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Abstract: Using zirconia toughened alumina (ZTA) particles and Ni–Ti complex powders as raw
materials, high-Cr cast iron reinforced by ZTA particles was prepared by an infiltration casting
process. A continuous transition layer formed at the interface between ZTA particles and the Cr15
matrix, which proves that there is strong metallurgical interfacial bonding at the interface. The phases
in the Ni–Ti layer of the ZTAP/Fe composite were preserved compared with the microstructure of
sintered ZTA ceramic preform. The hardness of the Ni3Ti, TiO and AlNi2Ti phases in the interfacial
transition layer was measured by the nano-indentation method, which is 12.5 GPa, 16.1 GPa and
9.2 GPa, respectively. The three-body wear resistance of the composite reached 12.6 times that of
high-Cr cast iron.

Keywords: iron matrix composite; ceramic particle; slurry coating; three-body abrasive wear

1. Introduction

Hard ceramics have high hardness, advanced temperature stability, desirable stiffness and
favorable corrosion resistance, which means they are widely used as cutting tools, wear resistant parts,
aircraft components, etc. [1–4]. In particular, hard ceramics are extensively used as reinforcement for
fabrication of particles reinforced iron matrix composites (PRIMCs). PRIMCs are of great industrial
importance not only because the iron matrix is inexpensive, but also because the particles demonstrate
superior properties of high elastic modulus, superior hardness and wear resistance [5–8]. PRIMCs are
widely used in strong impact or high stress wear conditions, such as a hammer crusher, vertical mill
grinding roller and grinding disc.

Among many PRIMCs, ZTAP/Fe composites have become a kind of promising wear resistant
material, mainly because of the outstanding thermal physical and mechanical properties of ZTA
ceramics [5]. Generally, the physical properties of ZTA varied over a relatively large range by
modifying the proportion of ZrO2 for different working demands [9–13]. The difference in thermal
expansion coefficient (TEC) between ZTA ceramic (7.8–20 × 10−6 ◦C−1 [5,14]) and iron matrix
(9.2–16.9 × 10−6 ◦C−1 [15]) is lower than other hard ceramics, such as WC (3.8 × 10−6 ◦C−1 [5]),
α-Al2O3 (6.4–7.5 × 10−6 ◦C−1 [16]), α-SiO2 (0.5–4.1 × 10−6 ◦C−1 [17]) and SiC (4.1–4.6 × 10−6 ◦C−1 [18]).
The high hardness (12–20 GPa [19,20]) and special self-toughening property of ZTA enable the potential
excellent wear resistance of ZTAP/Fe composites under severe wear conditions (e.g., high-stress wear
condition, high impact wear condition, etc.).
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However, the ZTA is hardly wetted by molten iron, and the mechanical bonding is easily formed
at the interface between ZTA and iron; thereby the ceramic particles at the surface of the composite
may be stripped under severe wear conditions. In order to improve the interfacial bonding property,
Sui et al. [21] prepared a kind of ZTAP/Fe composite by an infiltration casting process; the TiO2 powder
and Na2O·nH2O·SiO2 solution were coated onto ZTA particles, and an interfacial transition layer
formed between ZTA particles and iron matrix after casting, which mainly contains amorphous Na4SiO4

phases. In our past work [22], we developed a nickel-plating process to deposit ZTA particles, which
benefited the interfacial bonding behavior and therefore the three-body wear resistance. However,
the interfacial bonding mechanism is still a mechanical bonding. By employing Ti and Si elements at the
Al2O3P/Fe interface, Bahraini et al. [23] prepared a steel-based composite by using different infiltration
atmospheres, where the chemical reaction could be observed in the interface. Vasic et al. [24] studied
the chemical reaction between molten iron and Al2O3 ceramic plate deposited by Ti elements on the
surface, and they found a large number of irregular Fe–Ti alloys formed at the interface between Al2O3

ceramic and iron. Inspired by the above studies, the Ni–Ti powder mixture, designed as an interfacial
transition layer, was introduced into the interface of ZTAP/Fe composites in this work. The interfacial
bonding characteristic between ZTA and iron was analyzed; the three-body abrasive wear test was
performed, and its wear physical mechanism is proposed.

2. Materials and Methods

2.1. Preparation of Composite

The ZTA particles (~1 mm in diameter, containing ~80 vol.% ZrO2), were chosen as reinforcement
for the high-Cr cast iron matrix composite. An infiltration process, summarized below, produced the
ZTAP/Fe composites.

The first step was a slurry coating process, as shown in Figure 1a. This included: (i) Ni and
Ti elemental powders (40–50 µm) were totally mixed in ethanol by alumina milling balls for 24 h.
(ii) The slurry was prepared by dispersing the Ni–Ti powder mixture homogeneously in polyvinyl
alcohol (PVA) solution by a constant-temperature magnetic agitator; PVA solution was feasible as
slurry for various powders, such as Ti, Al, Fe, Ni, etc., because powders in PVA solution have excellent
dispersibility and good stickiness [25–28]. (iii) The mesh with ZTA particles inside was dipped into the
slurry. (iv) The mesh with ZTA particles inside was taken out of the slurry and dried in a vacuum
drying oven at 100 ◦C. (v) Procedures (iii) and (iv) were repeated several times so that the coatings on
the particles could be obtained.

The second step was preparation of the preform, which was prepared from coated ZTA particles
by sintering them in a graphite mold with protection from an argon atmosphere. The sintering
temperature was chosen as 1500 ◦C, which was slightly higher than the melting point of Ni (1428 ◦C).
The holding time of sintering was 1 h because the preform can withstand the impact of the molten iron
during the subsequent infiltration casting process. Normally, we evaluate the anti-impact of liquid
iron by performing a compressive test, and so the compressive strength of the preform was obtained
by a universal mechanical testing machine.

Lastly, the composite was prepared by an infiltration casting process as shown in Figure 1b.
The preform was located at the bottom of the cavity before pouring the molten Cr15 matrix. The chemical
compositions of which were: Cr 15 wt.%, C 3.1–3.2 wt.%, Si 0.5–1.0 wt.%, Mn 0.6–0.7 wt.%, Mo
1.0–1.5 wt.% and balanced Fe. The pouring temperature of the Cr15 matrix was 1550 ◦C, which was a
little higher than common industrial practice (~1420 ◦C [29]) in order to improve the flowability of the
molten iron. The casting composite ingot was shaken out from the sand mold after 12 h to avoid the
foundry cracks.
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Figure 1. Schematic diagrams for preparation of the composite: (a) slurry coating process of ceramic 
particles; (b) graphite mold for preparation of preform; (c) infiltration casting process. 
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represent the direction of the wear test. 

 

Figure 1. Schematic diagrams for preparation of the composite: (a) slurry coating process of ceramic
particles; (b) graphite mold for preparation of preform; (c) infiltration casting process.

2.2. Three-Body Abrasive Wear Tests

The three-body abrasive wear property of the composite, as well as reference Cr15 specimen,
was tested by the MMH-5 block-on-counter abrasive wear tester (Hesion, Jinan, China) (Figure 2).
All specimens were cut to a size of 15 × 25 × 6 mm, with a 45◦ slope forward in order to assist
the abrasives to move between the specimens and counter, i.e., the contact area was 15 × 25 mm.
The specimens were clamped, as shown in Figure 2, on an annealed AISI1020 steel counter (Hesion,
Jinan, China) (~340 mm inside diameter), and were covered by loose SiO2 abrasives with ~150 µm
average diameter and 5 kg in weight. The cross sectional dimension of the counter was rectangular
(20 × 10 mm). The wear behavior was studied under loads of 1, 2 and 3 kg.Materials 2019, 12, x FOR PEER REVIEW 4 of 14 
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Figure 2. Diagrams of the three-body abrasive wear specimen and corresponding wear principle for
the tester.

Firstly, a pre-wear process was executed for 60 min with 30 r/min in order to keep the similar
surface condition of each specimen. The weight of the specimen (after cleaning in ethanol, similarly
hereinafter) was measured and recorded as m0. After that, the three-body wear test was performed for
2.5 h with the same wear velocity. Three repetitions were made for each wear condition. The weight of
each specimen was measured every 30 min by using a balance with an accuracy of 10−4 g, and recorded
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as m1, m2, m3, m4 and m5, respectively. Therefore, the mass loss of each duration ∆mi was calculated by
Equation (1). The composite layer in the casting ingot consists of two parts, i.e., ZTA ceramic particles
and iron matrix, which have different densities. The wear volume loss ∆Vi is more effective than
mass loss ∆mi at characterizing the wear behavior. The wear volume loss ∆Vi can be found by using
Equation (2).

∆mi = mi −mi−1 (I = 1, 2, . . . , 5) (1)

∆Vi =
∆mi

α · ρp + (1− α) · ρm
(2)

where α refers to the volume fraction of ZTA particles in the composite layer of the casting ingot, given
by the image analysis of the composite surfaces; ρp and ρm (in kg·m−3) refer to the densities of ZTA
ceramic and Cr15, respectively. At last, in order to have an accurate evaluation, the relative wear
resistance was specified by ε(=∆V0/∆Vi), where ∆V0 denotes the volume loss of reference Cr15 matrix.

3. Results and Discussion

3.1. The Structure of ZTA Ceramic Preforms

Figure 3 shows the surface morphology of coated ZTA particles under different coating times.
It can be seen that the coating area of Ni–Ti powders on ZTA particles increased with the coating times,
turning from bright to dark; both the weight of coated particles and the thickness of surface coating
increased linearly with increasing coating time. After coating 20 times, the ZTA particles were covered
by Ni–Ti powder. However, the surface coating was loose and porous, as the PVA solution in slurry
was boiled-off in a vacuum drying oven. Thereafter, the coated ZTA particles were sintered under
1500 ◦C for 1 h. The morphology of sintered ZTA ceramic preform (Figure 4a,b) shows that all particles
were connected and formed a porous structure, which will benefit the following cast infiltration process.
Meanwhile, it can be seen that a compact sintered coating existed around ZTA ceramic particles and
the metallic sintered necks connected the surrounding ZTA ceramics. The magnified image of the
surface of sintered ZTA particles is shown in Figure 4c; the sintered shell covered the surface of the
ZTA particles. Furthermore, the sintered ceramic particles were pulverized into a powder for X-ray
diffraction analysis; the results are shown in Figure 4d, which indicate that the sintered ZTA particles
consisted of multiple phases, i.e., ZrO2, Al2O3, Ni3Ti, AlNi2Ti and TiO. Among the above phases, Ni3Ti,
AlNi2Ti and TiO were the reaction products between Ni–Ti coating and ZTA particles during sintering.
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Figure 4. Surface morphologies of coated ZTA particle preform (a), sintering neck between two ZTA
particles (b), local magnified microstructure of sintered coating (c), and XRD analysis results of sintered
particles (d).

When sintered at 1500 ◦C, the nickel melted, which could increase the contact area between the
Ni–Ti coating and ZTA particles. The Al atoms in ZTA particles diffused outside and reacted with
the Ni–Ti coating, which formed the AlNi2Ti phase, and therefore, an Al-depleted zone was formed
surrounding the ZTA particles as shown in Figure 4c. Outside the Al-depleted zone, a compact Ni–Ti
layer was formed. For understanding the phase structure around ZTA particles, a semi-quantitative
EDS analysis was performed and the results are listed in Table 1. The ZTA particle is on the left side
of the dashed line in Figure 4c, and was composed of ZrO2 and Al2O3. In the middle Al-depleted
zone, the ZrO2 phase was mainly found. In the right Ni–Ti coating zone, three different phases were
detected, including AlNi2Ti (point 2), Ni3Ti (point 3) and TiO (point 4). The main phase in sintered
coating is Ni3Ti, which is the most thermodynamically favorable among all Ni–Ti compounds [30].
The outmost ZTA particle preform was covered by TiO film because of the high chemical activity of Ti
atoms. At the same time, the compressive strength of the preform was tested and the result was about
4.1 MPa, as the metallurgical bonding between the Ni–Ti coating and ZTA particles could improve the
mechanical strength of the sintered ceramic preform.

Table 1. Energy dispersive spectrometer (EDS) analysis of the points at ceramic preforms and composite
interfaces (at.%).

Point to Be Analyzed Element

Ni Ti Al O Zr C Fe Mn Cr

Figure 4c

Point 1 3.12 53.54 43.34
Point 2 56.57 22.67 20.76
Point 3 74.39 25.61
Point 4 0.75 86.07 13.18

Figure 5d

Point 1 71.56 13.86 8.73 0.22 4.90 0.73
Point 2 1.42 54.83 42.87 0.88
Point 3 54.28 14.56 17.22 0.16 9.41 1.66 2.71
Point 4 1.04 43.55 1.81 53.60
Point 5 0.76 0.51 85.83 4.43 8.47
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3.2. Analysis of Composite Interface

Figure 5a,b show the segment of the ZTAP/Fe composite. It can be seen that the preform kept the
original rectangular shape (with a circular hole) without destruction (Figure 5a) and the thickness of
the composite layer reached 15 mm (Figure 5b). The circular hole in the previous preform will benefit
the infiltration casting of liquid iron. This indicates that the strength of the preforms in the cavity is
high enough to stand against the impact of molten iron during the mold filling processes of castings.

The interfacial microstructure of the composite is shown in Figure 5c,d. A continuous transition
layer can be observed between the ZTA particles and the Cr15 matrix. Under high magnification
(Figure 5d), it can be seen that around ZTA particles, four different zones existed, which ensure strong
metallurgical bonding in the interface. Starting from the ZTA particle and moving outwards, the first
zone was the original ZTA particle, while the second zone was an Al-depleted ceramic zone with much
lower content of the Al2O3 phase than the first zone. In the third zone, the EDS analysis results, shown
in Table 1, together with the EPMA results (Figure 6), illustrate that the main metallurgical phases were
Ni3Ti, TiO and AlNi2Ti (point 1, 2, and 3 in Figure 5d, respectively). This indicates that the phases
in the Ni–Ti layer did not change after the infiltration casting process compared with the sinter ZTA
particle preform.Materials 2019, 12, x FOR PEER REVIEW 7 of 14 

 

 
Figure 5. The microstructure of ZTAP/Fe composites: (a) distribution of ZTA particles, (b) cross 
section of infiltration layer, (c) the interfacial morphology, and (d) the high resolution interfacial 
structure. 

The elemental mapping results of EPMA at the interfacial area are shown in Figure 6. Based on 
the elemental diffusion results in Figure 6, we proposed a formation mechanism model at the 
interface of ZTAP/Fe composites, as shown in Figure 7. It can be seen clearly that Al2O3 on the surface 
of the ZTA particle decomposed, and thereby the Al and O atoms diffused into the Ni–Ti layer. As a 
result, the Al element reacted with the Ni–Ti layer and formed a Ni–Ti–Al ternary compound. 
Furthermore, Ti atoms concentrated on the Ni–Ti layer/Cr15 interface and some O atoms existed at 
the Ti-rich zone, which formed TiO. Therefore, the transition layer consisted of continuous Ni3Ti, 
block-shape AlNi2Ti and a TiO zone just next to the Cr15 matrix. In addition, a small amount of Fe 
was also observed in the Ni–Ti layer due to elemental diffusion as illustrated by Figure 6. 

 
Figure 6. The elemental mapping results of interfacial phases by EPMA. 

Figure 5. The microstructure of ZTAP/Fe composites: (a) distribution of ZTA particles, (b) cross section
of infiltration layer, (c) the interfacial morphology, and (d) the high resolution interfacial structure.

The elemental mapping results of EPMA at the interfacial area are shown in Figure 6. Based on
the elemental diffusion results in Figure 6, we proposed a formation mechanism model at the interface
of ZTAP/Fe composites, as shown in Figure 7. It can be seen clearly that Al2O3 on the surface of the
ZTA particle decomposed, and thereby the Al and O atoms diffused into the Ni–Ti layer. As a result,
the Al element reacted with the Ni–Ti layer and formed a Ni–Ti–Al ternary compound. Furthermore,
Ti atoms concentrated on the Ni–Ti layer/Cr15 interface and some O atoms existed at the Ti-rich zone,
which formed TiO. Therefore, the transition layer consisted of continuous Ni3Ti, block-shape AlNi2Ti
and a TiO zone just next to the Cr15 matrix. In addition, a small amount of Fe was also observed in the
Ni–Ti layer due to elemental diffusion as illustrated by Figure 6.
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Figure 7. The formation mechanism at the interface of ZTAP/Fe composites.

Moreover, the mechanical property of interfacial phases has a significant effect on the interface
property and thereby the wear behavior of the composite. In this work, the microhardness of Ni3Ti,
TiO and AlNi2Ti in the interface was measured by the nano-indentation method. Figure 8 shows the
typical load-depth curves of interfacial phases measured by the nano-indentation method, based on
which we obtained the Young’s modulus and Vicker’s hardness, as listed in Table 2. The Vicker’s
hardness of Ni3Ti, TiO and AlNi2Ti was 12.5 GPa, 16.1 GPa and 9.2 GPa, respectively. These testing
values are very close to the theoretical hardness reported in [30–35]. The hardness of these interfacial
phases are much higher than common white cast iron (~5.5 GPa), but lower than the ZTA ceramic
(12–20 GPa [19,20]). Therefore, we suppose that the mechanical properties of the ZTAP/Fe composite
would be improved by the interfacial transition phases (Ni3Ti, TiO, and AlNi2Ti).
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Table 2. Micro mechanical properties of interfacial phases measured by thenano-indentation method.
The values in parenthesis refer to DFT results calculated by this work.

Phases Young’s Modulus/GPa Micro-Hardness/GPa

Ni3Ti 211 (253a, 260b) 12.5 (10.5a)
TiO 225 (267c) 16.1 (14.3d)

AlNi2Ti 165 (178.1e) 9.2 (8.1f)
a–f: Theoretical data from [30–35].

3.3. Wear Resistance of the Composite

The results of the three-body abrasive wear tests are shown in Figure 9. It is apparent that the
wear volume loss of the ZTAP/Fe composite was much lower than Cr15 high Cr cast iron after a 2.5 h
test. With increasing load from 1 kg to 3 kg (26.1 kPa to 78.4 kPa), the wear volume losses of the Cr15
matrix increased dramatically, while for the ZTAP/Fe composite, the increase rate of wear volume
losses was much lower. Under 3 kg wear load, the wear resistance of the composite reached 12.6 times
that of the Cr15 matrix, which indicates that the ZTAP/Fe composite showed excellent wear resistance,
especially under severe wear conditions.
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As illustrated in Figure 10, the worn surface morphology can be observed by the laser scanning
confocal topography technique, the corresponding height difference of the worn scale for each tested
specimen under different loads is shown in Figure 11. For composites at different wearing loads,
the height of the iron matrix was low, which contributed to its deficient wear resistance, while the
height of ZTA particles was high owing to its outstanding wear resistance. From Figure 11, at 1 kg
wearing load, the ZTA particles protruded above the surrounding iron matrix in composites, with an
average height of ~200 µm, compared with the height difference of ~50 µm for the Cr15 specimen.
With increasing wearing load, the average height between ZTA particles and the surrounding matrix
increased. The thickness reached ~250 µm at 3 kg wearing load. While for the Cr15 specimen, the height
difference seemed more or less similar under each wearing load.Materials 2019, 12, x FOR PEER REVIEW 10 of 14 
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Figure 12a,c show the worn surfaces of composite specimens after three-body abrasive wear
tests under a 3 kg load. ZTA particles extruded gradually from the worn matrix owing to its higher
hardness than the Cr15 matrix. The wear resistance of the composite improved significantly, because
the protruded ZTA particles can bear the main wear force by abrasives and protect the surrounding
iron matrix from abrasive wear. At the same time, ZTA particles did not peel off from the matrix,
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which indicates that the ZTA particles were tightly bonded by the transition Ni–Ti metallic layer and
surrounding iron matrix. Meanwhile, ZTA particles in the composite were hardly broken or fractured
even under a 3 kg load owing to the excellent toughness of the ZTA ceramic with high content of ZrO2

as shown in Figure 12c.
In order to clarify the wearing behavior of the composite more clearly, the sub-surface

microstructure was observed on the cross sections of the composite after three-body abrasive wear
tests under a 3 kg load. As observed in Figure 12, the typical hard carbides Cr7C3 inside the Cr15
matrix could hardly resist the abrasive wear of SiO2 due to their small size and high brittleness, so the
Cr15 matrix part was severely worn. Cracks formed easily when the chromic carbides were crushed
and fractured as shown in Figure 12b,c.Materials 2019, 12, x FOR PEER REVIEW 11 of 14 
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Figure 12. The secondary electron images of the composite after the wear test under the 3 kg load:
(a) morphology of the worn surface; (b) protrusion of ZTA particles; (c) translation layer of the worn
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The three-body abrasive wear mechanism of ZTAP/Fe composites is shown in Figure 13. At the
beginning of the wear test, ZTA particles and matrix were worn simultaneously. Considering that
the hardness of ZTA ceramic is higher than iron, the ductile Cr15 matrix was severely worn and
concaved gradually, and therefore, the height difference between ZTA and iron became larger and
larger; and finally, while keeping an almost constant value, at this condition the ZTA particles bore the
main stress and protected iron from further wearing. Meanwhile, the iron matrix bonded ZTA ceramic
tightly with the help of the Ni–Ti intermetallic layer, which prevented the ZTA particle from peeling
off. Actually, the combination of the strong bonding property between ZTA ceramic and iron, and the
protecting effect of ZTA ceramic on iron matrix, gave the composites an advanced wear resistance [36].
The ZTAP/Fe composites show great potential to substitute for traditional wear resistant material and
be widely used in industrial applications.
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Figure 1. Schematic diagrams for preparation of the composite: (a) slurry coating process of ceramic 
particles; (b) graphite mold for preparation of preform; (c) infiltration casting process. 

 

Figure 13. The physical mechanism of the three-body abrasive wear mechanism of ZTAP/Fe 
composites: (a) the first; (b) second; (c) third; and (d) fourth period of the wear test. The arrows 
represent the direction of the wear test. 

 

Figure 13. The physical mechanism of the three-body abrasive wear mechanism of ZTAP/Fe composites:
(a) the first; (b) second; (c) third; and (d) fourth period of the wear test. The arrows represent the
direction of the wear test.

4. Conclusions

The porous ZTA particles preform was prepared by sintering in a vacuum under 1500 ◦C.
The strength of the preform reached 4.1 MPa because of the metallic sintered shell and necks connecting
the ZTA particles. The ZTAP/Fe composites were fabricated by an infiltration casting process and the
thickness of the composite layer reached 15 mm. The interface of the ZTAP/Fe composites showed
metallurgical bonding. A Ni–Ti transition layer consisting of Ni3Ti, TiO and AlNi2Ti existed between
the ZTA particles and the iron matrix. The measured hardness was 12.5, 16.1 and 9.2 GPa for Ni3Ti,
TiO and AlNi2Ti, respectively. The wear resistance of ZTAP/Fe composites remarkably improved
with increasing load and reached 12.6 times the reference Cr15 specimen. This is mainly because the
interface was tightly bonded by a transition Ni–Ti layer; and the protruded ZTA particles can bear the
main wear force by abrasives and protect the surrounding iron matrix from further failure.
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