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Abstract: Piezocatalysis is a novel method that can be applied for degradation of organic pollutants in
wastewater. In this paper, ferroelectric nanowires of antimony sulfoiodide (SbSI) have been fabricated
using a sonochemical method. Methyl orange (MO) was chosen as a typical pollutant, as it is widely
used as a dye in industry. An aqueous solution of MO at a concentration of 30 mg/L containing
SbSI nanowires (6 g/L) was subjected to ultrasonic vibration. High degradation efficiency of 99.5%
was achieved after an extremely short period of ultrasonic irradiation (40 s). The large reaction rate
constant of 0.126(8) s−1 was determined for piezocatalytic MO decomposition. This rate constant is
two orders of magnitude larger than values of reaction rate constants reported in the literature for the
most efficient piezocatalysts. These promising experimental results have proved a great potential of
SbSI nanowires for their application in environmental purification and renewable energy conversion.

Keywords: ultrasound-assisted piezocatalysis; antimony sulfoiodide (SbSI); nanowires; methyl
orange; water purification

1. Introduction

The pollution of water is recognized as one of the major global problems that have to be solved in
the near future. Textile, printing, pharmaceutical, and food industries require use of many various dyes,
including methyl orange (MO). An application of these organic dyes may lead to water contamination,
which results in serious health and environmental problems. A removal of the toxic organic compounds
from wastewater can be realized using different techniques, such as advanced oxidation process [1].
However, traditional oxidation methods encounter major problems like the high operational cost
of the popular ozonation technique and production of ion-based sludge as an undesirable result of
Fenton oxidation.

Piezoelectrically induced catalysis, known as piezocatalysis [2,3], is a new alternative method
for contaminants degradation. In this process, a mechanical energy (e.g., ultrasonic vibration) is
converted into chemical energy or an external mechanical-force-induced piezopotential [4,5] promotes
photocatalytic activity of piezoelectric material [6,7]. Over the last several years, a lot of different
piezoelectric materials have been proposed for application in ultrasound-assisted piezocatalysis,
including BaTiO3 nanostructures [8–11], SrTiO3 nanocrystals [12], BiFeO3 micro-sheets [13], Bi2WO6

nanosheets [14], MoS2 nanoflowers [15], Na0.5K0.5NbO3 [16], NiO nanoparticles [17], Pb(Zr,Ti)O3 (PZT)
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nanowires [18], ZnO nanostructures [19,20], ZnS nanosheets [21], and ZnSnO3 nanoparticles [22].
It has been well documented that the piezoelectric potential of one- or two-dimension piezoelectric
materials is larger than that of particles due to higher deformation ability [9]. However, one of the most
important issues for blocking the commercial applications of the aforementioned piezocatalysts is the
long ultrasonic vibration required for achieving a sufficient level of pollutant degradation. For example,
Jin et al. [8] have recently prepared BaTiO3 nanowires by the sol-gel-based electrospinning technique
and used this ferroelectric material for a degradation of methyl orange solution under ultrasonic
vibration. They have found that the piezocatalytic activity of BaTiO3 nanowires is highly sensitive
to its microstructure, including phase structure, crystallite size, specific surface area and nanowire
diameter [8]. The highest piezocatalytic efficiency of 95% has been achieved after 160 min of reaction
for nanowires with the least diameters.

Antimony sulfoiodide (SbSI) is ferroelectric semiconductor with Curie temperature of 291(2)
K [23]. SbSI possesses excellent piezoelectric properties confirmed by a large piezoelectric modulus
(1 nC/N [24]), huge electromechanical coupling coefficient (0.9 [25]), and high electrostrictive constant
(4.6(1)·10−13 m2/V2 [26]). Therefore, nanowires of SbSI have been successively applied in piezoelectric
generators for mechanical energy harvesting [27–29]. Moreover, SbSI nanowires have been found as a
suitable material for photovoltaic devices [23,30] and gas sensors [31–33].

The nanostructures of SbSI have been recently recognized as excellent visible light
photocatalysts [34–36] with efficient generation of singlet oxygen. In 2018, Wang et al. [34] presented that
99% of methyl orange in aqueous solution with concentration of 30 mg/L was degraded in an extremely
short time of 10 s using small amounts of SbSI nanocrystals (1 g/L). Two years earlier, Muthusamy and
Bhattacharyya [35] proposed novel solution-based synthesis of self-assembled micron-sized sea “urchin”
shaped SbSI with a high density of 1D micron-sized rods. Prepared material displayed a powerful
photodegradation of MO in aqueous solutions under visible light irradiation. The highly efficient
degradation activity on the organic pollutant was accounted by the formation of lower dangling bond
on the surface of SbSI microrods as well as by the large static dielectric constant generated by the cross
band hybridization between the ns2 (Sb3+) cation and iodine ion [35]. Tasviri and Sajadi-Hezave [36]
demonstrated a strong photocatalytic activity of SbSI nanowires and carbon nanotubes encapsulated
with SbSI toward decomposition of Acid Blue 92 (monoazo dye).

In this paper, for the first time, SbSI nanowires have been discovered to exhibit a piezocatalytic
effect that can be successively applied for destroying of MO dye in aqueous solutions. The kinetics of
piezo- and photocatalysis has been studied. The reaction rate constants and degradation efficiencies
were determined and compared to these parameter of other nanomaterials known in the literature as
good piezo- and photocatalysts.

2. Materials and Methods

2.1. Synthesis of SbSI Nanowires

Nanowires of SbSI were fabricated as the products of sonochemical synthesis similarly to reports
provided in [23,30,37]. High purity ethanol with volume of 5 mL, 226 mg of sulfur, 855 mg of antimony,
and 970 mg of iodine were inserted into a small plastic vessel. All these reagents were delivered by
Avantor Performance Materials Poland company (Gliwice, Poland). The vessel with the suspension of
the reagents was exposed for 120 min to high power ultrasounds with frequency of 20 kHz generated
by VCX-750 reactor (Sonics & Materials Inc., Newtown, CT, USA). The reaction was carried out at a
temperature of 323 K.

2.2. Additional Purification Procedure

A special purification process was accomplished to remove probable intermediates that could
be present in the fabricated SbSI ethanogel. This procedure was similar to this described in [38].
After sonochemical synthesis was finished, a small amount of SbSI gel of 40 mg was inserted into the
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MPW M-Diagnostic centrifuge (MPW Med. Instruments, Warsaw, Poland) and rotated at 3200 rpm
for 6 min in order to separate the nanowires from the liquid. Then, the extracted liquid phase was
withdrawn and the ethanol was introduced into the vessel. Subsequently, SbSI nanowires in ethanol
were dispersed ultrasonically for 8 min. The procedure, described above, was repeated 12 times. At the
final stage, the SbSI gel was desiccated in the chamber for ten hours at a temperature of 313 K in order
to remove the ethanol.

2.3. Characterization of the Catalysts

The high-resolution transmission electron microscopy (HRTEM) investigations were carried out
on the JEOL JEM 3010 microscope (JEOL USA Inc., Peabody, MA, USA) by applying accelerating
voltage of 300 kV. The suspension of SbSI nanowires in isopropanol was irradiated ultrasonically for
30 min. Then, a standard copper grid with a porous amorphous carbon film was coated with prepared
suspension of SbSI nanowires. Finally, the sample was dried to evaporate the isopropanol.

Phenom Pro X scanning electron microscope (SEM) (Thermo Fisher Scientific, Waltham, MA,
USA) was applied to examine the surface topography of the SbSI nanowires. The concentrations of
the chemical elements were quantified using an energy-dispersive X-ray spectroscopy (EDS) detector
(Thermo Fisher Scientific, Waltham, MA, USA) and ProSuite Element Identification software (version 1.0,
Thermo Fisher Scientific, Waltham, MA, USA).

2.4. Piezo- and Photocatalysis Experiments

Methyl orange (C14H14N3NaSO3) was chosen as a model compound, a typical pollutant of anionic
azo dye. It was obtained from Sigma-Aldrich, Inc. (Saint Louis, MO, USA). For a standard degradation
experiment, 90 mg of SbSI nanowires were dispersed in 15 mL of 30 mg/L MO aqueous solution.
Nanoparticles of barium titanate (BaTiO3) with average size of 100 nm were purchased from Sigma-Aldrich
(Saint Louis, MO, USA) and used as a reference catalysts. Before the application of ultrasonic vibration,
the SbSI-MO dispersion was agitated in the dark for 20 min to achieve an adsorption-desorption
equilibrium between the dye solution and the piezocatalyst. The ultrasonic vibration was performed
using two different reactors, i.e., the ultrasonic processor VCX-750 (Sonics & Materials Inc., Newtown,
CT, USA) with frequency of 20 kHz and maximum power of 750 W, and the Sonic-6 (Polsonic) reactor
with working frequency of 40 kHz and maximum power of 480 W. The small volumes of liquid were
withdrawn from the SbSI-MO suspension at certain time intervals. Then, the supernatant liquid
was separated from the piezocatalyst using HPLC syringe filters equipped with a nylon membrane
with average pore size of 0.2 µm. An optical transmittance of the MO aqueous solutions during
the degradation experiment was registered with PC2000 spectrophotometer, DH2000-FHS lamp,
and the OOI-Base software (version 1.5, Ocean Optics, Inc., Dunedin, FL, USA). This apparatus was
bought from Ocean Optics Inc. (Dunedin, FL, USA). In order to avoid the influence of photocatalysis,
the piezocatalytic degradation experiments were carried out in the dark. The catalytic properties of
SbSI nanowires were also investigated under light illumination. Additional photocatalytic experiments
were accomplished using ultraviolet (UV) lamp (Sineo, Shanghai, China) with power of 300 W.

The optical transmission characteristics of MO solutions were measured several times to confirm
their repeatability and stability. Data, presented in the absorbance plots, represent the averaged
spectral characteristics. The uncertainties of MO concentrations were calculated taking into account the
standard deviation of multiple measurements, the spectral resolution of the PC2000 spectrophotometer
(Ocean Optics, Inc., Dunedin, FL, USA) and the experimental error of determination of MO initial
concentration. The evaluated uncertainties were presented as error bars in appropriate graphs.
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3. Results and Discussion

3.1. Material Characterization

Figures 1 and 2a depict the one-dimensional structure of SbSI nanowires confirmed with
transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively.
It was found that the nanowire length is of micrometer scale, while diameters of the majority (88%)
of the studied nanowires vary from 40 nm to 100 nm. The evident (110) lattice fringes, parallel to
the nanowire axis, were identified in the HRTEM image of an individual SbSI nanowire (Figure 1b).
The interplanar spacing of 0.6527(18) nm was determined. Taking into account the experimental
uncertainty, the estimated value equals to interplanar spacing d = 0.65244 nm of (110) planes reported
in the literature for crystalline structure of SbSI [39]. The crystalline core of SbSI nanowire is covered
with an amorphous shell with thickness of a few nanometers (Figure 1b). This feature was frequently
documented in other papers on sonochemically prepared SbSI nanowires [30,40] as well as nanocrystals
fabricated via ball-milling of bulk SbSI [34].
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A representative energy-dispersive X-ray spectroscopy (EDS) spectrum of SbSI nanowires is given
in Figure 2b. It consists of sharp peaks. They were assigned exclusively to chemical elements that are
expected to be present in SbSI. The atomic concentrations of 38%, 31%, and 31% were quantified for
antimony, sulfur, and iodine, respectively. The obtained results are close to the theoretical chemical
composition of SbSI, apart from a slight excess amount of antimony. A similar effect was reported in
the literature in the case of EDS [31,34] and X-ray photoelectron spectroscopy (XPS) [30] studies of SbSI
nanostructures. It can be attributed to the fact that SbSI nanowire is surrounded by very thin fuzzy
shell (Figure 1b), which was confirmed by HRTEM survey (Figure 1b). The chemical composition of
the amorphous shell may be distinct from the concentrations of the elements in a crystalline core of the
nanowire [30,34,40].

3.2. Piezo- and Photocatalytic Performance of SbSI Nanowires

Figure 3 presents an influence of piezocatalysis time on the color of the MO aqueous solutions.
It can be clearly observed with the naked eye, that the increase of the time of ultrasonic vibration leads
to fading of the tone of the MO solution.
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Figure 3. Photograph of the methyl orange (MO) aqueous solutions samples after different
times of ultrasonic irradiation. Piezocatalysis was performed using VCX-750 ultrasonic reactor
(Sonics & Materials Inc., Newtown, CT, USA) with ultrasound frequency f = 20 kHz and power
P = 750 W.

The values of the absorbance were calculated from the optical transmittance using a well-known
relationship [41]. The UV–visible spectrum of MO dissolved in distilled water exhibits two absorption
maxima, i.e., at 270 nm and 465 nm [42]. The second mentioned peak was used to monitor the effect of
the piezocatalysis on the degradation of MO (Figure 4a). One can see that the height of the absorption
peak (at λ = 465 nm) in the UV–vis absorption spectra of MO solution decreases gradually with the
increase of time of ultrasonic vibration. The complete degradation of MO by SbSI nanowires is achieved
after a short ultrasonic irradiation time of 40 s.
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Figure 4. (a) An influence of piezocatalysis time on UV–vis absorption spectra of the MO aqueous
solutions; (b) plots of ln(C0/C) versus the ultrasonic vibration time. Red line in graph (b) represents the
best fitted dependence described by Equation (1). Blue dashed line in graph (b) shows data registered
in control experiments conducted under ultrasonic vibration without SbSI piezocatalyst. Piezocatalysis
was performed using VCX-750 (Sonics & Materials, Inc.) ultrasonic reactor with ultrasound frequency
f = 20 kHz and power P = 750 W.

The standard Lambert–Beer law calibration curve [43] for methyl orange was used to estimate
the MO concentration. Figure 4b presents the relative concentration ratio (C/C0) of methyl orange as
a function of ultrasonic vibration time, where C0 represents the maximum absorption peak of MO
at t = 0 s. The reaction kinetics has been found to follow pseudo-first-order law. Therefore, it can be
described using following relation [8–10,18]:

C = C0 exp(−k·t) (1)

where k means the reaction rate constant. The value k1 = 0.126(8) s−1 was determined by linear fitting
in the plot of ln(C0/C) versus t, as depicted in Figure 4b. It should be underlined that there was no
noticeable influence of the ultrasonic vibrations on concentration of MO dissolved in water without
the catalyst (Figure 4b). It is in agreement with numerous papers [8–11,14,16,18–20] reporting that
exclusive application of ultrasonic irradiation does not have an impact on the stability of methyl orange
in aqueous solutions.

The piezocatalytic experiments, described above, were accomplished also for other ultrasonic
reactors and solutions with various ratios of SbSI piezocatalyst mass to the initial mass of MO (mp/mMO).
As presented in Figure 5, the kinetics of the degradation process depends significantly on the applied
amount of piezocatalyst. The values of the reaction rate constant of k2 = 0.085(6) s−1 and k3 = 0.034(3)
s−1 were determined for mp/mMO = 200 and mp/mMO = 100, respectively. The decline in the degradation
rate and efficiency with the increase in the dye concentration can be attributed to the shielding of the
catalyst by the MO dye in solution [35].
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Figure 5. Plots of (a) methyl orange relative concentrations C/C0 and (b) ln(C0/C) versus vibration
time for two different ratios of SbSI piezocatalyst mass to the initial MO mass in aqueous solution
(•—mp/mMO = 200, N—mp/mMO = 100). Red and blue lines in graph (b) represent the best fitted
dependence described by Equation (1). Piezocatalysis was performed using Sonic-6 (Polsonic) reactor
with ultrasound frequency f = 40 kHz and power P = 480 W.

The efficiency of degradation (η) was calculated using the equation [17,36]:

η =
C0 −Ct

C0
·100% =

(
1− e−k·t

)
·100% (2)

where C0 is initial MO concentration and Ct means MO concentration after t time of an ultrasonic
irradiation. One can see that application of different ultrasonic reactor influences the degradation
efficiency (Figure 6). As expected, the decomposition of MO was more intense at higher ultrasonic
power (Figure 6a). The piezocatalysis efficiency should also depend on the relation between the
frequency of ultrasounds and the resonance frequency of the nanowires [44]. Moreover, a literature in
the field of sonochemistry suggests that ultrasonic frequencies can be of paramount importance for
some analytical applications [45]. For instance, Doche et al. [46] studied zinc corrosion and oxidation
mechanism in ultrasonically stirred electrolytes and proved that cavitation is more powerful at a
frequency of 20 kHz than at f = 40 kHz. The piezocatalytic ability of BaTiO3 nanoparticles as reference
catalysts was tested, too. The degradation efficiency η = 65.1% was achieved after 60 min of ultrasonic
irradiation with a Sonic-6 reactor (f = 40 kHz, P = 480 W). It indicates that piezocatalytic activity of
BaTiO3 nanoparticles is much lower than that in the case of SbSI nanowires.
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The reaction rate constant of piezocatalytic degradation of MO by SbSI nanowires was compared
with values of this parameter achieved for other piezocatalysts (Table 1). It should be underlined the
value of k for SbSI nanowires is over two orders of magnitude larger than rate constant for the most
efficient piezocatalysts reported in the literature, i.e., nanowires of La-doped Pb(Zr,Ti)O3 (PLZT) [18]
and Ba1−xSrxTiO3 [10].

Table 1. A comparison of efficiencies of different piezocatalysts used for ultrasound-assisted degradation
of methyl orange (used abbreviations: BCTZ—(Ba0.85Ca0.15)(Ti0.9Zr0.1)O3; f—ultrasounds frequency;
k—reaction kinetics rate constant; mp/mMO—the ratio of piezocatalyst mass to the initial mass of methyl
orange in aqueous solution; NFs—nanofibers NPs—nanoparticles; NWs—nanowires; PLZT—La-doped
Pb(Zr,Ti)O3; PZT—Pb(Zr,Ti)O3; P/Pd—ultrasounds power or power density; t—ultrasonic vibration
time; η—degradation efficiency).

Piezocatalyst mp/mMO f, kHz P or Pd t η, % k, min−1 Year Reference

BaTiO3 NWs 200 40 120 W 160 min 95 0.0164 2019 [8]
BaTiO3 NWs 200 40 80 W 160 min ~90 ~0.017 2018 [9]
BaTiO3 NWs 200 40 0.1 W/cm2 120 min 79 0.0132 2018 [10]
BaTiO3 NPs 200 40 80 W - - 0.019 2018 [11]
BaTiO3 NPs 200 40 480 W 60 min 65.1 - 2020 this paper

BaTiO3/Ag NPs 200 40 120 W 120 min 81 0.0162 2018 [47]
Ba1−xSrxTiO3 NWs 200 40 0.1 W/cm2 120 min 100 0.0196 2018 [10]

BCTZ NWs 200 40 120 W 150 min 65 0.0071 2018 [48]
PLZT NWs 200 40 120 W 160 min 97 0.02 2019 [18]
PZT NWs - 40 120 W - - 0.0155 2019 [18]

Na0.5K0.5NbO3 800 40 - 100 min 77 - 2020 [16]
NiO NPs 100 37 160 W 60 min 96 - 2019 [17]

ZnO@TiO2 NFs 100 40 - 120 min 60 - 2017 [20]

SbSI NWs
200 20 750 W 40 s 99.5 7.6(5)

2020 this paper200 40 480 W 45 s 97.9 5.1(4)
200 40 480 W 45 s 84.0 2.0(2)

The additional experiments were performed in order to confirm good catalytic properties of
SbSI nanowires. The methyl orange solutions containing SbSI catalyst were subjected to UV light
illumination (λ = 365 nm). An influence of photocatalysis time on UV–vis absorption spectra is depicted
in Figure 7a. It is clearly visible in Figure 7b, that the presence of SbSI catalyst in MO solution is crucial
for dye photodegradation. The light illumination does not have an impact on the concentration of MO
dissolved in water without the catalyst. It was proved that 95% of the dye can be degraded in 160 s
using a small amount of SbSI nanowires (1 g/L). The relative concentration ratio of methyl orange as a
function of illumination time was best fitted with the theoretical dependence described by Equation (1).
The large photocatalysis rate constant k4 = 9(1) min−1 was determined for SbSI nanowires. This value
is significantly higher than the rate constant achieved for photocatalytic degradation of methyl orange
using SbSI microrods (see Table 2). However, the determined k4 parameter is approximately three
times lower than value of the reaction rate constant (25.2 min−1) reported by Wang et al. [34] for
SbSI nanocrystals.
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Table 2. The values of reaction kinetics rate constants for photocatalytic decomposition of methyl orange
using various materials (used abbreviations: mph/mMO—the ratio of photocatalyst mass to the initial
mass of methyl orange in aqueous solution; MRs—micro-rods; NCs—nanocrystals; NPs—nanoparticles;
NRs—nanorods; NSs—nanosheets; NWs—nanowires; tph—time of photocatalysis; η—degradation
efficiency).

Photocatalyst mph/mMO Illumination tph, s η, % k, min−1 Year Reference

Ag3PO4 250 xenon lamp (300 W) 240 98 - 2011 [49]
Ag2O/Ag2CO3 25 halogen lamp (150 W) 300 100 0.92 2013 [50]
AgBr/graphene 240 xenon lamp (500 W) 480 100 0.72 2015 [51]

CdS/C 50 xenon lamp (500 W) 2400 97 - 2013 [52]
TiO2 NSs 71.4 xenon lamp (300 W) 2400 84 - 2010 [53]
TiO2 NPs 20 sunlight irradiation 7200 98 - 2016 [54]
ZnO NRs - mercury lamp (125 W) 4800 100 - 2011 [55]
WS2 NSs 50 mercury lamp (300 W) 6000 96 - 2015 [56]

Sb2S3 25 halogen lamp (500 W) 1800 97 - 2008 [57]

SbSI NCs 33.3 xenon lamp
(400 mW/cm2) 10 99 25.2 2018 [34]

SbSI MRs 50 solar simulator (1.5G AM) 1200 97 0.19 2016 [35]
SbSI NWs 33.3 UV lamp (300 W) 160 95 9(1) 2020 this paper

The ultra-high piezocatalytic activity of SbSI nanowires under ultrasonic vibration can be attributed
to the several factors. Firstly, SbSI exhibits excellent piezoelectric and electromechanical properties,
which have been listed in the introduction section in this paper. Secondly, it is known that the surface
of a catalyst acts as the nucleus for cavitation bubbles in the sono-catalytic process [58]. Hence,
the large number of nucleus can be formed on the surface of the SbSI nanowires, which possess
large surface to volume ratio [37] and their piezoelectric response is very sensitive to external impact.
Thirdly, the one-dimensional structure supports the high flexibility and large strain tolerance [8].
The nanowire morphology favors generation of higher piezoelectric potential than that induced in
nanoparticles under the same ultrasonic vibration [9]. It was concluded in [35] that, in the case of
SbSI microrods, their high photocatalytic activity on the organic pollutants originates from large static
dielectric generation in SbSI leading to effective screening the charge carriers. Another important factor
was a reduced electron–hole recombination related to a lower dangling bond on the surface of the
one-dimensional SbSI rods [35].

The working principle of the degradation activity through the piezocatalytic effect in SbSI
nanowires can be described as follows. When high power ultrasounds are introduced through the
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sonotrode to the MO–SbSI suspension (Figure 8a), the cycles of compression and rarefaction pressure
are created in the liquid medium. The acoustic pressure fluctuates in waveform on the order of
105–106 Pa [9]. Furthermore, microbubbles, filled with a gas, are formed, while a negative pressure is
applied to a liquid. After the micrometer-scale bubble reaches its critical size, it collapses. According
to Merouani et al. [59], extreme local pressure of 2.5 × 108 Pa is generated within the collapsing
bubble. Thus, the nanowires undergo different types of forces, i.e., vertical and lateral, as shown
in Figure 8b. They are compressed or bent and a piezoelectric potential is formed as a result of the
piezoelectric effect [8]. The conduction (EC) and valence bands (EV) of SbSI become tilted under
a piezoelectric potential (Figure 8c). The piezoelectric polarization (Ppz), induced by ultrasonic
vibration, provides driving force for the separation of intrinsic electrons (e−) and holes (h+) in the
SbSI nanowires. Therefore, these charge carriers move in opposite directions towards the positive and
negative surfaces, where they react with the adsorbed molecules to produce various free radicals [47].
The oxygen molecules, present in the gas bubbles in the liquid, are adsorbed on the SbSI surface [33].
Then, they receive electrons from the conduction band and form the free radicals on the positive
surface [8,10,20,47]:

O2 + e− → •O−2 (3)
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The water molecules are randomly distributed in the methyl orange solution. They can act as
acceptors or donors due to different electric charges at the hydrogen and oxygen ends. The surface of
the SbSI semiconductor with the positive carriers (holes) attracts the negative end of the polar molecule
of water and adsorbs it [40]. As a result, H+ ions and hydroxyl radicals (•OH) are created on the
negative surface [8,10,15,47]

H2O + h+
→ H+ + •OH (4)

In the next stage, H+ ions are adsorbed on the semiconductor surface with the negative carriers
(electrons). Then, hydrogen peroxide is formed as a product of reaction between H+ ions and •O2

−

radicals [15]:
2H+ + •O−2 + e− → H2O2 (5)
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H2O2 molecule diffuses to be absorbed on the negatively charged surface of SbSI nanowire and reacts
with H+ ions and free electrons:

H2O2 + H+ + e− → H2O + •OH (6)

Finally, the generated highly reactive radicals react with the adsorbed MO molecule leading to its
degradation [8,10,14,20]. It should be noted that •O2

− [35,36] and •OH radicals [36] were found as the
primary reactive species in the organic pollutants degradation carried out with SbSI as a photocatalyst.

The catalytic degradation of methyl orange is accompanied by three possible chemical processes:
demethylation, methylation, and hydroxylation [47,54,60]. Demethylation leads to substitution of the
methyl group with a hydrogen atom. When hydroxylation takes place, the benzene ring in the original
MO molecule is replaced with a hydroxyl group. Demethylation is more favorable than hydroxylation,
which results in the formation of largest number of intermediates [60]. Usually, piezocatalytic
decomposition of methyl orange involves production of byproducts with mass-to-charge ratios of
290 [10,47], 304 [10], 306 [47], and 320 [10,47]. They can be further split into smaller intermediates,
which are finally mineralized into inorganic products, i.e., CO2 [10,54], H2O [10,54], NO3

− [54,61],
SO4

2− [61], and NH4
+ [61]. However, the recognition of the exact mechanism of MO degradation using

SbSI nanowires and formation of intermediates needs additional experiments. This will be investigated
in the future.

The method of water purification, proposed in this paper, is a relatively cheap. The cost of SbSI
catalyst production was evaluated taking into account the electrical energy consumption and the
expenses spent on purchasing the high purity reagents, i.e., antimony, sulfur, iodine, and ethyl alcohol.
The cost of SbSI nanowires fabrication amounts to 2.11 USD (1.8 EUR) on average per 1 g of this
nanomaterial. For example, this is approximately 2.2 times lower than value of BaTiO3 nanoparticles
that can be purchased commercially from Sigma-Aldrich (Merck). It should be underlined that energy
requirements for piezo- and photocatalysis using SbSI nanowires are negligible due to the extremely
short time (40 s) needed to achieve high efficiency of organic dye removal (99.5%).

4. Conclusions

The ferroelectric SbSI nanowires, prepared sonochemically, have exhibited ultrahigh degradation
activity to decompose the methyl orange dye under ultrasonic vibration or under light illumination.
As expected, the decomposition of MO was more intense when higher ultrasonic power was applied.
The increase in the ratio of piezocatalyst mass to the initial dye concentration led to enhancement of the
degradation rate. The reaction kinetics has been found to follow a pseudo-first-order law. Extremely
high degradation efficiency of 99.5% was achieved for SbSI nanowires after their ultrasonic irradiation
for only 40 s.

The determined reaction rate constant of 0.126(8) s−1 was over two orders of magnitude larger
than this parameter reported in the literature for the most efficient piezocatalysts. However, this value
is slightly lower than the reaction rate constant of photocatalytic degradation of methyl orange
achieved for the same nanomaterial or SbSI nanocrystals fabricated via the ball-milling method.
The ultrahigh catalytic activity of SbSI nanowires under ultrasonic vibration may result from their
excellent piezoelectric and electromechanical properties, large surface-to-volume ratio, as well as their
one-dimensional structure that supports high flexibility and strain tolerance.

The piezo/photocatalytic decomposition of organic dye using SbSI nanowires, presented in this
paper, is simple and inexpensive, which is crucial for industrial scale applications. Remarkable
piezo/photocatalytic properties of SbSI nanowires are promising for their future utilization in
environmental remediation and in the field of renewable carbonfree energy production from
water splitting.
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