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Abstract: Despite continuous work on new power systems for vehicles, machines, and devices, the
combustion engine is still the dominant system. The operation of the combustion engine is initiated
during the starting process using starting devices. The most common starting system used is the
electric starter. The starting process of an internal combustion engine depends on the following
factors: the technical condition of the starting system, technical condition of the engine, battery charge
level, lubricating properties, engine standstill time, engine and ambient temperature, type of fuel,
etc. This article presents the results of laboratory tests of the electrical parameters of the starting
process of a single-cylinder compression–ignition engine with variable fuel injection parameters and
ambient temperature conditions. It was confirmed that for the increased fuel dose FD2, higher values
of the measured electrical parameters (Imax, Pmax, and Pmed) were obtained compared to the series of
tests with the nominal fuel dose. Knowledge of the values of the electrical parameters of the starting
process is important not only for the user (vehicle driver, agricultural machinery operator, etc.), but
above all for designers of modern starting systems for combustion engines and service personnel.
The obtained results of testing the electrical parameters of the combustion engine during start-up may
be helpful in designing new drive systems supported by a compression–ignition combustion engine.

Keywords: electrical current consumption; electric starter; technical condition; combustion engine

1. Introduction

Despite continuous scientific and research work on new power systems for vehicles,
machines and devices, the combustion engine is still the dominant system. The internal
combustion engine is practically irreplaceable in the case of large self-propelled agricultural
machines such as combines and agricultural tractors that can work without interruption
during the field work season. It is true that in the case of agricultural tractors there are
attempts to replace tractors powered by combustion engines with electric drives [1–3], but
these are rather marginal applications inside small farms or orchards [4,5].

The diesel engine is currently the most common source of propulsion for road trans-
port, both in the classic system and in the hybrid system, supporting the electric motor.
Research on hybrid systems used to drive motor vehicles is widely described in the available
scientific literature, of which the following studies are worth mentioning [6–8]. According
to the 2023 report presented by the ACEA European Automobile Manufacturers Associa-
tion [9], the share of passenger cars powered by diesel engines in 2021 was 41.9%. In the
case of small delivery vehicles with a load capacity of up to 3.5 tons, it was almost 91%,
while the share of medium and heavy trucks was 96.4%, and in the case of buses, it was
92.5% of the vehicle market.

A compression ignition engine has advantages such as reliability, fuel efficiency, larger
power range, longer lifetime and maintenance period, better torque characteristics, and
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higher power density compared to a spark ignition engine [10]. The diesel engine is the
most fuel-efficient internal combustion engine; however, the performance of a diesel engine
is suboptimal when the engine is cold [11]. Modern piston engines must be character-
ized by high operating efficiency and the lowest possible production of exhaust gases
and noise [12,13]. Also, noise generation from compression ignition engines is a widely
discussed problem in the literature [14–16], and noise emissions from various means of
transport [17–19]. Smoke and noise emission reduction from an internal combustion en-
gine with the addition of ferocene were tested by Sejkorova et al. [15], but they did not
demonstrate a positive effect of using this fuel conditioner. Verner and Sejkorova [20]
conducted research comparing the results of carbon dioxide (CO2) emission measurements
of passenger cars powered by diesel and gasoline engines obtained with PEMS and CVS
measurement systems in laboratory conditions on a dynamometer, in accordance with the
WLTC driving cycle methodology. The results show that there are no statistically significant
differences between CVS and PEMS devices, which are typically used to measure real driv-
ing emissions (RDE) [20]. The issues of examining the composition of exhaust emissions
from a compression–ignition engine are widely discussed in the world literature [21–23]
and also include studies of exhaust emissions generated during engine start-up [24–26].
Currently, most research focuses on, among other things, exhaust emissions generated
during the combustion of alternative fuels to diesel oil. As we know, the first designs of
diesel engines were fueled by vegetable oil [27]. In this area, it is worth mentioning the
following scientific and research works: Ding et al. [28] investigated the use of natural gas
in a diesel engine, Longwic and Sander [29] extensively studied mixtures of rapeseed oil
containing n-hexane, and Labaj and Barta [30] investigated the possibility of using butanol
in a diesel engine. Numerous scientific works focus on the study of biodiesel and its impact
on exhaust emissions, including [31–35]. In research carried out by Imran and Saleh [36], it
was shown that biodiesel from Cresson oil and mixtures with Iraqi diesel oil reduce engine
thermal efficiency and heat release, as well as delay time and cylinder pressure, while
exhaust gas temperature and fuel consumption during braking increase. In the case of
emissions, an increase in the share of nitrogen oxides (NOx) and CO2 was recorded, while
the emission of carbon monoxide (CO), soot, and unburned hydrocarbons (HC) looked
favorable with their decreased values. Ramalingam et al. [37] investigated the possibilities
of obtaining bioenergy from waste foam fat (LFO) and citronella grass (NFCO). Compared
to diesel, the NFCO blend reduced HC, CO, and particulate matter (PM) emissions by
6.48%, 12.33%, and 16.66%, respectively, while CO2 and NOx emissions increased [37]. As
stated by Szyszlak-Bargłowicz et al. [38], the combustion of FAME rapeseed oil methyl
esters resulted in a reduction in PM content in exhaust gases by an average of 40–60%
for engine speeds in the full-load range compared to that from the combustion of diesel
oil. We can say that biodiesel for use in diesel engines has become a substitute for diesel
oil [39]. Furthermore, Dittrich et al. [40] studied the fuel control system when an engine uses
LPG–diesel dual fuel with different LPG proportions. They concluded that CO2 and PM
concentrations are reduced in dual-fuel vehicles. Interesting research on alternative fuels in
dual-fuel diesel engines was also conducted by Cung et al. [41] and Lebedevas et al. [42].
Basically, exhaust emission tests come down to determining the values of four standard
exhaust gas components, but there are researchers, e.g., Mikulski et al. [43], who use FTIR
analysis of exhaust gases where they identify 23 exhaust gas compounds. In order to make
heating systems more efficient and to better understand electricity generation, a number
of studies have been carried out, of which the following are worth mentioning [44–46].
An important area of research when it comes to reducing emissions is also the adsorption
and regeneration of the system, which includes the coupling of physical and chemical
effects [47]. Based on the above considerations, it can be concluded that the issue of emis-
sions is a complex issue in the field of combustion engine research and depends on many
factors. One of them is the emission of exhaust gases during the starting process, where
a larger dose of fuel is needed to initiate the operation of a cold engine, and the exhaust
gas treatment systems with which the engine is equipped are not yet operational. In such
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conditions, at the beginning of engine operation, there are increased exhaust emissions into
the atmosphere. Therefore, the issue of starting a combustion engine is still a current issue
and is constantly being addressed by scientists around the world. And new challenges
leading to “zero emission” are becoming a current challenge for combustion engines.

As is known, the combustion engine must ensure reliable operation for a very long
time [48–51] under variable load conditions. Interesting operational tests of the diesel
engine power system were carried out, among others: Aulin et al. [52], Kamiński et al. [53],
Osipowicz et al. [54], and Punov et al. [55]. Pawlak and Skrzek [56] also modified the
injection strategy in the Common Rail system using vegetable oils. Stoeck [57] presented a
new methodology for testing Common Rail injectors in problematic cases, which extends
the standard diagnostic procedure by analyzing the resultant fields of the dosed fuel.
Moreover, much attention was paid to the issue of diagnosing faults in the fuel supply
system in the following scientific studies by Figlus et al. [58,59] and Szpica et al. [60] and to
the wear of the cylinder liner during the start-up of a compression–ignition engine [61,62].
The operational wear and durability of the piston–rings–cylinder system was investigated
by Czech and Madej [63] and Kowalski et al. [64], the wear of the crankshaft of a marine
engine was the subject of research by Siemiątkowski et al. [65], while measurements of
engine cylinder wear were presented by Jermak et al. [66]. Another study on measuring
diameter uncertainty and roundness deviation for small cylinders was presented by Zhao
et al. [67].

The process of starting a diesel engine, despite many years of research, is a phe-
nomenon that still attracts the attention of many researchers, which is reflected in numerous
scientific works [59,68,69]. Many works are related to starting the engine in conditions
of low ambient temperatures, for example, those of Chu-Van et al. [70], Deng et al. [71],
Pastor et al. [72], and Roberts et al. [73]. Similarly, a lot of research work has been carried
out under hot start conditions, for example, Jaworski et al. [74], Lodi et al. [75], Mitchell
et al. [76], and Zare et al. [77]. When starting a diesel engine, many negative phenomena
and processes are observed that affect not only the engine, but also its surroundings [78,79].
For example, Droździel, in [80], presents the results of tests of the operational electrical
parameters of the start-up of the combustion engine, carried out during vehicle operation.
The starting process is influenced by many factors, such as the quality of the engine oil,
battery charge, technical condition of the engine and starting system, and engine tempera-
ture. The starting process also depends on various settings and strategies as well as the
condition of the engine’s injection system [78,81,82]. The necessary mechanical energy
needed to initiate independent operation of the combustion engine is transferred by driving
the crankshaft using an electric starter [80]. Therefore, the technical condition of the starter
has a significant impact on the successful starting of the combustion engine. The issue of
car electric starters, in detail, are presented in the works by Dziubiński et al. [83,84] and
Plizga [85].

Despite many attempts, replacing the combustion engine with another yet equally
efficient drive source is still a long way off. Despite huge progress in the field of individual
electromobility [86–90] and in the field of public transport [91,92], they still encounter many
barriers [93,94], and space for piston engines is still huge. The opening of new research di-
rections in the field of alternative fuels used for transport modes, such as hydrogen [95–98]
or ammonia [99–101], for powering internal combustion piston engines in various means
of transport pose new challenges for internal combustion engines. Also, in non-road
applications, there is an important share of single-cylinder combustion engines [102].

This article presents selected results of laboratory tests on the electrical parameters of
the start-up of a single-cylinder diesel engine at constant injector opening pressure and fuel
injection advance angle for two fuel doses at ambient temperature. Experimental tests were
carried out on a dedicated laboratory test stand at the Lublin University of Technology.
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2. Materials and Methods

The main elements of the test stand are a single-cylinder, four-stroke engine with
direct fuel injection Ruggerini Diesel RY125 manufactured by Lombardini, Italy, a control
and data recording system, as well as a starting and exhaust gas discharge system. Table 1
contains selected technical data of the research engine and its starter. The starting system
installation voltage is nominally 12 V, the battery’s electrical capacity is 60 Ah, and the
maximum starting current is 570 A. The starting battery was well charged during the
research tests.

Table 1. Ruggerini RY125 series engine technical specification [103].

Parameter Type/Value

Type of cooling Air
Displacement 505 cm3

Power 8.8 kW at 3600 rpm
Maximum torque 31 Nm at 2000 rpm
Number of valves 2
Compression ratio 20:1
Cylinder diameter 87 mm

Piston stroke 85 mm
Number of injector holes 5

Starter voltage 12 V (Bosch 0 001 107 090)
Rated power of starter 1.1 kW

Maximum rotational speed 300 rpm
Direction of rotation Right

Number of pinion teeth 11

The test stand (Figure 1) is equipped with equipment for measuring the characteristic
parameters of the diesel engine start-up process. On the test stand, information about
the position of the engine crankshaft was obtained from the Kübler incremental encoder
8.5820.1312.3600 (Kübler Group, Fritz Kübler GmbH, Villingen-Schwenningen, Germany).
TP-371, TP-372 sensors with a single processing element (Pt100 platinum resistor) were used
to measure cylinder temperature, oil temperature and ambient temperature. The current
drawn by the starter was measured by a LEM sensor, HTA-1000, attached to the starter
power cord. The sensor measures currents in the range of 0 ÷ 1000 A with an accuracy
of ±1% and linearity of ±0.5%. It is equipped with a voltage output of 0 ÷ 4 V and a
frequency response of 40 kHz. The voltage at the battery terminals was measured using a
specially made measuring system based on two 100 Ω resistors connected in series [78].
All measurement signals were recorded using the National Instruments measurement card
DAQPad-6070E (16 imputs, 1.25 MS/s, 12 bit, multifunction ± 5 V).

The tests of the electrical parameters of the start-up process of the diesel engine were
carried out on the so-called cold engine. Cold starts of the engine took place at the first daily
start-up and after a set time from the engine standstill, at 4-h intervals, with the determined
fuel injection parameters and at the ambient temperature. A total of 30 attempts were
made to start the engine in a given test series. The starting tests were carried out with the
following determined engine parameters:

• Static fuel injection advance angle—17.6 ◦CA;
• Injector opening pressure—26 MPa;
• Fuel dose—factory default for idling—FD1, and increased—FD2;
• Idle speed—810 rpm for fuel dose FD1 and 1000 rpm for fuel dose FD2;
• Start-up temperature—in the range of 22.75–23.95 ◦C.

There are multiple definitions of an engine cold start or engine warm up found in
the literature [70,75,104]. In the literature on the subject, there are many possibilities in
evaluating the parameter of start-up time. In these tests, the start-up time was determined
based on the moment a stable rotational speed of the engine crankshaft was obtained.
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On the other hand, the starter operation time was determined on the basis of energy
consumption time at the battery terminals. The parameter ts is the starter operating time
[ms], understood as the time that elapses from the moment the starter is turned on until it
reaches unloaded operation. Imax is the maximum value of the current consumed by the
starter at the beginning of the start-up [A], which is an indirect measure of the resistance
to movement at the start of the engine. The Umax parameter describes the maximum
voltage value measured at the battery terminals just before the engine start-up process [V].
Umin describes the minimum voltage at the beginning of the start-up [V], Uk describes the
voltage at the end of data recording after the start-up [V], and n is the engine speed [rpm].
In Figure 2 is a chart showing the values and parameters of the start-up process recorded
during the test sample.
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Determination of the injector opening pressure was carried out in accordance with the
recommendations included in the BN-84/1301-08 standard [105], on the PRW-3 injector
test stand. The value of the fuel injection advance angle was determined by means of a
stroboscopic lamp ETD019.02 FD268, BOSCH, Germany.

3. Results and Discussion

This part presents the obtained test results for the following start-up parameters: the
maximum current consumed by the starter at the beginning of the start-up—Imax, the
minimum voltage at the beginning of the start-up—Umin, maximum instantaneous starting
power—Pmax, average starting power—Pmed, and starter operating time—ts. Start-up tests
were carried out at ambient temperature, which is widely used in the literature [26,79,106].
The value of the injector opening pressure in both measurement series was 26 MPa. The
tests were carried out with two fuel doses: a nominal fuel dose marked as FD1 and an
increased fuel dose marked as FD2.

Figure 3 presents the distribution of the values of the maximum current consumed by
the starter at the beginning of the start-up for the two measurement series.
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As can be seen in Figure 3, the current value is usually lower for starting attempts in
the first measurement series, i.e., at the nominal fuel dose, FD1. In the case of most recorded
starting attempts, the difference between the series is small, approximately 7 A, and this is
the average value of this parameter. Both series of experiments were performed at a similar
ambient temperature of approximately 23 ◦C. As one can see, increasing the fuel dose
requires more effort, and therefore, the maximum value of the current consumed during
starting is higher in this case. It can therefore be said that with these starting parameters
and a given ambient (engine) temperature, increasing the fuel dose results in a greater
demand for electricity.

Figure 4 shows the distribution of minimum voltage values at the battery terminals at
the beginning of the start-up for the two measurement series.

Analyzing the graph in Figure 4, it can be seen that in the case of the second test
series, i.e., the test with an increased dose of FD2 fuel, lower values of voltage drops
on the starter battery were obtained. This indicates that a larger amount of fuel in the
combustion chamber places a greater load on the starter battery. It should also be noted that
in most cases, very similar voltage values were obtained, and the voltage course is basically
undisturbed. And looking at the trend lines, they run similarly in both measurement series,
which is also confirmed by the correlation coefficient R2.
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Analyzing the course of the parameters in the graph in Figure 5, it can be seen that in
the case of an increased dose of FD2 fuel (second series), higher values of the maximum
starting power occurred, which confirms the obtained values of the previously analyzed
electrical start-up parameters.

Figure 6 presents the distribution of average starting power values Pmed for two
measurement series.

Analyzing the course of the graph in Figure 6, it is difficult to notice the dominant
tendency, but based on empirical data, it can be said that the average starting power Pmed
is higher for a series of starts with the larger fuel dose FD2. This means that in the case
of an increased fuel dose in these ambient conditions (average starting temperature of
23 ◦C), the growth of fuel in the combustion chamber causes a greater demand for electrical
power, i.e., the starter must perform more work than in the case of starting the engine
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with the nominal fuel dose. It should be remembered that temperature has a significant
impact on the start-up process of combustion engines, which is confirmed by numerous
publications [71,79,106,107].
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Figure 7 shows the values of the starter operating times in each series of tests, expressed
in milliseconds ([ms]).
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If we look at the trend line in the case of the starter operation time (Figure 7), we can
see that the second series with an increased fuel dose, FD2, needed more time to start the
engine than in the series with a nominal fuel dose, FD1; i.e., as already stated above, the
starter performed a greater work. However, in the case of these two test series of starting
tests of the diesel engine, the starter operating times, and therefore the engine start-up time,
do not show any major differences. It can therefore be said that with the assumed starting
parameters, fuel supply system, and given ambient temperatures, the starter operating time
shows similar empirical values. For comparison, the values of the starter operating time
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when trying to start the engine can be quoted. Thus, for series 1 (with FD1), the shortest
starter operating time was 621.6 ms, while the longest time was 932.4 ms. In the case of test
series 2, the shortest starter operating time was 562.4 ms, while the longest starter operating
time in this series was 962 ms. Therefore, it can be said that the start-up time is random and
independent of the settings of the engine control parameters, which is also visible in the
interpenetration of the trend lines of both measurement series. The presented values also
indicate slight differences in start-up times between the compared test series. Moreover, it
can be concluded that a higher fuel dose means a larger amount of fuel–air mixture inside
the cylinder, i.e., in the combustion chamber. Compressing a larger volume of refrigerant
causes greater resistance to piston movement and the starting system must overcome the
additional load, providing greater engine torque, which is also visible in a higher value of
starting current (Imax).

The presented research results may be helpful in designing starting systems for
compression–ignition combustion engines and may be a contribution to simulation stud-
ies in this area. Scientists are still very interested in the process of starting an internal
combustion engine [108,109] and new applications. For example, Coronado et al. [110]
investigated the availability of cogeneration systems in extreme areas (Antarctica) for a
waste heat recovery system with a diesel generator using a continuous Markov approach
and a Markov state space model.

4. Conclusions

This paper presents the new results of experimental tests of the electrical parameters of
the start-up process of a single-cylinder diesel engine with variable fuel injection parameters
under positive ambient temperature conditions (approximately 23 ◦C). Experimental tests
were carried out for an engine powered by diesel oil with a 5% share of so-called eco-
additives, but the next steps will be testing the emissions of the internal combustion engine
during start-up and testing alternative fuel use.

This research on the starting process of a combustion engine was carried out at a
constant injector opening pressure of 26 MPa with the variable fuel doses FD1 and FD2.
It was shown that in the case of an increased fuel dose, FD2 (second test series), higher
values of measured electrical parameters (Imax, Pmax, and Pmed) were obtained compared
to the test series with the nominal fuel dose marked as FD1. However, in the case of
starter operation time, slightly shorter starting times were achieved for series 1 compared
to series 2 with an increased fuel dose. It can therefore be summarized that with the given
fuel injection parameters and given positive ambient temperatures (approximately 23 ◦C),
starting attempts carried out with an increased fuel dose are unfavorable because they
resulted in higher current consumption, i.e., they placed a greater load on the starter battery
as well as the starter, which worked with greater power.

In this study, the influence of ambient temperature did not have a major impact on
start-up success because the ambient temperature range was very similar, approximately
23 ◦C, which did not significantly affect the experiments performed. The presented results
of research on the electrical parameters of the combustion engine in the start-up process
may be helpful in configuring other drive systems supported by the internal combustion
engine. These systems do not have to be limited only to powering motor vehicles or
stationary systems for generating electricity; they may be important for service technicians
or for designing new agricultural machines or off-road mobile machinery using internal
combustion engines.
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cation for co-financing of the project no.: POIR.01.01.01-00-0394/20 “Development of an innovative
power supply module for an electric driven bus using hydrogen and methanol as fuel to charge the
vehicle’s battery while in the motion”.

Data Availability Statement: Data are contained within this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Malik, A.; Kohli, S. Electric tractors: Survey of challenges and opportunities in India. Mater. Today Proc. 2020, 28, 2318–2324.

[CrossRef]
2. Stakens, J.; Mutule, A.; Lazdins, R. Agriculture Electrification, Emerging Technologies, Trends and Barriers: A Comprehensive

Literature Review. Latv. J. Phys. Tech. Sci. 2023, 60, 18–32. [CrossRef]
3. Vasile, I.; Tudor, E.; Sburlan, I.-C.; Matache, M.-G.; Cristea, M. Optimization of the Electronic Control Unit of Electric-Powered

Agricultural Vehicles. World Electr. Veh. J. 2023, 14, 267. [CrossRef]
4. Bessette, D.L.; Brainard, D.C.; Srivastava, A.K.; Lee, W.; Geurkink, S. Battery Electric Tractors: Small-Scale Organic Growers’

Preferences, Perceptions, and Concerns. Energies 2022, 15, 8648. [CrossRef]
5. Gorjian, S.; Ebadi, H.; Trommsdorff, M.; Sharon, H.; Demant, M.; Schindele, S. The advent of modern solar-powered electric

agricultural machinery: A solution for sustainable farm operations. J. Clean. Prod. 2021, 292, 126030. [CrossRef]
6. Barta, D.; Mruzek, M.; Kendra, M.; Kordos, P.; Krzywonos, L. Using of non-conventional fuels in hybrid vehicle drives. Adv. Sci.

Technol. Res. J. 2016, 10, 240–247. [CrossRef]
7. Dižo, J.; Blatnický, M.; Semenov, S.; Mikhailov, E.; Kostrzewski, M.; Droździel, P.; Št’astniak, P. Electric and plug-in hybrid vehicles
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