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Abstract: Fault problems associated with submarine cables caused by variations in their burial depth
are becoming increasingly prominent. To address the difficulty of detecting the burial depth of
submarine cables and trends in its variation, a prediction model for submarine cable burial depth
was proposed which considers the dynamic characteristics of thermal resistance. First, a parallel
thermal circuit model of a three-core submarine cable was established, and a formula for calculating
the submarine cable’s burial depth was derived based on a formula for calculating the submarine
cable’s core temperature. Then, the calculation result was corrected by considering the dynamic
characteristics of the thermal resistance of the submarine cable’s structural materials. On this basis,
feature vectors associated with the seabed cable burial depth calculation data and time nodes were
mined by a convolutional neural network and used as the input parameters of a long short-term
memory network for optimization and training, and a prediction model for trends in seabed cable
burial depth variation was obtained. Finally, an example analysis was carried out based on the
actual electrical parameter data of submarine cables buried by an offshore oil and gas platform. The
results showed that the prediction model for trends in variations in the burial depth of submarine
cables based on the CNN-LSTM neural network can achieve high prediction accuracy and prediction
efficiency.

Keywords: three-core submarine cable; parallel thermal circuit model; dynamic characteristics of
thermal resistance; CNN-LSTM neural network; prediction model of burial trend

1. Introduction

In recent years, with the continuous exploitation and use of onshore energy, countries
around the world have gradually shifted their focus on energy development to the marine
field. The operating state of submarine cables directly affects the safety and stability of
the production environment in cross-sea projects [1]. The main parts of submarine cables
are often buried in the seabed. Under the long-term influence of external factors such
as ocean current scouring, earthquakes, and production and development, continuous
variations in the burial depth of submarine cables easily occur [2,3]. When the burial depth
decreases, that is, the closer to the seabed surface a submarine cable is, the higher the
probability of the direct exposure of the submarine cable to the marine environment is.
The direct exposure of a submarine cable exposes it to impacts such as seawater erosion
and bites from marine animals, thereby causing physical damage to the cable. When the
ultimate load capacity of a submarine cable is abnormal or faulty due to the influence of
environmental thermal resistance characteristics, it is difficult to locate the abnormal fault
position, limiting maintenance work and deployment and further increasing accident risk
and loss.
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Many scholars have conducted research on technology for the detection of submarine
cable burial depth, and technology for detecting submarine cable burial depth based on
acoustics and magnetism has developed rapidly [4]. At present, acoustic detection is a
commonly used detection technology in the field of submarine cable burial depth detection;
it mainly comprises four kinds of equipment, including side-scan sonar, multi-beam sonar,
shallow formation profiling, and synthetic aperture sonar equipment, and it mainly uses
ocean “trawl fish” and underwater robots as the main means of detection [5,6]. Magnetic
detection is also a widely used and effective method of detecting submarine cable burial
depth which can be divided into passive detection and active detection; among these,
passive detection can be subdivided into the absolute magnetic field method and the metal
detection method [7,8]. At present, the detection of submarine cable burial depth mainly
relies on external hardware equipment, which has problems such as its high labor cost, long
detection cycle, limited detection effect, and so on. Moreover, defects and faults caused by
changes in submarine cable burial depth cannot be found in time; thus, there is a greater
risk of danger and economic loss. Therefore, it is necessary to study real-time methods of
predicting the burial depth of submarine cables, realize the online monitoring of the burial
depth of submarine cables with high precision, and ensure the safe and stable operation of
submarine cables.

In view of the above problems, existing studies mainly use the composite single-mode
fibers inside submarine cables as temperature-measuring media to obtain the tempera-
ture of submarine cable cores and further obtain the thermal characteristics of cables in
buried environments through temperature inversion. According to the IEC 60287 stan-
dard [9], in [10], a steady-state thermal circuit model of a power cable is built, and the
steady-state current-carrying capacity of the power cable under general conditions is cal-
culated by considering the influence of the external environment on the temperature of
the cable. At the same time, the accuracy of the calculated value is verified using finite
element simulation results, and the error value is only about 1%. In combination with the
IEC 60287 standard, in [11], based on the thermal circuit model of the power cable body,
research was further extended to a complete thermal circuit model of a power cable in
a tunnel, and the steady-state current carrying-capacity of the power cable in the tunnel
environment was calculated. At the same time, the accuracy of the calculated value was
verified by an experiment involving the steady-state temperature increase in the power
cable, and the error value was within only 5%. However, these calculation methods do
not consider the dynamic characteristics of thermal resistance of the structural materials of
each layer of the submarine cable, and there are certain differences in the thermal resistance
parameters of the submarine cable under different submarine cable core temperatures.
Therefore, a more accurate determination of the burial depth of submarine cables can be
obtained by conducting fiber temperature measurements inside the cable to determine
the thermal characteristics of the buried environment. Additionally, through the use of
the thermal circuit model under the joint influence of the cable and the environment, the
calculation parameters of the thermal circuit model can be corrected. However, burial
depth data calculated in this way exhibit little fluctuation between adjacent time points;
hence, early warnings of variations in the burial depth of submarine cables cannot be
achieved, nor can trends in their development be reflected. Deep learning involves learning
the inherent rules and representation levels of sample data, and the information obtained in
this learning process is of great help to the interpretation of data such as words, images, and
sounds [12,13]. A convolutional neural network is a type of feedforward neural network
which includes computing convolution, which is one of the representative algorithms of
deep learning [14,15]. A convolutional neural network has two learning modes, namely
supervised learning and unsupervised learning, and convolution kernel parameter sharing
and inter-layer connections enable the convolutional neural network to compare lattice
features, such as pixels and audio, with little computation, few computation requirements, a
stable effect, and no additional feature engineering requirements regarding the data [16,17].
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In this paper, a three-core submarine cable parallel thermal circuit model is first built,
and then, considering the dynamic characteristics of the thermal resistance of submarine
cable structural materials, a formula for calculating submarine cable burial depth is derived
and revised. Next, a CNN is used to mine the feature vectors associated with seabed cable
burial depth calculation data and time nodes, which are used as input parameters for an
LSTM neural network for optimization and training. Then, a prediction model of the trend
in seabed cable burial depth variation is obtained. Finally, an actual submarine cable laid
by an offshore oil and gas platform is used as an example to verify that the prediction
model for trends in submarine cable burial depth variation based on a CNN-LSTM neural
network has a high prediction accuracy and prediction efficiency.

2. Thermal Circuit Model of a Submarine Cable
2.1. Submarine Cable Structure

At present, most submarine cables are cross-linked polyethylene (XLPE) cables. XLPE-
insulated fiber composite submarine cables have similar structures. However, some details
of the structural components are slightly different according to the different types of
submarine cables. In this paper, an HYJQF41-F 20 kV XLPE fiber composite submarine
cable is chosen as an example. Based on the superposition of the IEC standard and a
three-core conductor structure, a parallel thermal circuit model of a submarine cable
is established.

The structural profile of the cable is shown in Figure 1. The cable is composed of three
conductive wire cores and three twisted optical fiber units. The inner parts of the wire
core, from the outside to the inside, include the polyethylene (PE) sheath, alloy sheath,
water-blocking semiconductive layer, copper tape shield layer, insulation shield, XLPE
insulation, conductor screen, and water-blocking copper conductor. The wire core and
optical fiber unit are wrapped in the filling layer, and the outer layer comprises the cable
belt, armor cushion, galvanized steel wire armor layer, and outer layer.
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Figure 1. Schematic diagram of submarine cable structure.

2.2. A Parallel Thermal Circuit Model of a Submarine Cable

The heat transfer characteristics of submarine cables can be analyzed using a thermal
circuit and heat flow. Based on the similarity between the heat flow field and the current
field, the method of calculating the physical quantities in the heat flow field can refer to the
method of calculating the physical quantities in the current field. Metal materials have no
hindering effect on heat transfer and can be equivalent to heat sources, while other materials
have a hindering effect on heat transfer and can be equivalent to thermal resistance. In
particular, since the insulating material also produces a certain loss, it is equivalent to a
heat source with thermal resistance. When constructing the parallel thermal circuit model
of a submarine cable, structural layers which have similar heat transfer coefficients and
are in contact with each other can be merged to reduce the complexity of the model. The
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simplified internal thermal resistance of the submarine cable is mainly due to its insulation
layer, lining layer, and outer layer; the external thermal resistance is mainly due to seabed
soil; and the internal heat source is mainly due to the conductor, insulation layer, alloy
lead sleeve, and galvanized steel wire armor. Thus, a parallel thermal circuit model of
submarine cable [18] is constructed as shown in Figure 2.
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The formula for the calculation of the core temperature of the submarine cable is
as follows:

θc = θamb + T1(I2R +
Qd
2
) + 3T2[(1 + λ1)I2R + Qd] + 3(T3 + T4)[(1 + λ1 + λ2)I2R + Qd] (1)

where θc is the cable’s core temperature, θamb is the ambient temperature, T1 is the thermal
resistance of the insulation layer, T2 is the thermal resistance of the lining layer, T3 is the
thermal resistance of outer layer, and T4 is the environmental thermal resistance. R is the
AC resistance, I is the carrying capacity, λ1 is the loss factor of the alloy lead sleeve, λ2 is
the loss factor of the galvanized steel wire armor, and Qd is the insulating layer loss. The
values of each parameter are shown in Table 1.

Table 1. HYJQF41-F cable parameter values.

Parameter Value Parameter Value

R/Ω 0.0783 × 10−3 ρ2/W·km−1 3.5
Qd/W 0.0415 ρ3/W·km−1 3.5

λ1 0.1069 ρ4/W·km−1 0.7
λ2 0.218 G1 0.815

T1/K·W−1 0.4538 G2 0.1608
T2/K·W−1 0.0896 d/mm 4.5
T3/K·W−1 0.0317 D/mm 136.7

ρ1/m·K·W−1 3.5 — —

The ambient thermal resistance T4 is calculated as follows:

T4 = ρ4
ln[ 2L

De
+

√
( 2L

De
)

2 − 1]

2π
(2)

where ρ4 is the thermal resistance coefficient of the seabed soil, L is the burial depth, and
De is the outer diameter of the outer coat.

It can be seen that there must be a correlation between the temperature of the subma-
rine cable core θc and the laying depth L of the submarine cable. The burial depth value
of a submarine cable can be calculated by building a parallel thermal circuit model of the
submarine cable and combining the structural parameters of each layer of the submarine
electric cable.
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3. Calculation of Submarine Cable Burial Depth Considering the Dynamic
Characteristics of Thermal Resistance
3.1. Sensitivity Analysis of Thermal Resistance Coefficient of Submarine Cables

According to the normalized sensitivity formula shown in Equation (3), combined with
the formula for the calculation of the submarine cable’s core temperature, the normalized
sensitivity of the cable’s core temperature θc to the thermal resistance of the insulation layer
T1, the thermal resistance of the lining layer T2, and the thermal resistance of the outer layer
T3 of the submarine cable can be obtained, as shown in Equations (4)–(6), respectively:

SF
x =

∆F/F
∆x/x

∣∣∣∣∆x→0 =
∂F
∂x

· x
F

(3)

Sθc
T1

=

∣∣∣∣ ∂θc

∂T1
· T1

θc

∣∣∣∣ = (I2R +
Qd
2
)

T1

θc
(4)

Sθc
T2

=

∣∣∣∣ ∂θc

∂T2
· T2

θc

∣∣∣∣ = 3[(1 + λ1)I2R + Qd]
T2

θc
(5)

Sθc
T3

=

∣∣∣∣ ∂θc

∂T3
· T3

θc

∣∣∣∣ = 3[(1 + λ1 + λ2)I2R + Qd]
T3

θc
(6)

In the formula above, T1, T2, and T3 can be calculated using Equations (7)–(9):

T1 =
ρ1

2π
G1 (7)

T2 =
ρ2

2π
G2 (8)

T3 =
ρ3

2π
ln(1 +

2d
D
) (9)

where G1 and G2 are geometric factors. ρ1 is the thermal resistance coefficient of the
insulation layer, ρ2 is the thermal resistance coefficient of the lining layer, and ρ3 is the
thermal resistance coefficient of the outer coating layer. d is the thickness of the outer
sheath, and D is the outer diameter of the armor layer.

Based on the above contents, the sensitivity of the cable’s core temperature to the
thermal resistance coefficient of the insulating layer, the thermal resistance coefficient of
the lining layer and the thermal resistance coefficient of the outer layer of the submarine
cable can be calculated under different operating carrying currents, as shown in Table 2.

Table 2. The sensitivity of the cable’s core temperature to the thermal resistance coefficient of each
structural layer under different operating current-carrying rates.

I/A θc/◦C Sθc
ρ1

Sθc
ρ2

Sθc
ρ3

100 19.1 0.019 0.012 0.005
200 24.5 0.058 0.038 0.016
300 31.4 0.102 0.067 0.028
400 42.7 0.133 0.087 0.037
500 56.6 0.161 0.105 0.045
600 70.9 0.187 0.122 0.053

The sensitivity classification standards for the submarine cable’s thermal resistance
coefficient [19] are shown in Table 3.
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Table 3. Sensitivity classification of thermal resistance coefficient.

Level Thermal Resistance
Coefficient Sensitivity Range Sensitivity

I 0 ≤ Sθ
ρ < 0.05 Insensitive

II 0.05 ≤ Sθ
ρ < 0.20 Medium sensitivity

III 0.20 ≤ Sθ
ρ < 1.00 Sensitive

IV Sθ
ρ ≥ 1.00 High sensitivity

According to a sensitivity classification analysis of the thermal resistance coefficient
of each structural layer of the submarine cable, when the other physical parameters are
unchanged, the sensitivity of the thermal resistance coefficient of each structural layer of
the submarine cable increases with an increase in the cable’s core temperature, as shown
in Figure 3.
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When the temperature of the insulation layer increases from 19.1 ◦C to 70.9 ◦C, the
sensitivity of the thermal resistance coefficient increases from 0.019 to 0.187; that is, when
the conductor current is within 100 A, the layer is a class I layer, that is, “insensitive”, and
the remaining layers are class II layers, that is, they are of “medium sensitivity”. When the
inner layer temperature increases from 19.1 ◦C to 70.9 ◦C, the thermal resistance coefficient
sensitivity increases from 0.012 to 0.122, and the conductor current increases to more than
200 A; therefore, this layer is classified as a class II layer, that is, it demonstrates “medium
sensitivity”. When the temperature of the outer coating layer increases from 19.1 ◦C to
70.9 ◦C, the sensitivity of the thermal resistance coefficient increases from 0.005 to 0.053,
and the conductor current increases to 600 A; therefore, the layer is a class II layer, that
is, it shows “medium sensitivity”. The thermal resistance coefficient of each layer inside
the submarine cable varies with the temperature variation in the structural layer. It can be
seen that the thermal resistance coefficient of each structural layer will change with the
change in temperature. It can be seen that the thermal resistance coefficient of each layer
of the submarine cable will change with a change in temperature, and its sensitivity level
may also increase from “insensitive” to “moderately sensitive”. Therefore, a change in the
operating carrying capacity of the submarine cable will directly lead to a change in the
temperature of the cable’s core, thus causing a dynamic change in the thermal resistance
coefficient of each layer of the submarine cable.

When using the IEC standard thermal circuit model to calculate the temperature of
each layer of the submarine cable, the dynamic characteristics of the thermal resistance
of each layer of the submarine cable’s structural materials are not taken into account, so
the thermal resistance coefficient of each layer of the submarine cable is fixed. In view of
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the fact that the inner layers of the submarine cable are mainly composed of a crystalline
polymer, the crystallinity of the crystalline polymer will change with an increase in the
operating temperature of the submarine cable. When the operating temperature increases,
the crystallinity value decreases, and the thermal resistance coefficient of the material
also decreases. Now, a curve of the relationship between the operating temperature of
the submarine cable and the thermal resistance coefficient of the material is established,
as shown in Figure 4. Therefore, when using the IEC standard thermal circuit model to
calculate the temperature of each layer of a submarine cable, it is necessary to dynamically
determine the thermal resistance coefficient of each layer of the submarine cable so as to
reduce data error and improve the subsequent accuracy of predicting submarine cable
burial depth.
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3.2. Temperature–Depth Calculation Considering the Dynamic Characteristics of
Thermal Resistance

A temperature–burial depth calculation process for submarine cables is constructed,
as shown in Figure 5. Firstly, the thermal resistance coefficient of each structural layer of
the submarine cable is determined according to the temperature of the cable’s core, and
then the environmental thermal resistance is calculated by inputting the real-time operation
carrying capacity of the submarine cable into the parallel thermal circuit model of the
three-core submarine cable. Finally, the burial depth of the submarine cable is calculated
according to the outer diameter of the submarine cable.
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To analyze the accuracy of the submarine cable burial depth calculation method based
on the dynamic characteristics of its thermal resistance, the temperature monitoring data
and burial depth detection data of an oil and gas platform are selected as an example. The
error between the calculated value and the measured value of the submarine cable burial
depth during the sampling time is calculated, and the results are shown in Figure 6.
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It can be seen from Figure 6 that there is an absolute error of about 5 cm between the
burial depth of the submarine cable calculated according to the IEC standards and its actual
burial depth, and there is an absolute error of about 3.5 cm between the burial depth of the
submarine cable calculated according to the dynamic value of its thermal resistance and the
actual burial depth. Therefore, it is proved that the method of calculating submarine cable
depth based on the dynamic characteristics of its thermal resistance has high accuracy.

4. Prediction Model of Submarine Cable Burial Depth Based on CNN-LSTM
4.1. CNN Neural Network

A CNN is a feedforward neural network with an excellent data feature learning
ability. It is mainly composed of an input layer, a convolution layer, a pooling layer, a fully
connected layer, and an output layer. The structure is shown in Figure 7.
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Based on the temperature–burial depth calculation process for submarine cables
proposed in the previous section, a seabed cable burial depth dataset can be calculated.
However, this dataset has a huge amount of data and strong nonlinearity, so it is necessary
to extract effective information from the seabed cable burial depth calculation dataset to
provide reliable data sources for subsequent burial depth predictions. In this paper, the
CNN convolutional layer’s convolution kernel mechanism is used to extract the features of
the seabed cable burial depth calculation dataset so as to obtain the local features of the
burial depth calculation data and establish a dense and complete feature vector.
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4.2. LSTM Neural Network

LSTM is a modified recurrent neural network. The LSTM structure is shown in Figure 8.
Compared with CNNs, LSTM introduces the concept of a “gate” in the internal structure to
control the internal unit. The LSTM network contains three gate structures: an input gate,
a forget gate, and an output gate. By combining the extracted feature vector Xt, the state
memory cell Ct−1, and the hidden layer state ht−1 with the forget gate ft, the parts of the
state memory cell Ct−1 that need to be forgotten are determined. The eigenvector Xt in the
input gate determines the vector to be retained in the state memory cell Ct−1 after the σ
and tanh activation functions are applied [20].
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In this paper, a CNN neural network is used to mine the feature vectors associated
with the seabed cable burial depth calculation data and time nodes, which are used as
the input parameters of an LSTM neural network for optimization and training. Finally, a
burial depth prediction value for the seabed cable is obtained, and changes in the burial
depth of the seabed cable in the future in the short term can be plotted based on a large
amount of burial depth prediction data.

4.3. Prediction Model

When a submarine cable is in a normal state of operation, due to the influence of ocean
currents or silt deposition, the burial depth of the submarine cable is in a state of slow
variation for a long time; even if there are sudden abnormal conditions, such as trawling,
anchor dragging, and fishing activities, the submarine cable will remain in a single state
after more obvious variations. When an electrical fault occurs in a submarine cable, the
temperature of the cable’s core at the fault location will suddenly and sharply increase, and
it will drive the temperature of the cable’s core to change along the fault location. When a
submarine cable short-circuit fault occurs, the temperature of the cable’s core at the fault
location will suddenly increase greatly, driving a change in the temperature of the cable’s
core within a range of tens of meters along the fault location. When a submarine cable
leakage fault occurs, the temperature of the cable’s core at the fault location will suddenly
increase in a small range, driving a change in the temperature of the cable’s core within a
range of several meters along the fault location, as shown in Figure 9. Because the variation
in the cable’s core temperature caused by the variation in the burial depth of the submarine
cable is much smaller than that caused by an electrical fault in the submarine cable, a
sudden variation in the cable’s core temperature of the submarine cable can effectively
eliminate the influence of the electrical fault in the submarine cable.
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Based on the above analysis, in this paper, the overall process of calculating and
correcting a submarine cable’s burial depth is designed, as shown in Figure 10.
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Due to high labor costs and the many problems associated with the actual detection of
submarine cable burial depths, regular detection is usually conducted every few months or
half a year in actual submarine cable projects. Therefore, there are few measured submarine
cable burial depth data, and these data are very discrete and cannot be used as a prediction
sample for the neural network prediction model. Considering that the calculation error of
the submarine cable burial depth is small, the calculation data of the submarine cable burial
depth are chosen as a forecast dataset. First, a CNN neural network is used to extract the
features of the burial depth calculation dataset, extract the internal relationship between the
time nodes and the burial depth of the submarine cable, construct a one-dimensional feature
vector of the time series, and then input it into the LSTM neural network for optimization
training, obtaining a prediction model for the trend in the variation of the burial depth of a
submarine cable. The training process of the prediction model is shown in Figure 11.



Energies 2024, 17, 2127 11 of 15

Energies 2024, 17, x FOR PEER REVIEW 11 of 15 
 

 

Due to high labor costs and the many problems associated with the actual detection 
of submarine cable burial depths, regular detection is usually conducted every few 
months or half a year in actual submarine cable projects. Therefore, there are few meas-
ured submarine cable burial depth data, and these data are very discrete and cannot be 
used as a prediction sample for the neural network prediction model. Considering that 
the calculation error of the submarine cable burial depth is small, the calculation data of 
the submarine cable burial depth are chosen as a forecast dataset. First, a CNN neural 
network is used to extract the features of the burial depth calculation dataset, extract the 
internal relationship between the time nodes and the burial depth of the submarine cable, 
construct a one-dimensional feature vector of the time series, and then input it into the 
LSTM neural network for optimization training, obtaining a prediction model for the 
trend in the variation of the burial depth of a submarine cable. The training process of the 
prediction model is shown in Figure 11. 

Convoluti
on layer

Convoluti
on layer

Convoluti
on layer

Pooled 
horizon

CNN neural network

LSTM 
unit

LSTM neural network

Prediction model of submarine 
cable burial depth change trend

LSTM 
unit

LSTM 
unit

Data 
set

Calculat
ed value

Correcti
on value

normali
zation

Calculation and correction of submarine cable buried depth

 
Figure 11. Flow of predicting submarine cable burial depth based on CNN-LSTM. 

5. Example Analysis 
5.1. CNN Neural Network 
(1) Data selection: 

In order to verify the feasibility and correctness of the prediction model for the trend 
in submarine cable burial depth changes established in this paper, temperature monitor-
ing data for a submarine cable core belonging to an offshore oil and gas platform were 
obtained for a total of 190 days from 1 March 2019 to 6 September 2019, with a collection 
interval of 5 h. 
(2) Data normalization processing: 

The burial depth calculation dataset of submarine cable was normalized so that the 
whole dataset changed in the range of [0, 1], and the specific conversion function is as 
follows: 

min

max min

' x xx
x x

−
=

−
 (10)

where x′ is the normalized values, xmin is the minimum value of the dataset, and xmax is the 
maximum value of the dataset. After the input buried depth data were normalized to the 
maximum value, the whole data series was distributed in the interval [0, 1]. 

  

Figure 11. Flow of predicting submarine cable burial depth based on CNN-LSTM.

5. Example Analysis
5.1. CNN Neural Network

(1) Data selection:

In order to verify the feasibility and correctness of the prediction model for the trend
in submarine cable burial depth changes established in this paper, temperature monitoring
data for a submarine cable core belonging to an offshore oil and gas platform were obtained
for a total of 190 days from 1 March 2019 to 6 September 2019, with a collection interval
of 5 h.

(2) Data normalization processing:

The burial depth calculation dataset of submarine cable was normalized so that
the whole dataset changed in the range of [0, 1], and the specific conversion function is
as follows:

x′ =
x − xmin

xmax − xmin
(10)

where x′ is the normalized values, xmin is the minimum value of the dataset, and xmax is
the maximum value of the dataset. After the input buried depth data were normalized to
the maximum value, the whole data series was distributed in the interval [0, 1].

5.2. Indicators of Evaluation

In this paper, the mean absolute error (MAE), root mean square (RMSE), and mean
absolute percentage error (MAPE) are adopted as evaluation indices for the results
of the submarine cable burial prediction. The specific calculation formula is shown
in Equations (11)–(13):

MAE =
1
n

n

∑
i=1

|xi − x̂i| (11)

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (12)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣ (13)

where xi is the calculated value of the submarine cable burial depth, x̂i is the predicted
value of the submarine cable burial depth, and n is the length of the buried seabed
cable dataset.
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5.3. Prediction and Analysis of Submarine Cable Burial Depth

In order to further understand the burial depth of the submarine cable in the future
in the short term, based on the characteristics of the cable’s core temperature data, two
different types of cable core temperature datasets were selected to calculate the burial depth
of the submarine cable. Then, the calculated burial depth value was preprocessed and used
as input data for the CNN neural network, LSTM neural network, and CNN-LSTM neural
network so as to obtain the trend in the burial depth changes of the submarine cable via
different prediction models. The results are shown in Figures 12 and 13.
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According to Figure 12 and Table 4, the MAEs of the CNN-LSTM neural network
model decreased by 0.234 and 0.040, the RMSEs decreased by 0.353 and 0.047, and the
MAPEs decreased by 11.69% and 2.02%, compared with those of the single-CNN and
single-LSTM models, respectively.

Table 4. Comparison of different prediction models (Group 1).

Model
Error Value

MAE/10−3 RMSE/10−3 MAPE/10−3

CNN 0.429 0.601 21.43%
LSTM 0.235 0.295 11.76%

CNN-LSTM 0.195 0.248 9.74%
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Figure 13 and Table 5 show that the MAEs of the CNN-LSTM neural network models
decreased by 0.194 and 0.028, the RMSEs decreased by 0.256 and 0.025, and the MAEs
decreased by 9.86% and 1.39% compared with those of the single-CNN and single-LSTM
models, respectively. In addition, the prediction accuracy and prediction efficiency of
the CNN-LSTM neural network model in Figure 13 are greater compared with those in
Figure 12, indicating that the CNN-LSTM neural network model has a better prediction
effect when the burial depth of a submarine cable changes in a large range.

Table 5. Comparison of different prediction models (Group 2).

Model
Error Value

MAE/10−3 RMSE/10−3 MAPE/10−3

CNN 0.323 0.417 16.45%
LSTM 0.157 0.186 7.98%

CNN-LSTM 0.129 0.161 6.59%

In summary, on the basis of nearly identical model training and debugging times, the
CNN-LSTM-based submarine cable burial depth variation trend prediction model pro-
posed in this paper achieves a higher prediction accuracy and greatly improves prediction
efficiency compared with a single model; the submarine cable burial depth values of future
time nodes can subsequently be predicted.

6. Conclusions

In this paper, a prediction model for the burial depth trend of submarine cables
considering the dynamic characteristics of thermal resistance is proposed. Firstly, a parallel
thermal circuit model of a three-core submarine cable is built, and calculated results of
the submarine cable’s burial depth are derived and revised considering the dynamic
characteristics of the thermal resistance of the submarine cable’s structural materials. Then,
a CNN is used to explore in depth the internal relationship between the burial depth
calculation dataset and the time node, and the results are input to an LSTM neural network
for optimized training, resulting in a prediction model for trends in the variation in the
submarine cable’s burial depth. The following conclusions can be drawn from this paper:

(1) There is an inevitable correlation between the temperature of the submarine cable core
and the burial depth of the submarine cable. By building a thermal circuit model of
the submarine cable and combining it with the structural parameters of the submarine
cable, the burial depth of the submarine cable can be calculated.

(2) The error of the submarine cable burial depth value calculated according to the IEC
standard is obviously larger than that calculated according to the dynamic value of
its thermal resistance, which proves that the method of calculating submarine cable
burial depth based on the dynamic characteristics of thermal resistance has high
calculation accuracy.

(3) A CNN is used to explore the internal relationship between the burial depth calcu-
lation dataset and the time node in depth; the results are input to an LSTM neural
network for optimization and training, and a prediction model for trends in burial
depth variation in submarine cables is obtained.

(4) Compared with single artificial intelligence prediction models such as a CNN neural
network and an LSTM neural network, the prediction model for submarine cable
burial depth change trends based on a CNN-LSTM network proposed in this paper
has a higher prediction accuracy and greatly improves prediction efficiency.
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