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Abstract: In a renewable-energy-penetrated power system (RPPS), inverter-based resources (IBRs)
pose serious challenges to power system stability due to their completely different dynamic character-
istics compared with conventional generators; thus, it is necessary to study the dynamic interactions
between IBRs and power systems. Although many research efforts have been dedicated to this topic
from both power electronics and power system researchers, some research from the power electronics
field treats the external power system as a voltage source with an impedance, therefore ignoring the
dynamic characteristics of a power system, while most of the research from the power system field
applies simulation-based methods, for which it is difficult to directly interpret the interaction mecha-
nism of IBRs and external system dynamics. Thus, none of these studies can explore the accurate
dynamic interaction mechanism between IBRs and power systems, leading to performance degrada-
tion of IBR-integrated power systems. Our study takes into account the dynamic characteristics of
both IBRs and the external power system, resulting in the development of a new open-loop transfer
function for RPPSs. Based on this formulation, it is observed that under certain operating conditions,
the dynamic interactions between the inverter and the power system help enhance IBR-penetrated
power system stability compared with the case for which the external power system is controlled as a
voltage source. The study also reveals how the inverter (phase-locked loop, control parameters, etc.),
external power system (network strength) and penetration ratio in an IBR-penetrated power system
affect the dynamic interactions between IBRs and the external power system using the proposed
quantified interaction indices.

Keywords: dynamic interaction; stability; inverter-based resource (IBR); network strength; renewable-
penetrated power system

1. Introduction

Out of concern about the quick depletion of fossil fuels and their negative envi-
ronmental impacts, the past decade has witnessed a fast increase in renewable energy
generations [1–3]. However, the integration of renewable energy into the existing power
grid poses new stability challenges due to the different dynamic characteristics of these
IBRs from those of synchronous generators [4,5], which, in turn, often leads to curtailing
renewable generation in order to maintain system stability [6], causing the waste of clean,
renewable generating resources.

To address these challenges, one of the most urgent research topics for power system
planners and operators is to explore and understand the dynamic interaction mechanisms
between IBRs and power systems in order to help develop efficient methods to improve
power system stability and better accommodate IBRs into existing systems. Meanwhile, a
competent understanding of the interaction mechanisms also benefits power electronics
engineers by providing them with more precise inverter design guidance, thus allowing
them to take full advantage of inverter capability while maintaining the stability of the
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power system. Although grid-forming inverter (GFMI) technology is currently a prominent
research area due to its capability to support grid voltage and frequency, the majority of in-
verters deployed today function in grid-following inverter (GFLI) mode. Consequently, this
paper explores the dynamic interactions between GFLI and the grid to better understand
their operational mechanism.

Recent research on the interaction mechanism between IBRs and power systems can
be divided into three categories:

(1) In the field of power electronics, the external power grid is typically considered
as an ideal voltage source with an impedance in renewable energy systems. This
is referred to as a voltage source inverter system (VSIS), which takes into account
various grid strengths and fully models renewable energy generators, particularly
inverters. Based on this model, numerous studies have investigated the influences
of inverter control on system stability as well as controller designs, with a focus on
the impact analysis arising from phase angle tracking. The authors of [7] proposed
a hybrid phase-locked loop (PLL) to improve the inverter’s dynamic performance.
The authors of [8] investigated the small-signal stability in low-inertia power systems
and compared various control strategies through diverse bifurcation studies. The
authors of [9–11] explored why a PLL deteriorates the stability of the inverter system,
the extent of a PLL’s influence, and how to improve the stability of a weak power
system. While these researchers thoroughly account for the dynamic characteristics of
PLLs, overlooking the dynamic characteristics of power systems prevents revealing
the dynamic interactions between the IBRs and power systems.

(2) In contrast to the aforementioned research, some stability studies on RPPSs adopt more
detailed power system models, but they have simplified inverter models. The authors
of [12–14] investigate how a high penetration of PVs affects a power system’s static
performance and transient stability. However, simplified inverter models are adopted
in these studies. The authors of [15] developed a generic wind generator model for
power system stability studies, but the inverter’s PLL dynamics are neglected, which
is, nevertheless, crucial to the stability of a weak power system. In this case, the
incompleteness of the inverter model may lead to the final conclusions deviating from
reality.

(3) Among all the renewable-energy-penetrated power system dynamics studies, simula-
tions are the most widely used approach. The major challenge of simulation-based
approaches is that analysis and control are heavily related to pre-designed scenarios,
making the research conclusions hard to generalize due to the inability to emulate
all the possible operational scenarios [5,16]. Although simulations can analyze a
system’s dynamic characteristics at some operating points, a process of extensive
and repeated simulations is required to study these characteristics across all crucial
operating points. Furthermore, simulation-based approaches also face difficulties
with revealing dynamic interaction mechanisms.

This paper employs a dq-impedance-based stability approach in the frequency domain
to analyze the interaction dynamics and stability of RPPSs by considering the dynamics
of both the IBR and the external power system. The model effectively captures their
interactions by integrating the dynamics of both elements into a new transfer function
matrix. Subsequently, multivariable control theory [17] is used to elucidate the dynamic
interaction mechanisms between the IBR and the power system. In addition, the dynamic
interactions are demonstrated through an RPPS under different factors, such as different
PLLs, control parameters, SCRs and operating points. Furthermore, we also provide
quantified indices to assess the impacts of interactions on stability, which, to our best
knowledge, has not been done before. The major contributions of this paper are three-
fold: (1) introduce a transfer function matrix for the first time that simultaneously contains
dynamic information from both the inverter and the power system, (2) reveal the interaction
mechanism of an IBR and an external power system through dq-impedance models with
the influence of different factors, and (3) develop quantitative indices for the complex
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interactions between an IBR and a power system. The research outputs of this work are
of value not only to power system planners and operators, as the work sheds insights on
the dynamic interaction mechanisms between IBRs and power systems, but also to power
electronics engineers, as it provides useful guidance for inverter controller design with
power system stability being considered.

The rest of the paper is structured as follows. Section 2 provides detailed modeling of
the dynamic interactions of the RPPS and deduces the open-loop transfer function matrix.
The dynamic interaction mechanism of the system is then explored using multivariable
frequency domain control theory in Section 3. The consistency of dynamic interaction
characteristics between theoretical analysis and simulation is then verified in Section 4.
Section 5 concludes the whole paper.

2. Modeling Dynamic Interactions between an IBR and a Power System

For the sake of convenience, this paper analyzes a three-phase power system under
the synchronous rotating reference frame (SRF), where the variables of the power system
are described in the dq-vector form: xabc → xdq := (xd, xq), while the dq components of
the inverter are under the inverter’s SRF. Therefore, the state and control variables of the
IBR, SG, transmission line and load can be summarized in (1), (2) and (3), respectively.
A coordinate transformation between the system reference and the inverter reference is
required [18]. 

x⃗c =
[
is
cdq, vs

f dq, Ps
LPF, Vs

f LPF, i∗cdq, v∗cdq,
vdc, i∗dc, ωPLL, θPLL

]
u⃗c =

[
Pre f , Vf re f , vdcre f

] (1)

 x⃗g =
[

E′
q, igdq, vgdq, ωg, δ

]
u⃗g =

[
Pgre f , E f , vgre f

] (2)

 x⃗cg =
[
ildq1, ildq, ildq2, i f dq, v f dq, igdq, vgdq

]
u⃗cg =

[
i f dq, v f dq, igdq, vgdq

] (3)

Figure 1 shows an inverter-connected power system with a detailed control diagram
of the GFLI. The transfer function model of the inverter has been widely studied in power
electronics research papers and will be cited below while referring interested readers
to [19–21]:

Yc(s) =
∆icdq
∆v f dq

=

 s2Vf +icd(sL f /ωb+R f )ωiωp

(sL f /ωb+R f )Vf (s2+ωi(s+ωp))
icq(sGPLL(s+ωi)+ωiωp)

Vf (s2+ωi(s+ωp))

− Imaxωiωv
sVf (s+ωi)

sVf −GPLL(sVf +icd(sL f /ωb+R f )(s+ωi))
(sL f /ωb+R f )Vf (s+ωi)

 (4)

where GPLL is the transfer function of the PLL control loop; Vf is the amplitude of the
inverter output voltage; Imax is the maximum output current of the inverter; and ωp,
ωv and ωi are the bandwidths of the active power loop, voltage loop and inner current
loops, respectively.

Figure 2 shows the interaction model used in our work. The major modeling difference
between other works and ours is demonstrated by comparing Figures 1 and 2. Other
research works model the external power system as an ideal voltage source with series
impedance, while herein we are going to establish a transfer function model of the external
power system, including transmission lines, load and generator dynamics. Thus, in their
models, vgodq and Zg (i.e., Zgequ in Figure 1) are real vectors/matrices, but in our models,
they are all transfer functions of the complex frequency (s), with the closed-loop transfer
function model of the whole system as:
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∆icdq = (∆icodq − Yc(s) · ∆vgodq) · 1
I+Yc(s)·Zg(s)

. (5)

From (5), it can be seen clearly that Yc(s)Zg(s) is the open-loop transfer function of the
system and is a perfect candidate to explore the interaction mechanisms between IBR and
the external power system, as Yc(s) represents the dynamics of the inverter, while Zg(s) is
the dynamics of the external power system.
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Figure 1. Control diagram of the grid-following inverter.
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Figure 2. Schematic of the investigated 2-bus system.

2.1. Transfer Function on External Power System Dynamics

Without losing generality, the third-order SG model is adopted here as follows [22].
Undoubtedly, higher-order generator models can likewise be incorporated.

dδ
dt = ωb(ωg − 1)
dωg
dt = 1

TJ
(Pm − Pe − Dωg)

T′
d0

xd−x′d
dE′

q
dt =

E f
xd−x′d

− xdE′
q

x′d(xd−x′d)
+

Ug
x′d

cos δ

(6)
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where Pm and Pe are the mechanical and electromagnetic power, respectively, of the genera-
tor. The interface of SG and the network is modeled as follows:{

vgd = −igdr − jigqxq
vgq = E′

q − igqr − jigdx′d
. (7)

Here, we apply a Laplace transform on Equations (6) and (7); then, combining the
results through algebraic manipulation in the frequency domain yields:[

∆vgd
∆vgq

]
=

[
−r xq

Gx′d Gr

][
∆igd
∆igq

]
+

[
0

G∆Pm

]
(8)

where the details of Gx′d
, Gr and G∆Pm are shown in Appendix A.

Furthermore, the transmission lines and loads can be modeled as (9). The nodal
current balance constraint in the network is modeled as (10).

dv f dq
dt =

ωbil1dq
Cl1

− jωbω∗v f dq
dilcdq

dt =
ωbv f dq

Lzlc
− (ωbRzlc

Lzlc
+ jωbω∗)ilcdq

dvgdq
dt =

ωbil2dq
Cl2

− jωbω∗vgdq
dilgdq

dt =
ωbvgdq

Lzlg
− (

ωbRzlg
Lzlg

+ jωbω∗)ilgdq
dildq

dt =
ωb(v f dq−vgdq)

Ll
− (ωbRl

Ll
+ jωbω∗)ildq

(9)

{
icdq − ilcdq − il1dq − ildq = 0
igdq − ilgdq − il2dq + ildq = 0

(10)

Apply again the Laplace transform on Equations (9) and (10) and then eliminate
the algebraic variables ilcdq, il1dq, ildq, ilgdq and il2dq. The transfer function matrix of the
external power system dynamics, which takes into account the dynamics of generator and
transmission lines as well as loads, can be succinctly formulated as follows:

[
∆vgdq
∆igdq

]
=

 − Ycj
Ycjgk

1
Ycjgk

Y2
cjgk−YcjYgk

Ycjgk

Ygk
Ycjgk

[ ∆v f dq
∆icdq

]
(11)

where ∆vgdq, ∆igdq, ∆v f dq and ∆icdq are complex variables; the expressions of Ycj, Ygk and
Ycjgk can be found in Appendix A.

2.2. Modeling Dynamic Interactions

Following the arguments below Equation (5), the equivalent impedance of the power
system Zg(s) needs to be solved in order to use Yc(s)Zg(s) for modeling the interactions
between the IBR and the external dynamic system. For ease of understanding, pure resistive
loads are utilized in this study. Nevertheless, it is noteworthy that the methods are also
applicable to any other load models. Combining (8) with (11) gives:[

∆v f d
∆v f q

]
= (Bj1−XjYj)

−1(XjBj2−Zj)

[
∆icd
∆icq

]
+(Bj1 − XjYj)

−1
[

0
G∆Pm

] (12)

where the details about Zj Xj, Yj, Bj1 and Bj2 can be examined in Appendix A.
Then, the impedance of the external power system can be expressed as:

Zg(s) = (Bj1 − XjYj)
−1(XjBj2 − Zj) . (13)
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It should be noted that Zg(s) in (13) retreats into Zgs of (14) when the dynamics
of the external power system are neglected. Furthermore, the system’s short-circuit ra-
tio (SCR), which is widely used to assess the strength of a power system, is actually
SCR = 1

∥Zgs∥ [19]. Therefore, both Zgs and SCR are special cases of the general expression

of Zg(s) proposed here.

Zgs =
1

1
Rzlc

+ 1
1

1
Rzlg

+ 1
r+j·xd

+j·Ll (14)

From Equation (14), if the external power system is represented by a voltage source
with internal impedance, the impedance can be simplified into a matrix form:

Zgequ =

[
sLg/ωb + Rg −Lg

Lg sLg/ωb + Rg

]
(15)

where Rg = Re[Zgs] and Lg = Im[Zgs].

3. Dynamic Interactions Analysis

By applying the dynamic interaction model proposed in Section 2, this section analyzes
the impact of various factors (SCR, PLL, control parameters and penetration ratio) on the
stability of the entire system resulting from the dynamic interaction between the IBR and
the external system. Case study parameters are shown in Table 1 [19].

Table 1. Parameters of the inverter.

Description
System Parameter

Symbol Value

Output voltage amplitude, base value U f b 8163.97 V
Active power, base value Pn 10 MW
Current, peak value Imax 816.6 A
Filter inductance L f 0.33 p.u.
Filter resistance R f 0.00341 p.u.
Filter capacitance C f 0.015 p.u.
Bandwidth of the inner current loops ωi 1000 rad/s
Bandwidth of the voltage loop ωv 50 rad/s
Bandwidth of the active power loop ωp 10 rad/s
Natural angular frequency of the PLL ωpll 200 rad/s
Cut-off angular frequency of the LPFs ωLPF 200 rad/s

Since the transfer function models of the interaction have been established, Bode
plots become a handy instrument to study how various control, network and operational
factors influence the dynamic interactions between the IBR and the external power system.
While the complicated interactions in the time domain can become much clearer when
they are observed in the frequency domain, it is still challenging to quantify the interaction
level. This issue becomes severe when considering a multi-input–multi-output (MIMO)
dynamic system, as the proposed transfer function model matrix reflects the input/output
characteristics of the entire system, while Bode plots can only reflect the channel-to-channel
frequency characteristics.

To further quantify the interaction, the generalized Nyquist criterion (GNC) [21,23] is
utilized by extending the classical Nyquist diagram into MIMO dynamic systems. It should
be noted here that although GNC has been widely used in power electronics studies, it is
rare to see its applications in power systems. Based on (4), (13) and (15), the generalized
Nyquist diagram of the open-loop transfer function YcZg and YcZgequ is shown in Figure 3
for a weak power system with SCR = 1, where λ1 and λ2 are the eigenvalues of the
respective transfer function matrix. The term (margin) can then be defined as 1 + L, with L
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being the value of the leftmost point in the generalized Nyquist diagram. The motivation
to use this margin to reflect the dynamic interaction between the IBR and the system
is two-fold: (1) it is a quantified value with clear and important physical meaning, as
it measures the distance of the whole dynamic system towards being unstable; (2) it is
an immediate consequence of the interactions between various IBR (Yc(s)) and external
system dynamics (Zg(s)).
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Figure 3. Nyquist plot of YcZgequ and YcZg with SCR = 1. (a) Nyquist plot of YcZgequ and (b) Nyquist
plot of YcZg .

This section will utilize the mentioned methods to analyze the dynamic interactions
between the IBR and the external system. The analysis will be conducted under various
factors such as grid strength, PLL, controller parameters and penetration ratio. To clearly
and concisely describe system characteristics, henceforth we use pllmode = 1 and 2 to indi-
cate the classical PLL controller design and the ideal PLL (which can always achieve phase
tracking), respectively, and use statemode = 1 and 0 to indicate RPPS and VSIS, respectively.

3.1. SCR and Dynamic Interaction
3.1.1. RPPS with Different SCRs

SCR is a widely used grid strength index. Calculating SCR does not consider the
system dynamics and is based on the grid impedance Zgequ in (14). Typically, the power
system is considered strong when SCR ≥ 3 and weak when SCR < 3 [24]. The Bode plots of
Zgequ and Zg at SCR = 1 (weak system) and 3 (strong system) are shown in Figure 4. Here, to
reflect that both Yc and Zg are matrices, the following symbols are used: Yc = {Yc(DD), Yc(DQ);
Yc(QD), Yc(QQ)}, Zg = {Zg(DD), Zg(DQ); Zg(QD), Zg(QQ)} and YcZg = {YcZg(DD), YcZg(DQ);
YcZg(QD), YcZg(QQ)}, where DD and QQ channels are decoupling channels, while DQ and
QD channels are coupling channels.

Figure 4 shows that when the angular frequency ω > 2 rad/s, the amplitudes of
Zg3(DD) and Zg3(QQ) are smaller than those of Zg1(DD) and Zg1(QQ), respectively. This
results in a reduction in the amplitudes of all channels of YcZg3, which can help to decrease
the error in the control variable (∆icodq) and output variable (∆icdq), as per Equation (5).
Then, when ω < 15, 000 rad/s, the amplitudes of Zg3(DQ) and Zg3(QD) are smaller than
those of Zg1(DQ) and Zg3(QD), respectively. This means that in a stronger power system,
there is smaller dq-axis coupling, which is important for power electronics engineers for
controller design as it reduces the requests for compensation in the dq-coupling in controller
design and facilitates achieving the desired control objectives in each axis. Additionally,
when systems with different SCRs have the same Yc, the difference between YcZg1(DD)

(YcZg(DD)=Yc(DD)Zg(DD)+Yc(DQ)Zg(QD)) and YcZg3(DD) mainly comes from the difference
between Zg1(DD) and Zg3(DD) because the coupling terms have less effect. Specifically, at
a frequency of approximately 1770 rad/s, the magnitude of YcZg3(QQ) is much smaller
than that of YcZg1(QQ), and both of them are below 0 dB, indicating that YcZg3 has greater
stability margins. This is in line with the results shown in Figure 5, which shows how the
proposed interaction index changes with respect to changes in the grid strength.
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Figure 4. Bode plots of Zg , Zgequ, YcZg and YcZgequ with different SCRs. The numbers in the
subscript represent the values of SCRs.

Therefore, a system with higher SCR has lower coupling between the d-axis and q-axis,
lower control error and higher interaction index. On the other hand, for power electronics
engineers, a power system with a higher SCR also means the controller is more easily
designed and more robust.

3.1.2. RPPS vs. VSIS

As shown in Figure 4, in the middle-frequency range, under the same SCR, there is
a noticeable similarity in the frequency responses of both Zg and Zgequ in all channels.
However, over almost the entire frequency range, Zg(DD) and Zg(QQ) have a lower mag-
nitude than Zgequ(DD) and Zgequ(QQ), respectively. This indicates that the system has a
lower control error regarding any changes in the input if the system’s dynamic is consid-
ered compared with the VSIS model. In the high-frequency range, the magnitudes of all
channels of Zgequ are higher than those of Zg , suggesting that the system is more prone to
high-frequency oscillation in VSIS.

In the middle-frequency domain, Bode plots of YcZg and YcZgequ have similar shapes
in all channels, which means the two systems have similar dynamics within this frequency
range. Moreover, Figure 4 shows that, compared to YcZgequ, the magnitudes of all channels
of YcZg attenuate extremely fast at high frequencies, indicating that there is much lower
possibility of high-frequency oscillations in RPPS. YcZg(QQ) and YcZgequ(QQ) have almost
the same phase Bode plots when the external power systems have the same SCR. How-
ever, when ω = 1770 rad/s (268 Hz), YcZgequ1(QQ) has almost no stability margin, while
YcZg1(QQ) still has a stability margin. This indicates that RPPS is more stable than VSIS
under these conditions as dynamic interactions between IBR and the power system are
taken into account, which is consistent with Figure 3.
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Figure 5 shows that the dynamic interaction index increases with increasing SCR. It
can be seen clearly for a very weak power system that the interactions between IBR and the
external system have discernible differences for different external system dynamics (RPPS
and VSIS). The increasing SCR can help reduce the impact of external system dynamics
on its interactions with IBR. It can also be observed that RPPS always lies above VSIS,
indicating that the interactions between the external system dynamics and the IBR actually
improve the system stability level. This can be attributed to the frequency spectrum
dynamic performances introduced by the coherent inertia of the generators, as can be
observed through the Bode plot studies in Figure 4.

RPPS(pllmode=1)

VSIS(pllmode=1)
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Figure 5. Margins of RPPS and VSIS with different SCRs. The margin value comes from the GNC of
the system’s open-loop transfer function.

3.2. PLL and Dynamic Interaction
3.2.1. RPPS with different PLLs

Figure 6 demonstrates how the PLL influences the characteristics of the IBR and then
affects the interaction between IBRs and the external power system when SCR = 1. Yca f
(a new Yc when the PLL of the IBR is ideal) still has the same characteristics as Yc in DD
and QD channels, but when 3 rad/s < ω < 2000 rad/s, the magnitude of Yca f (DQ) is smaller
than that of Yc(DQ), which can reduce the coupling between the d-axis and q-axis of Yca f .
When ω < 300 rad/s, the magnitude of Yca f (QQ) is smaller than that of Yc(QQ), which is
beneficial for Yca f to improve system stability. When ω = 1770 rad/s and the phase equals
−180 degrees, the magnitude margin of YcZg(QQ) is very small, which can potentially cause
the system to become unstable. However, at a frequency of 300 rad/s and a phase angle of
−180 degrees, Yca f Zg(QQ) still has a significant magnitude margin.

Several researchers have examined the effects of PLLs on the system to improve PLL
performance to increase system stability in weak power systems [7,9,10,19]. Different from
such studies, this paper provides an intuitive demonstration of the PLL’s impacts on the
system dynamics using the proposed interaction index, which can provide guidance for
power electronic engineers to enhance PLL design. Figure 7 shows how the proposed
interaction index changes under the influence of the PLL and the change in Icq, which
represents different operating points. When pllmode = 2, the system has an improved
interaction index, demonstrating that PLL has a negative impact on the interactions between
IBR dynamics and the external power system.
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Figure 6. Bode plots of Yc, Yca f , YcZg , Yca f Zg under the effect of PLL.
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Figure 7. Stability margins of RPPS and VSIS under the effect of PLL. The variable Icq represents the
per-unit value of IBR, and different values of Icq indicate that the system operates in different states.

3.2.2. RPPS vs. VSIS

Based on Figure 7, it is evident that the interaction indices of RPPS and VSIS remain
similar across different operating points when utilizing an ideal PLL. For the system with a
traditional PLL, the index of RPPS is above that of VSIS for most operation points, which
demonstrates that the interactions between external system dynamics and IBR dynamics
increase the whole system’s stability level, which is consistent with the observations from
Figure 6. This also indicates that the dynamic interactions between the IBR and the external
system hinge heavily on the interactions between the PLL and the external dynamics.
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3.3. Control Parameters and Dynamic Interaction

Selecting the bandwidths for different control blocks in an IBR is critical in inverter
controller design. Five bandwidths need to be decided in Figure 1: namely, ωi, ωv, ωp,
ωpll and ωLPF, corresponding to the bandwidths of inner current loop, voltage loop, active
power control loop, PLL controller and the low-pass filter, respectively. Among them, ωi
and ωpll have the most significant influence on the interaction. Based on Figure 8, varying
combinations of ωi and ωpll result in different frequency responses for Yc and thus different
effects on YcZg . Specifically, (1) Yc1 and Yc4, as well as Yc2 and Yc3, have the same ωi and
exhibit the same frequency response in the DD and QD channels, indicating that ωpll has
no effect on these two channels; (2) Yc1 and Yc2, as well as Yc3 and Yc4, have the same ωpll
and the same frequency response in the DQ and QQ channels, suggesting that ωi has little
effect on these two channels; (3) optimal stability occurs at ωi = 3000 and ωpll = 50, where
the phase angle equals −180 degrees and the amplitude margin of Yc3Zg(QQ) is the largest,
which is consistent with the peak point in Figure 9.
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Figure 8. Bode plots of Yc and YcZg with different controller parameters (ωi and ωpll). The numbers
in the subscript represent different combinations of control parameters: “1” means ωi = 1000 rad/s
and ωpll = 200 rad/s, “2” means ωi = 3000 rad/s and ωpll = 200 rad/s, “3” means ωi = 3000 rad/s
and ωpll = 50 rad/s, and “4” means ωi = 1000 rad/s and ωpll = 50 rad/s.

The proposed index can be used to evaluate the dynamic sensitivity of the system
stability with respect to these key control parameters. Figure 9 illustrates how the index
changes regarding the different combinations of ωi and ωpll . The figure of contours shows
the region where the choice of ωi and ωpll can make the whole system unstable as well
as how to tune the key parameters of the IBR to increase the whole system’s stability
by leveraging the interaction between the IBR and the external system dynamics. Both,
we believe, are very beneficial to power electronics engineers for IBR controller design.
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Therefore, this paper can form a handy tool for inverter controller designers for finding
reasonable parameters with system stability being considered. It should also be noted that
from Figure 9b, in the region where ωi > 1200 rad/s and ωpll > 50 rad/s, the dynamic
interaction between the IBR and the generator dynamics contributes to improvement in the
stability level compared to that between the IBR and the static external system.

500 1000 1500 2000 2500 3000

50

100

150

200

250

RPPS

VSIS

RPPS

VSIS

(a) (b)

Figure 9. Impact of controller parameters (ωi and ωpll) on the stability of the system in RPPS and
VSIS. In (b), the solid line represents RPPS and the dashed line represents VSIS. (a) Change in index
with respect to current loop bandwidth and PLL bandwidth. (b) Contours of margin.

3.4. Penetration Ratio and Dynamic Interaction

The ratio between the IBR’s real power output and the total generation in the whole
system is widely used as a measure of the IBR’s penetration level. As shown in Figure 10,
when the penetration ratio equals 0.25 or 0.75 and the angular frequency ω > 100, Yc1 and
Yc2, as well as Zg1 and Zg2, have very similar frequency responses in DD, DQ and QD
channels. However, the magnitude of Yc1(QQ) is smaller than that of Yc2(QQ), which leads
to the magnitude of Yc1Zg1(QQ) being much lower than 0 dB compared to Yc2Zg1(QQ) when
the phase angle equals −180 degrees. Therefore, a lower penetration ratio can result in
better stability for the RPPS.

From Figure 11, it can be seen that the interaction index decreases with the increase in
the penetration ratio regardless of the power system model adopted. As this interaction
index aligns with the stability level of the whole system, the decreasing index with the
increase in IBR penetration indicates that the GFLI reduces the stability level of the system,
and its negative impacts increase along with the penetration level.

Furthermore, when using the VSIS model, the interaction index declines more quickly
with respect to the increase in IBR penetration. Specifically, the critical value of the penetra-
tion ratio using the VSIS model is approximately 0.6, whereas, with the RPPS model, it is
approximately 0.8, which means that the interactions between the IBR and VSIS have more
severe adverse impacts on the stability of the system. This confirms the earlier observa-
tion that interaction between the IBR and generator dynamics might improve the system
stability under certain operational scenarios as outlined in Section 3.1.2.
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Figure 11. Dynamic interaction index with different IBR penetration levels.

4. Simulation Results

Numeric simulation studies are carried out to validate the developed IBR-integrated
power system model and the correctness of the proposed index. Detailed Simulink models
corresponding to the analytical models in Section 2 are developed. The steady-state values
are shown in Table 2, and the controller parameters of the IBR are identical to those in
Table 1.
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Table 2. Design parameters of the simulation.

Description
System Parameter

Symbol Value

D-axis component of inverter output current icd 0.25 p.u.
Q-axis component of inverter output current icq 0.156 p.u.
D-axis component of initial output voltage vgd 0.677 p.u.
Q-axis component of initial output voltage vgq 0.736 p.u.
D-axis component of initial output current igd 0.75 p.u.
Q-axis component of initial output current igq 0.66 p.u.
Load at the inverter side Rzlc 60 p.u.
Load at the SG side Rzlg 0.803 p.u.
Inductance of the transmission line Ll 2.59 p.u.

Based on the system’s designed parameters and the operation point, the interaction
index of RPPS is 0.22, indicating that the system is stable. However, the interaction index
of VSIS is around 0.077, which is at the edge of stability. The trajectories of IBR voltage and
active and reactive power are shown in Figure 12 for two different dynamically interacting
systems in the paper. The disturbance is created by adding a 3 MW load at the inverter
terminal bus between 5 s and 5.1 s. The simulation results fully validate the theoretical
analysis results: (i) the RPPS shown in Figure 12a remains stable after experiencing the
numerical disturbances; (ii) the VSIS shown in Figure 12b, although still stable initially due
to the positive interaction index, finally loses its stability because of the disturbance, which
confirms it is at the edge of stability. Compared with the frequency domain analysis in
the previous sections, it should be noted that the time domain simulation reveals whether
a system is stable or unstable, but it cannot clearly provide the margin to instability and
unveil how the IBR interacts with the external system dynamics to affect system stability.
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Figure 12. Voltage, active power and reactive power at C-bus of RPPS and VSIS. (a) RPPS (SCR = 1).
(b) VSIS (SCR = 1).

As described in Section 3.1, the interaction index of RPPS is 0.22 when SCR = 1,
whereas the interaction index is 0.76 when SCR = 3. This means the RPPS with SCR = 3
has a larger stability margin and very strong anti-interference capability owing to its larger
interaction index compared to the RPPS with SCR = 1. To verify that systems with various
SCRs have different interaction indices, we build two other simulations for which these two
systems with different SCRs remain stable before 5 s and then suffer from a disturbance,
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as shown in Figure 13. The disturbance is created by adding a 5 MW load at the terminal
bus of the inverter between 5 s and 5.1 s. The simulation results show: (i) the RPPS with
SCR = 1 shown in Figure 13a loses stability after the disturbance; (ii) the RPPS with SCR = 3
shown in Figure 12b remains stable after the disturbance, which is attributable to its higher
positive interaction index.

Combining Figure 12 and Figure 13, it can be observed that the RPPS with SCR = 1
can withstand a 3 MW disturbance but loses stability under a 5 MW disturbance. However,
the RPPS with SCR = 3 is capable of maintaining stability when suffering from the 5 MW
disturbance, which is a result of its larger interaction index compared to that of SCR = 1.
Therefore, the interaction index provides an intuitive way to reflect all factors that impact
system interactions.
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Figure 13. Voltage, active power and reactive power at C-bus of RPPS with different SCRs. (a) RPPS
(SCR = 1). (b) RPPS (SCR = 3).

5. Conclusions

This paper derives a new transfer function matrix of a system by considering both
the dynamic characteristics of the IBR and the external power system simultaneously for
the first time. Not only can the respective dynamic characteristics of the IBR and the
external system be revealed by analyzing the newly developed transfer function matrix
from a frequency domain perspective, but we can also determine how they interact with
each other. This paper proposes a numerical index to quantify the interaction impacts of
inverter-based resources (IBRs) on overall system stability. Through a detailed examination
of the dynamics between the IBR and two distinct external power system models, we find
significant differences in stability outcomes, highlighting the critical need for in-depth
studies of these interactions. Furthermore, the study conducts an extensive sensitivity
analysis of the system’s stability in relation to network strength, control components,
controller parameters and penetration levels. These insights are invaluable for power
system planners, operators and inverter design engineers and offer targeted guidance
for enhancing system robustness. Extending research to a grid-forming inverter and a
multi-machine power system is undergoing.
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Abbreviations
The following abbreviations are used in this manuscript:

SG Synchronous generator
RPPS Renewable-penetrated power system
VSIS Voltage source inverter system
PLL Phase-locked loop
SRF Synchronous rotating reference frame
SCR Short-circuit ratio
GNC Generalized Nyquist criterion
IBR Inverter-based resource
i∗cdq Reference value of inverter output current
v∗cdq Reference value of inverter output voltage
ωPLL PI output value in the PLL
Pre f , Vf re f Reference values of inverter’s power and voltage
E f Excitation voltage of an SG
E′

q Q-axis transient electromotive force of an SG
ωg Angular frequency of an SG
δ Phase of rotor of an SG
ildq Current on transmission line
v f dq Output capacitor voltage of inverter
igdq, vgdq Output current and output voltage of an SG
Pgre f , vgre f Reference values of SG’s output power and voltage
icdq, vcdq Output current and output voltage of an inverter
∆icodq Small signal for equivalent current source of inverter
∆vgodq Small signal for equivalent voltage source of SG
D, TJ Damping coefficient and inertia coefficient
T′

d0 D-axis transient time constant of SG

Appendix A 

Gx′d =
−GEqvgd+GEqrigd−x′d

GEqigq+1

Gr =
−GEqvgq−GEqxqigd−r

GEqigq+1

G∆Pm =
GEq ·∆Pm
GEqigq+1

GEq = − (xd−x′d)vgd
(sx′dT′

d0+xd)s/ωb ·(sTJ+D)
.

(A1)
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