used to obtain a more accurate
wind pressure distribution on the building surface. Based on the measured wind pressure,
the COMIS model is employed to investigate the flow pattern and pressure distribution
inside the building considering the internal layout. The COMIS model has been extensively
validated using measured data [12,15,29–32]. Therefore, the combination of the wind
tunnel test and COMIS simulation could provide a reasonable distribution of the pressure
difference inside the building.

3.1. The COMIS Model

CONTAMW 2.4, a typical COMIS software, is used for pressure distribution analysis
inside the building. COMIS [29] is a network model which simplifies a room or zone as a
joint with a constant temperature and contaminant concentration. Each joint is connected
with each other joint by openings or gaps to constitute a network. For the building case, a
typical office floor plan and the corresponding model are shown in Figure 3. It shows a
horizontal airflow pattern where air has to go through the envelope and several partitions
before reaching the elevator door (e.g., B1). Therefore, we employed an “envelope–partition–
elevator door” structure to describe the horizontal distribution of pressure difference. The
pressure difference of the envelope and partitions on the windward, crosswind, and leeward
sides were analyzed, as shown by Figure 3.
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3.2. Simulation Parameters
3.2.1. Wind Pressure

To obtain the accurate wind pressures for the COMIS simulation, a wind tunnel test
was carried out for the building at wind azimuths of 0◦–360◦ with an interval of 15◦

(Figure 4a). An acrylonitrile butadiene styrene (ABS)-made model with a geometry scale of
1:400 was investigated in the boundary layer wind tunnel at Zhejiang University, China,
as shown by Figure 4b. A boundary layer wind profile representing terrain category B
in the Load Code for the Design of Building Structures [33] was simulated at a length
scale of 1:400. The experimental mean wind speed at the roof height (i.e., reference height)
was 11.1 m/s, and the corresponding wind speed ratio was 1:4.07. Figure 5a compares
the normalized experimental wind field with the Chinese specification [34]; good agree-
ment can be observed between the two sets of data. Figure 5b shows that the simulated
nondimensional wind velocity spectrum at the roof height was similar to the theoretical
Kaimal spectrum. The pressure tap layout on a typical floor is shown in Figure 6a. There
are 17 pressure tap layers along the building’s height which are marked as A to P, as shown
by Figure 6b. For each wind azimuth, wind pressure signals were recorded at a sampling
frequency of 312.5 Hz for a time duration of 32 s. The wind pressure coefficients used for
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airflow analysis on an envelope were obtained from the average value of adjacent pressure
taps. For example, the wind pressure coefficient for the airflow path through the red dashed
box in Figure 3b is the average pressure of measuring points C7 to C10, as illustrated in
Figure 6a. Since the pressure taps were not set on each floor, the wind pressure coefficients
of unmeasured floors were obtained by the interpolation of two adjacent pressure tap layers
(Figure 6b), from Equation (1).

Cpk = Cpj +
Cpi − Cpj

( Zi
Z0
)

2α
− (

Zj
Z0
)

2α (
Zk
Z0

)
2α

(1)

where Cpk is the wind pressure coefficient of the target floor; Zk is the height of the target
floor; Cpi is the wind pressure coefficient of the upper measuring point layer, Zi is the
height of the upper measuring point layer; Cpj is the wind pressure coefficients of the
lower measuring point layer; Zj is the height of the lower measuring point layer; Z0 = 10 m,
and α = 0.15, corresponding to terrain category B in the code provisions [33]. For a wind
azimuth of 90◦, the corresponding results of the windward, leeward, and crosswind wind
pressure coefficients of each floor are shown in Figure 7a. During the simulation, the
measured pressure coefficients from the wind tunnel test can be input via the “wind
pressure profile” function in the CONTAMW software.
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The 10 min averaged wind speed data from 1971 to 2015 is derived from the local
meteorological station, and the statistical data and the wind rose of extreme wind speed
under a 50-year return period are shown in Figure 7b,c, respectively. Based on the statistical
results, the wind speed range under 90◦ wind azimuth, namely, 0–15 m/s, was used for the
COMIS simulation.
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3.2.2. Temperature and Airtightness of Structural Components

Considering the large indoor/outdoor temperature difference in summer and winter
due to the use of HVAC, the simulation was carried out under the conditions of these two
seasons. The indoor and outdoor temperatures for the building can be found in the Chinese
specifications [35]; they are −7.7 ◦C (outdoor) and 20 ◦C (indoor) in winter, and 34.7 ◦C
(outdoor) and 24 ◦C (indoor) in summer, respectively.

The leakage area is adopted to characterize the airtight resistance of compartments,
and the corresponding values from different studies are shown in Table 1. For the curtain
wall, the air leakage data of level 2 is used for the pressure distribution simulation. Since
the studied building is still in the design stage, the relevant simulation parameters are
obtained either from code provisions (e.g., GB 50736-2012 [36]) or other previous studies.
To investigate the effects of wind action (e.g., speed and direction) and the first-floor
entrance status on the distribution of internal pressure difference, 14 simulation cases were
conducted in this study and the details are listed in Table 2.

Table 1. The airtightness of building components.

Building Components Air Leakage Data Sourse

Curtain wall Level 4: 0.5 m3/(m2·h)
Level 2: 2 m3/(m2·h)

Chinese code [36]

Elevator door *EqLA10: 325 cm2/item Ref. [19]
Stairwell door *EqLA75: 120 cm2/item

Office door *EqLA10: 200 cm2/item Ref. [25]
Revolving door
on lobby floor *EqLA10: 10.88 cm2/item Ref. [24]

Swing door on lobby floor *EqLA10: 21 cm2/item Ref. [37]
* EqLA75: equivalent leakage area at 75 Pa; EqLA10: equivalent leakage area at 10 Pa.

Table 2. Simulation cases.

Effects Case
Number

Outdoor
Temperature (◦C)

Indoor
Temperature (◦C)

Wind Speed
(m/s)

Wind
Attack Angle

State of the
First-Floor Entrance

Wind
speed

1 −7.7 20 0 90◦ Closed
2 −7.7 20 6 90◦ Closed
3 −7.7 20 10 90◦ Closed
4 −7.7 20 15 90◦ Closed

Wind
attack
angle

5 −7.7 20 10 0◦ Closed
6 −7.7 20 10 45◦ Closed
7 −7.7 20 10 135◦ Closed
8 −7.7 20 10 180◦ Closed
9 −7.7 20 10 225◦ Closed

10 −7.7 20 10 270◦ Closed
11 −7.7 20 10 315◦ Closed

First-floor
entrance state 12 −7.7 20 10 90◦ Open

Thermal
buoyancy

13 34.7 24 10 90◦ Closed
14 34.7 24 10 90◦ Open

4. Simulation Results
4.1. The Effect of Wind Speed (Cases 1–4)

The distributions of pressure differences (∆P) in the envelope, partition, and elevator
doors under different approaching wind speeds (cases 1–4) are shown in Figures 8–10,
respectively. For the no-wind condition (case 1), it can be observed that the pressure
difference on the envelope and elevator doors is relatively small, while that on the partitions
is more significant, with large values at the top and bottom of the building due to thermal
buoyancy. As the wind speed increases, the wind-induced pressure difference is mainly
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borne by the envelope, followed by the partitions, while the ∆P of the elevator doors is
rarely affected by the variation in wind speed since most of the air flow is blocked by
external curtains and internal partitions.
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For the vertical distribution of ∆P on the envelope, Figure 8 shows that the pressure
difference is almost linearly distributed between two adjacent refuge layers. With the
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increase in wind speed, the ∆P profile is dominated by wind pressure and shows a similar
vertical distribution to that of the wind pressure coefficients shown in Figure 8a, which is
consistent with the findings in a previous study [21].

For the ∆P distribution of the partitions, as shown in Figure 9, an NPL is observed on
the middle-height floor (i.e., 34th floor) when there is no wind, and it disappears when
the wind speed increases. In addition, a sharp increase in the ∆P of the partitions appears
at most of the refuge layers. This is because the airtightness of the envelope is relatively
lower on the refuge layers to satisfy the ventilation requirements of equipment operation,
so more wind flow can act directly on the partitions.

Compared to the envelope and partitions, the pressure difference on the elevator doors
should be given more attention, as it is the main reason responsible for the malfunction of
elevator doors and the noise of elevator shafts. Figure 10 demonstrates the distribution of
∆P for long-distance, short-distance, and shuttle elevator doors along the building height.
For short-distance elevators (i.e., A1–A7), ∆P is notable at the lobby floors, namely, the
1st, 34th, and 55th floors, when there is no wind, and it increases apparently with wind
speed since the lobbies usually have a large unpartitioned space, leading to less of a barrier
between the elevator doors and the external wind. However, for the B1 long-distance
elevator used for cargo transportation (Figure 10b), the elevator door is less affected by
external wind actions due to the air blocking by partitions. Thus, the vertical distribution
for long-distance elevators is mainly determined by the thermal buoyancy and the length
of the elevator shaft. Figure 10b also shows that the NPL appears at the middle height
of the building, and the floor far away from the NPL bears a larger pressure difference.
Comparing Figure 10b,c indicates that a shuttle elevator, which only stops at very limited
floors (e.g., shuttle elevator C2 only stops at the 55th floor in the upper part as show in
Figure 1), is more sensitive to wind action.

4.2. The Effect of Wind Attack Angle (Cases 3, 5–11)

Since the wind action on a building varies significantly between different approaching
directions, it is important to consider the influence of the wind attack angle in the estimation
of wind-induced pressure difference. Due to the asymmetry of the building, wind azimuths
of 0◦–360◦ with an interval of 45◦ were simulated. The effect of the wind attack angle on
the ∆P of elevator doors is discussed here and shown in Figure 11.
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It can be observed that the wind attack angle has a significant effect on the distribution
of ∆P, and the largest ∆P values of different types of elevators mainly appear at wind attack
angles of 90◦ and 270◦. For short-distance elevators, the largest pressure difference can
be found on the three lobby floors, which are also sensitive to the wind direction. For the



Energies 2024, 17, 2117 10 of 17

shuttle elevator C2, the largest pressure difference appears on the highest floor on which
it can stop, and varies significantly from −104.8 Pa to −158.5 Pa with the change in wind
attack angle. Compared to the short-distance elevators and shuttle elevators, the influence
is much less for the long-distance elevators.

4.3. The Effect of Open/Closed States of the First-Floor Entrance (Case 12)

Figures 12–14 show the influence of the open/closed states of the first-floor entrance
on the ∆P distribution. It shows that the overall profiles of ∆P for the envelope, partition,
and elevator remain almost the same before and after the entrance door opens, except for
the several low-level floors near the first one, indicating a limited local effect caused by the
opening of the first-floor entrance.
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For the envelope, Figure 12 shows that the ∆P of the first-floor is significantly decreased
on all sides. The largest decrease in ∆P is on the windward side, followed by the crosswind
and leeward sides. However, for the partitions in Figure 13, an opposite trend can be
observed for ∆P on the first-floor, where it increases significantly to over 200 Pa (more than
doubled) after the door is opened.

For elevator doors, the effect of entrance opening for short-distance elevators is sig-
nificant on the lobby floors, as shown in Figure 14. For long-distance elevator B1, such an
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effect is insignificant. However, for the shuttle elevator C2, when the entrance door on
the first floor opens, both the positive ∆P on the first-floor and the negative ∆P increased
remarkably, which results in pressure difference problems on both the lower and higher
parts of the elevator. It also means that the opening of the first-floor entrance can have an
overall effect on the shuttle elevator.
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4.4. The Combined Effect of Wind Speed and the Opening of the First-Floor Lobby Entrance under
Different Temperature Environments (Cases 3, 12–14)

Based on two different temperature environments, namely, winter and summer condi-
tions, Figure 15 shows the combined effects of wind speed and the opening of the first-floor
lobby entrance on the pressure difference of the elevator doors. The elevators with max-
imum pressure differences (∆Pmax) occurring on the first-floor (i.e., A3, A4, and C1) are
chosen for study at a wind direction of 90◦. It can be found that opening the entrance will
enlarge the pressure difference no matter whether it is winter or summer. However, wind
action may exert opposite effects on the pressure difference in winter and summer; there is
an increasing and decreasing tendency in the pressure difference with increases in wind
speed in winter and summer, respectively. This is because in winter the airflow induced by
the thermal buoyancy and wind are both upward, and thus, exacerbate the pressure acting
on the first-floor elevator door, while in summer the inverse thermal buoyancy effect (from
building interior to external environment) will neutralize the incoming wind flow through
the opening entrance or building leakage, and thus, reduce the pressure difference.
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Table 3 further lists the ∆Pmax value of all the elevators under all cases listed in Table 2,
along with the corresponding floor number and the main causes. According to previous
studies [19,36,38–40], the pressure difference of elevator doors should be less than 50 Pa for
their proper operation, thus this value is chosen as the standard of whether the elevator
malfunctions or not. Table 3 shows that the ∆Pmax floors basically appear at the entrance
floor (i.e., 1st floor), lobby floors (i.e., 34th and 55th floor) and the top floor of elevator
(i.e., 63rd floor) and that thermal buoyancy is one of the main reasons for exceeding the
50 Pa standard for all types of elevators. But there are other main factors for different
elevator types. For short-distance elevators, opening first-floor lobby entrance and wind
action are other main reasons for elevators A1–A4 and elevators A6–A7, respectively. For
long-distance elevators and shuttle elevators, the other main reasons are the wind attack
angle and opening first-floor lobby entrance, respectively.

Table 3. The ∆Pmax values and the corresponding floors and dominant factors of all discussed elevators.

Type Short-Distance
Elevator

Long-Distance
Elevator

Shuttle
Elevator

Number A1 A2 A3 A4 A5 A6 A7 B1 B2 C1 C2
∆Pmax (Pa) 70.0 47.4 105.0 147.3 14.8 61.4 75.6 −53.8 −53.1 −123.5 −183.8

Exceed 50 Pa Yes No Yes Yes No Yes Yes Yes Yes Yes Yes
Floor of ∆Pmax 1st 1st 1st 1st 34th 34th 55th 63rd, 54th 1st 1st 55th

Main reasons
Thermal buoyancy Thermal buoyancy

Wind attack angle
Thermal buoyancy

Opening first-floor lobby entranceOpening first-floor lobby entrance / Wind action

5. Countermeasures for Excessive Pressure Difference
5.1. A New Method: Locally Strengthened Airtightness of Envelope

Increasing the airtightness of the envelope has proven to be an effective method
of reducing all indoor pressure differences, as it increases the whole pressure-bearing
capacity of the envelope. Although improving the overall airtightness is very expensive
and impractical, strengthening airtightness in local areas of a building is still an option
for certain floors suffering from an excessive pressure problem. Table 3 demonstrates that
the ∆Pmax of elevator doors is prone to appear at a few floors, e.g., the 1st floor, 34th floor,
55th floor and 63rd floor, which are the main focus of pressure mitigation. Thus, a locally
strengthened envelope may be applied in these local areas.

To verify the validity of the proposed method, we select the business zone and hotel
zone (i.e., 1st to 4th floor and 55th to 63rd floor) for study. The airtightness of the envelope
for these floors is strengthened from level 2 to level 4 according to the specification [35].
Based on the parameter conditions of case 5, the profiles of ∆P before and after local and
overall enhancement of airtightness are compared in Figures 16–18.

Figures 16–18 show that the pressure difference in strengthened zones marked by
the red boxes is consistent with the overall enhanced profile (level 4), while that in un-
strengthened zones remains almost the same as the profile of level 2, which implies that the
effect of locally strengthened airtightness is only limited within the target zones. However,
such an effect could be different for the envelope and partitions and elevator doors. For
the envelope (Figure 16), it can be observed that ∆P at most of the floors increases after
enhancement of the envelope, indicating that the envelope bears most of the wind action.
In this case, the pressure difference on the partitions and elevator doors will be reduced
significantly, as corroborated by Figures 17 and 18. The mechanism of applying a locally
strengthened curtain is to redistribute pressure difference between the curtain and the eleva-
tor doors. This could be an effective solution for local floors where elevators have problems
of excessive pressure difference but where it is unsuitable to set additional partitions (e.g.,
lobby). Since high-rise buildings are usually enveloped by a curtain wall [37], a locally
improved airtightness envelope can be conveniently achieved by identifying and better
sealing off the air paths of the curtain wall [38], and such local improvement (i.e., from
level 2 to level 4 for envelope airtightness) is more economical than overall airtightness
strengthening of the whole building [20].
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5.2. The Synergistic Effect of a Comprehensive Countermeasure Scheme

In this section, the effect and synergy of a comprehensive countermeasure scheme,
namely, using revolving doors to replace swing doors for the first-floor entrance, applying
additional partitions, and strengthening the local building envelope, is investigated.

Firstly, swing doors on the first floor are replaced with revolving doors to maintain
the uniformity of the envelope airtightness. For elevator doors with excessive pressure,
the simplest way should be applying a partition closely in front of the door, which will
effectively relieve pressure difference on the elevator door. According to the results in
Table 3, the additional partitions are set as shown in Figure 19. The locally strengthened
airtightness zones of the envelope are the same as in Section 5.1 (i.e., 1st to 4th floor and 55th
to 63rd floor). Typical elevators covering all three types and different floors are considered
herein, including A4 (floor 1 to floor 32), A6 (floor 34 to floor 53), A7 (floor 55 to floor 61),
and shuttle elevator C2 (floor B2 to floor 55). The initial ∆Pmax of these four elevators all
exceed 50 Pa, which needs to be mitigated.
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The three countermeasures and their different combinations were applied for two
dangerous wind directions (i.e., 90◦ and 270◦), and the results of ∆Pmax before and after
applying countermeasures are plotted in Figures 20 and 21. They both show an obvious
downward trend with the increase in countermeasures. When the revolving doors are
implemented, the ∆Pmax of all of the selected elevators decreases; with the most significant
decreases for elevators A4 and C2, which stop at the first floor. This phenomenon is similar
to the findings of previous studies [24]. When the measure of a revolving door is combined
with either a locally strengthened envelope or additional partitions, a more significant
reduction in ∆P can be observed for elevators A7 and C2. For elevators A7 and C2, whose
doors are all within the curtain-strengthened zone, the effect of the locally strengthened
envelope is similar to that of additional partitions, indicating that locally strengthening
the envelope can be a good substitute for additional partitions. However, for elevators
A4 and A6, whose doors are not all within the strengthened zone, the contribution of
locally enhancing the envelope’s airtightness is much weaker. This can be attributed to the
unevenly distributed airtightness along the height. Thus, for elevators whose doors are not
all within the strengthened zone, these two measures are interchangeable.

However, there are still some cases where the pressure difference is above 50 Pa
(e.g., elevator C2), even after applying two countermeasures together. Therefore, all three
countermeasures were used, leading to all the ∆Ps of the elevator doors being below
the 50 Pa standard, which demonstrates the favorable synergistic interaction of the three
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countermeasures. Apart from this, the synergistic effect is insignificant for the elevators
whose doors are not all within the strengthened zone (i.e., A4 and A6). The application
of synergistic countermeasures may change the location of the ∆Pmax of elevators. For
example, for the A4 elevator at a 90◦ wind azimuth, when three countermeasures work
simultaneously, the ∆Pmax floor changes from the 1st floor to the 32nd floor. Therefore,
the combination of different countermeasures should be carried out carefully to obtain a
reasonable scheme.
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6. Conclusions

This study carried out wind tunnel tests and COMIS simulations to investigate the
combined effect of thermal buoyancy, wind action, and the open/closed state of the first-
floor lobby entrance on the pressure difference in a high-rise building. And the effects of
a new mitigation method and a synergistic countermeasure scheme to relieve the over-
pressure on elevator doors were presented. The main conclusions are:

(1) The wind-induced pressure difference is mainly borne by the envelope, followed
by the partitions, and elevator doors. An increase in wind speed will increase the pressure
difference of elevator doors in winter, but reduce it in summer, thus alleviating the stack
effect. Under different wind attack angles, the pressure difference inside the building
varies significantly and could exceed the threshold of normal use even under the same
wind speed.

(2) The opening of the first-floor entrance increases the pressure difference of the
elevator door, especially for the elevators that stop at the first-floor and have no partitions
in the airflow path. For short-distance elevators, the effect of opening lobby entrance is
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limited within nearby floors, but for shuttle elevators, a significant pressure increase can be
observed on the top-level floor.

(3) A locally strengthened envelope can remarkably reduce the elevator door pressure
difference on the targeted floors, but its effect on the unstrengthened floors is minor.
Therefore, it can be a good countermeasure for the local floors where multiple elevators are
under excessive pressure difference but where it is unsuitable to set additional partitions.

(4) The pressure mitigation effect becomes more apparent with the increase in the
number of countermeasures, showing good synergy. But for the elevators whose doors are
not all within the strengthened envelope zones (e.g., elevators A4 and A6), the combination
of two methods (e.g., revolving doors and local strengthened envelope, revolving doors
and additional partitions) can achieve a similar mitigation effect to that of all of the methods
combined (i.e., revolving doors, local strengthened envelope, and additional partitions).
Therefore, the combination of different countermeasures should be selected carefully to
achieve cost-effective pressure mitigation.
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