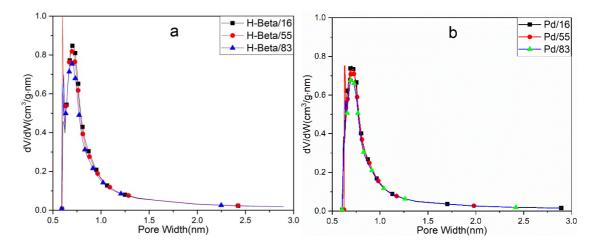


Supplementary Materials


The Influence of Si/Al Ratios on Adsorption and Desorption Characterizations of Pd/Beta Served as Cold-Start Catalysts

Ming Jiang 1, Jun Wang 1, Jianqiang Wang 1 and Meiqing Shen 1,2,3,*

- ¹ Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering& Technology, Tianjin University, Tianjin 300072, China; jiangming@tju.edu.cn (M.J.); wangjun@tju.edu.cn (J.W.); jianqiangwang@tju.edu.cn (J.W.)
- ² Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- ³ State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
- * Correspondence: mqshen@tju.edu.cn

Figure S1. N₂ adsorption-desorption isotherm of H-Beta (a) and Pd/Beta (b) samples with different Si/Al ratios.

Figure S2. Pore size distribution curves of H-Beta (a) and Pd/Beta (b) samples with different Si/Al ratios.

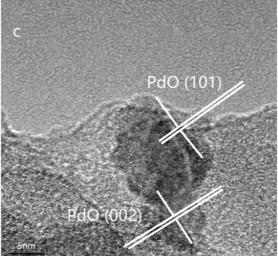
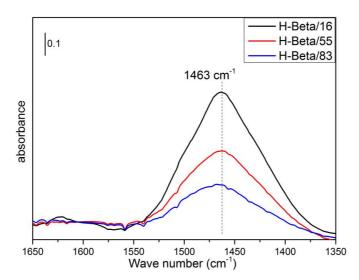



Figure S3. HRTEM figures of each sample (a: Pd/16; b: Pd/55; c: Pd/83).

Figure S4. In situ FT-IR of NH₃ adsorption (Temperature: 80 °C; Flow: 500 ppm NH₃ + N₂).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).