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Abstract: A sealing grease plays a crucial role in the sealing of shield tails. Its pumpability and
pressure sealing resistant sealing performance are greatly affected by the fiber content. In this study,
discrete element method models were used to simulate the pressure-resistant tests of sealing grease
in order to investigate the influence of viscosity grade and fiber’s aspect ratio on the optimum fiber
content of sealing grease. Meanwhile, the rationality of the optimum fiber number determined
based on the sealing performance was verified with the unbalanced force and fiber area proportion
obtained in the simulation, of which the variation curves with the increasing fiber number were
practically identical. The simulation results elucidated that the viscosity of grease had little effect
on the optimum fiber content for sealing grease. However, the increase in viscosity can improve the
sealing effect, and increasing the fiber’s aspect ratio can reduce the fiber number to reach a specific
seal state. Based on the analysis of the total number of fiber spheres for the models with different
fiber’s respect ratios, it can be concluded that the sealing grease sample made of the same fiber
material and quality can reach the same seal state and seal effect, independent on fiber’s aspect ratio.

Keywords: fiber-reinforced composites; fiber content; subway tunnel; fiber aspect ratio; numerical simulation

1. Introduction

Sealing grease for the tunnel boring machine consists of fiber, anchoring agent, powder,
and base oil. They are working together to ensure that there is no gap between the shield
tail and lining [1]. Fiber, including polypropylene fiber, plant fiber, and cotton fiber, plays
a skeleton role in sealing grease and has an important effect on the high-pressure sealing
performance. Anchoring agent, such as polyisobutylene and resin, mainly affects the
adhesive ability between fiber and matrix, which can improve the adhesion, stickiness, and
integrity of the product and ensure the grease sealing performance and resistance to water
erosion. The powder is used to adjust the consistency of the sealing grease, such as calcium
carbonate. Base oil, such as mineral oil, vegetable oil, and synthetic oil, governs the fluidity
and lubricity of sealing grease.

The quality of the shield tail seal has a decisive effect on the effective driving progress
of the shield tunnel. The shield tail seal system consists of a steel wire brush, protective
plate, and sealing grease, as shown in Figure 1. The sealing grease is pumped to the cavity
using a pressure pump in the process of shield driving in the tunnel. Sealing grease is
painted on the tunnel walls with the wire brush to form a sealing ring that is used to resist
the grouting pressure and keep the slurry and soil out of the shield shell. Once the sealing
grease fails, it will cause leakage in the shield tail and ground subsidence or even collapse
of the tunnel [2].

The performance of sealing grease is mainly indicated by its pumpability and the
pressure resistance of sealing. Research showed that the higher the fiber content, the lower
the pumpability, and the better the sealing effect [3]. Therefore, fiber content is important
for good sealing and pumping performance. In order to avoid sealing grease blockage
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in the pumping process, the fiber content has to ensure the highest pumpability, apart
from a good sealing performance. In conclusion, the optimum fiber content is the content
that just meets the sealing requirements. However, the optimum fiber content is varied in
different studies and patents. It is often determined with experiment tests, which lack a
theoretical basis. According to ASTM D1092, the pumpability is the grease volume flowing
through a 25.4 mm hole per minute in conditions of 25 ◦C and the pressure of 1.0 MPa [4].
The pressure-resistant sealing performance of the grease is usually tested using laboratory
experiments. A column with a sealed upper surface is used to mimic the shell and lining. A
sieve with a specific opening size is laid on the bottom surface of the column to mimic the
steel wire brush shown in Figure 1. After the sealing grease sample is evenly and tightly
brushed on the sieve, pressure is applied to extrude the powder, leaving a dense “fiber
cake” on the sieve. The sealing state would be reached while no powder is extruded from
the sieve and no porosity occurred on the cross-section of the sealing grease sample [4,5].

Figure 1. Schematic drawing of a shield tail seal system.

Due to the high fluidity and large deformation nature of sealing grease, it is time-
consuming and costly to determine the grease design via experiments. The development
of a robust numerical method to optimize the properties of sealing grease has become a
scientific challenge of main interest. The commonly used numerical methods include finite
element analysis (FEA) and the discrete element method (DEM). In general, it is hard to
develop FEA mesh when there are great discontinuities, which may result in the obstacle of
meshing, ill-conditioned equations, or singular equations, leading to inaccurate results [5–8].
DEM is a more appropriate tool for solving mechanical problems involving discontinuities
and large deformation. As a composite constituted of multiple components, sealing grease
presents a heterogeneous nature and apparent discontinuity, which can reduce porosity in
the process of pressure-resistant sealing tests. Fiber content is important for good sealing
and pumping performance. Compared with the study only considering the effect of fiber
length on polymer [9,10], it is more reasonable to take the fiber length diameter ratio as the
variable. Therefore, the DEM model was used in this study to investigate the influence of
different factors on the optimum fiber content.

DEM, originally developed by Cundall and Strack [11], is a very useful numerical tool
for modeling the behavior of granular and particulate material. It has been adapted to
study the fracture of brittle materials such as concrete, rocks, and composites [5,6]. In DEM,
the materials are discretized by a great number of discrete elements interacting with each
other. The discrete elements are spherical (three-dimensional), circular (two-dimensional),
or polyhedral shapes. By setting the contact model and contact parameters between the
discrete elements, materials with different properties can be obtained, such as flexible,
elastic, bonding material, etc. In recent years, many scholars have studied the properties of
fiber-reinforced composites by using discrete element method. Leclerc et al. [12] established
a discrete element model to simulate jute fiber reinforced composites with the matrix of
alumina and investigated the complex fracture phenomena occurring at very fine scales.
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Le et al. [13] established a discrete element model to study the interfacial debonding
characteristics and the initiation and propagation of interfacial porosity in fiber-reinforced
composites. Compared with experimental results, the simulation results fitted perfectly in
terms of porosity propagation between fiber and matrix. Khattak et al. [14] researched the
tensile response of carbon fiber-reinforced composite materials using DEM coupled with
imaging techniques. The results obtained from DEM simulations were consistent with the
experimental values, including elastic modulus and tensile strength of the molded carbon
fiber-reinforced polymer composite. A DEM approach was established to investigate the
impaction-sticking process during the initial deposition of fine particles on a single fiber
by Yang et al. [15]. The model well predicted the formation of dendrites and the dynamic
progression of deposit under different capture mechanisms [16]. Ganapathy et al. [17]
established a DEM to study the synergetic effect of graphene and banyan fibers on the
physical and mechanical characteristics of the epoxy thermoset.

In this article, DEM was used to simulate the sealing performance of sealing grease
and investigate the influence of different viscosity grades and fiber’s aspect ratios on
optimal fiber content, in which the viscosity grade was changed from 1 to 6, and the fiber’s
aspect ratio was varied from 17 to 34. Meanwhile, the rationality of optimum fiber content
obtained in the simulation was assessed by the maximum unbalanced force and the fiber
area proportion of the models. Finally, the number of fiber spheres that represented the
mass of fiber at the optimum fiber content was analyzed to provide a theoretical basis for
practical production.

2. Discrete Element Modeling
2.1. Particle Flow Code

In this study, a model was established with Particle Flow Code (PFC), which can simu-
late the movement and interaction of multiple finite-sized particles [18,19]. The particles
were rigid bodies with finite mass that moved independently in terms of translation and
rotation. The interaction between the particles is determined by the internal force and mo-
ment at the contact interface between the pair-wise particles. The contact mechanical model
works based on the particle contact law, in which the internal forces and moments were
successively updated. It computes the time evolution of the particle interaction through
DEM and derives the explicit dynamic solution to Newton’s laws of motion. The PFC
model can mimic synthetic materials constituted with the assembly of rigid grains that
interact at the contact interfaces, including both granular and cementitious materials.

There are many contact models in PFC, such as the Hertz contact model, linear model,
and linear contact bond model [20,21]. The parallel bond model was usually used to
simulate cementitious materials [22,23], which can be used to simulate the mechanical
behavior of two contacting spheres with a finite-sized piece of cement-like material de-
posited between them (similar to the epoxy cementing glass beads shown in Figure 2).
The parallel-bonding effect was applied to the linear elements and established an elastic
interaction between the elements. The parallel bond can transmit both force and moment
between the spheres without precluding the relative slip [24].

A PFC model is composed of discrete elements (DEs) and the contact elements between
DEs (contact model). In this study, DEs were used to model the sealing grease sample and
the test device for sealing performance, and contact model parameters depended on the
properties of the tackifier. In order to ensure the consistency between the parameters of
the contact model and the properties of the actual sample, rheology tests were conducted
to guide the selection of the contact model and model parameters. The predetermined
parameters were then adopted in the subsequent models to investigate the effects of
viscosity and fiber’s aspect ratio on the optimum fiber content.
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Figure 2. Illustration of the parallel bond model.

2.2. Discrete Element—Geometric Model

The sealing grease model was composed of powder, fiber, and a tackifier (anchoring
agent and base oil), and the testing device of sealing performance was composed of a
pressure column and sieve.

• The pressure column was modeled with a 40 mm × 40 mm × 50 mm rectangular. The
sieve was modeled using a series of regularly arranged triangular unit walls with the
screen opening size of 2.4 mm × 2.85 mm and 5 mm × 5 mm for sealing tests and
rheology tests, respectively, as shown in Figure 3a.

• A total of 5533 powder spheres were generated using the “ball distribute” command,
with a porosity of 0.6 and a radius of 1 mm (Figure 3b) [25–27]. The selected size of
the powder spheres was small enough to extrude from the sieve openings, although it
cannot be the same size as the actual particles at micron order.

• The model of single fiber was created by a series of spheres with a radius of 1.5 mm
and an embedded length of 0.5 mm (Figure 3c) [9]. It looked similar to a pearl necklace
where the pearls geometrically interpenetrate with each other. A parallel contact
model was adopted between the spheres, which can guarantee that the fiber does
not suffer a compressive fracture during compression. The number of spheres for
every single fiber depended on the fiber’s aspect ratio, while the fiber concentration
determined the number of fibers. A series of fibers with a certain number and random
direction were generated in the pressure column using a nested loop structure, as
shown in Figure 3d. The physical parameters of the models for the sealing grease
simulations are provided in Table 1.

• The tackifier acts as a bond between fiber spheres and powder spheres, which was
simulated by a contact model rather than spheres. The parameters of its contact model
were determined by the type of tackifier, which is significant for the properties of
sealing grease samples.
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Figure 3. Snapshots of (a) the pressure column and sieve models, (b) powder model, (c) single fiber
model, and (d) fiber model used in simulation.

Table 1. Physical parameters of the models for the simulations.

Parameter Dimension Unit

Pressure column 4 × 4 × 5 cm
Screen opening of seal test 2.4 × 2.85 mm

Screen opening of rheology test 5 × 5 mm
Radius of powder 1 mm

Radius of fiber 1.5 mm
Length of fiber (34) 5 cm

Pressure (rheology test) 1000 Pa
Pressure (sample loading) 1000 Pa

Pressure (pressure resistant sealing test) 3.5 MPa

2.3. Computational Procedure of Pressure Resistant Sealing

First of all, a pressure of 1000 Pa was applied to the sealing grease spheres along
the negative z-axis. The simulation was calculated for 5000 steps to make spheres evenly
and tightly arranged on the top of the sieve, as shown in Figure 4a. Secondly, the bottom
wall of the pressure column was removed. A pressure of 3.5 MPa was applied on the
sealing grease spheres along the negative z-axis to simulate the pressure-resistant sealing
test (see Figure 4b). During the calculation process, the true time and the number of spheres
extruded through the sieve (Number of Drops) were output. The function of applying
low pressure (1000 Pa) is to compress the sealing grease into a relatively dense state. The
pressure for the sealing performance test is generally 3.5 MPa [28].

2.4. The Criterion for Sealing State

Reaching the sealing state should satisfy the two conditions: firstly, there is no porosity
on the cross-section of the sample. Secondly, the extrusion number of powder spheres is
stable and not increasing.

2.5. Contact Element—Mechanical Modeling

In order to obtain reasonable parameters, six sets of sealing grease samples were
prepared with the tackifier at different viscosities and measured for their rheological
parameters by experiment and simulation. A good match between the simulation results
and the experiment data would indicate that a reasonable contact model and proper
parameters had been selected.
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Figure 4. Snapshots of (a) the sealing grease arranged on the top of sieve evenly and tightly, and
(b) the process of pressure resistant sealing test.

2.5.1. Experiment of Rheology Test

The polyisobutylene with a molecular weight of 2400 g/mol (PB2400) and the poly-
isobutylene with a molecular weight of 1300 g/mol (PB1300) was used to prepare the
sealing grease samples, of which the viscosity grades were defined according to the PB1300
to PB2400 mass ratio, as shown in Table 2. The time for 40 cm3 of the sealing grease sample
being extruded from the hole under 1000 Pa pressure was measured using a melt flow
rate instrument.

Table 2. The composition and contact model parameters of the sealing grease samples at different
viscosity grades.

Experiment PB1300:PB2400 5:0 4:1 3:2 2:3 1:4 0:5

Simulation

Normal stiffness (N/m) 1 × 105 1 × 105 1 × 105 1 × 105 1 × 105 1 × 105

Friction force (N) 1 × 102 1 × 102 1 × 102 1 × 102 1 × 102 1 × 102

Normal critical damping ratio 1 × 106 1.5 × 106 2 × 106 2.5 × 106 3 × 106 3.5 × 106

Tangential critical damping ratio 1 × 106 1.5 × 106 2 × 106 2.5 × 106 3 × 106 3.5 × 106

Tensile strength (Pa) 1 × 103 1 × 103 1 × 103 1 × 103 1 × 103 1 × 103

Cohesion (Pa) 1 × 102 1 × 102 1 × 102 1 × 102 1 × 102 1 × 102

Viscosity Grade 1 2 3 4 5 6

2.5.2. Simulation of Rheology Test

In the DEM model, once the spheres were evenly and tightly arranged on the bottom
of the pressure column, a pressure of 1000 Pa was applied to the sealing grease spheres
along the negative z-axis. The volume of the sealing grease sample is 40 cm3, which is the
same as the practical experiment. The total number of spheres extruded from the hole and
the time of the sealing grease sample being extruded were recorded.

The parameters of a parallel bond model include normal stiffness, friction force, normal
critical damping ratio, tangential critical damping ratio, tensile strength, and cohesion.
These parameters were adjusted using the variable-controlling approach. Specifically, one
of these parameters changed continuously while other parameters remained the same. The
viscosity grade of sealing grease would be influenced by this parameter in the condition
of extrusion time of sealing grease, with the increase in parameter showing a regular
increase. Results showed that only changing the critical damping ratio and tangential
critical damping ratio can vary the viscosity of sealing grease. Therefore, the normal and
tangential critical damping ratio were increased from 1 × 106 to 3.5 × 106 to adjust the
viscosity of simulated grease, with the other parameters remaining constant, as shown
in Table 2. The extrusion rate of the sealing grease samples at the six viscosity grades
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was plotted in Figure 5. When viscosity increases, the extrusion time of the sealing grease
gradually increases, which indicates that the extrusion rate of sealing grease slowed down.
The experiment measured data, and the numerical simulation data were compared in
Figure 6. The measured data and numerical data are basically the same, illustrating a
reasonable selection of the parameters for the numerical simulation model.

Figure 5. The curves between number of powder spheres squeezed from sieve and time under
different viscosity grade.

Figure 6. The contrast curves between measured data and numerical data.

2.6. Parametric Study-Viscosity and Fiber Aspect Ratio

Six types of viscosity grade and five types of fiber aspect ratio were selected to study
the effect of these factors on optimum fiber number. Determination of the optimum fiber
number for different viscosity and fiber’s aspect ratio was studied by pressure-resistant
sealing tests, which is the fiber number that just meets the criterion of reaching a sealing
state. With unbalanced force or fiber area proportion, or the combination of these two,
the rationality of optimum fiber number can be checked. Unbalanced force, generated
in the iterative process, is the difference between the internal force and external force,
which indicates the sealing effect of sealing grease. The smaller the unbalanced force
and the greater would be the stability of the simulation model [29], which means that
the displacement of powder spheres is smaller. In other words, the stability degree and
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convergence degree of the drops number are indicated by an unbalanced force. Fiber area
proportion, the ratio between fiber area and total area of cross-section of “fiber cake”, is
an indicator for the density of “fiber cake”. Thus, the number of porosities on the cross-
section is indirectly indicated by the fiber area proportion. Specifically, optimum fiber
numbers can be verified by drawing unbalanced force-fiber number curves and fiber area
proportion-fiber number curves.

Finally, the relationship between the optimum fiber number and viscosity and that
between the optimum fiber number and fiber’s aspect ratio were analyzed, which can
be used to define the “Stable Zone” and the “Failure Zone” for sealing grease. The total
number of fiber spheres indicates the mass of fiber. Therefore, the relationship curve of
fiber’s aspect ratio against the total number of fiber spheres for the optimum fiber number
was investigated.

3. Results and Discussion
3.1. The Effect of Viscosity Grade on Optimum Fiber Number

Six viscosity grades of one to six were used to study the influence of viscosity on
the optimum fiber number. The fiber’s aspect ratio was retained at 50 in the simulation
process. During the computational procedure, the number of drops and real extrusion time
were output every 500 steps. The computational procedure was interrupted when one
of the following two situations occurred: the number of drops remained unchanged, or
porosity appeared on sealing grease. Then the maximum unbalanced force was recorded.
The snapshot of the cross-section 5 mm above the sieve at the end of computation was
output. Finally, the number of drops was plotted against the real extrusion time. Combined
with the porosity pattern of the cross-section at the end of the computation, the effect
of the viscosity on the optimum fiber content was analyzed. It should be noted that the
curves were denoted by the symbol of “viscosity grade-fiber number”, as shown in Figure 7.
For example, the “1–200” symbol means the sample with the viscosity grade of one and
fiber number of 200 used in the simulation model. The corresponding snapshots of the
cross-sections were drawn beside the curves with the porosity marked using. The vacancy
in the red circle in the Figure 7 refers to the porosities in the cross-sections of the model,
indicating that the seal state has not been reached.

As shown in Figure 7a, when the fiber number is 200, the number of drops gradually
increases without any convergence trend, and there was three obvious porosities on the
cross-section. With the fiber number increasing to 300, the number of drops began to
converge from 0.42 s and was stable around 1000. However, there was two tiny porosities.
When the fiber number increased to 400, the increasing trend of the number of drops
stopped from 0.39 s, which was stable at around 600. Meanwhile, there was no porosity on
the cross-section. The pattern of the curves and porosity in the models illustrated that the
sealing grease model could not reach a sealed state until the fiber number increased to 400
for viscosity grade 1. Above all, the fiber number just meeting the seal requirement should
be between 300 and 400. In other words, the optimum fiber number for the sealing grease
at the viscosity grade of one should be between 300 and 400.

Similarly, the optimum fiber number of the other five viscosity grade was analyzed,
which was the same as the fiber number of viscosity grade one. The simulation results
of the models at viscosity grades three and five were shown in Figure 7 since the curve
patterns of the models at different viscosity grades were consistent. Furthermore, the
predicted optimum fiber number was assessed with the unbalanced force at the end of the
computation. The unbalanced forces of the model with different fiber numbers and the
six viscosity grades were plotted and compared. As shown in Figure 8, the unbalanced
forces all decreased as the fiber number increased from 200 to 400 (200, 300, and 400).
When the fiber number was higher than 400, the unbalanced force remained constant
around 1.02 × 10−2. This indicated that the seal effect and seal state remain unchanged,
and thus the fiber number of the model reaching the critical seal state should be around
400. Although the optimum fiber numbers for seal state were similar for different viscosity
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grades, the unbalanced force decreased with the increase in viscosity grade. This implied
that the increase in viscosity could improve the sealing effect without changing the seal
state. The higher the viscosity grade, the greater the flow resistance, which is consistent
with the experimental results. Fibers build upon the sieve, reducing the flow cross-section
of the seal grease. Therefore, an increase in fiber content and viscosity results in an increase
in unbalanced forces.

Figure 7. The development of drops number along the simulation and the cross section of the sealing
grease models at (a) viscosity grade 1, (b) viscosity grade 3, and (c) viscosity grade 5.

3.2. The Effect of Fiber’s Aspect Ratio on Optimum Fiber Number

Based on the above simulation results, viscosity showed little influence on the op-
timum fiber number. However, the increase in viscosity can improve the sealing effect,
apparently. Per conservativeness, the sealing grease at the smallest viscosity (viscosity
grade 1) was selected in the subsequent simulation. Five aspect ratios of fiber: 17, 20, 24, 28,
and 34, were used in the models to investigate the influence of fiber’s aspect ratio on the
sealing performance and thus determine the optimum fiber number.
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Figure 8. The relationship curves between unbalanced force and number of fibers for different
viscosity grade (the symbols stand for the viscosity grades).

The number of drops was plotted against the computation time in Figure 9 for the
fiber’s aspect ratio varied from 17 to 34. For the model with the aspect ratio of 17, the
number of drops gradually increased without a convergence trend when the fiber number
was 500 and 700, as the curves show in Figure 9a. In addition, there were several porosities
that appeared in the cross-sections of these two models, in which the seal state was not
reached. Until the fiber number increased to 750, the number of drops began to converge
from 0.48 s, and its value was around 1400. However, there was one tiny porosity on the
top left corner of the cross-section, which indicated that the sealing grease sample with
a fiber number of 750 did not reach the seal state. When the fiber number was increased
to 900, the two criteria for reaching the sealing state were both fulfilled. Therefore, the
optimum fiber number should be between 750 and 900. Similarly, as shown in Figure 9 and
Table 3, the optimum fiber number for the other models with the aspect ratio of 20, 24, 28,
and 34 should be between 700 and 850, 600 and 700, 500 and 600, 580 and 650, respectively.

Furthermore, the reasonability of the determined optimum fiber number was assessed
by combination with unbalanced force and fiber area proportion. For different aspect ratios
of fiber, the variation curve of unbalanced force with the fiber number increasing is shown
in Figure 10, in which the red symbol is the optimum fiber number determined hereinbefore.
The variation curves can be divided into four stages. For the fiber’s aspect ratio of 34, the
unbalanced force gradually decreased to about 0.02, with the fiber number increasing from
260 to 440, which is the first stage. In the second stage, the unbalanced force remained
0.02 until the fiber number increased to 560, which was called the first stabilization period.
However, the corresponding cross-section still had several tiny porosities, as shown in
Figure 9e. Along with the fiber number increasing from 560 to 620, the unbalanced force
decreased, and there was no porosity on the cross-section. It is the third stage, also called
the critical seal period. Therefore, the optimum fiber number should be selected in this
stage. In the fourth stage, with the increase in fiber number, the unbalanced force was
around 0.012 without variation, and there was no gap on the cross-section, which implied
that the sealing effect and seal state of the model were the same as in the third stage.
Therefore, this stage is called the second stabilization period. Similarly, the other curves
also can be divided into four stages, which are the same as fiber’s aspect ratio of 34.

Figure 11 presents a series of cross-sectional images used to analyze the fiber area
proportion of “fiber cake” obtained with Image Pro Plus image processing software. Firstly,
the entire cross-section surrounded by red lines was regarded as AOI (Area of Interest),
and the total cross-sectional area was recorded as A1. Subsequently, the white region in the
figure was regarded as AOI, and the corresponding area that is recorded as A2. Therefore,
the proportion of the fiber area can be calculated by A2/A1. For each aspect ratio of fiber,
the statistical fiber area proportion of “fiber cake” was summarized in Table 4.



Materials 2022, 15, 3485 11 of 17

Figure 9. The development of drops number along the simulation and the cross section of the sealing
grease models at different fiber’s aspect ratio, including (a) 17, (b) 20, (c) 24, (d) 28 and (e) 34.
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Table 3. The drops number and the pore distribution at cross section at different fiber’s aspect ratio
with different fiber number.

Fiber’s Aspect Ratio Fiber Number Number of Drops (Stability) Pore Distribution at Cross Section

17

500 2078 One Large pore at up left corner and one tiny pore at
bottom right corner

700 1673 One tiny pore at up left corner
750 1300 One tiny pore at up left corner
900 993 No pores

20

500 1877 One Large pore at up left corner
600 1256 Two tine pores at up left corner and up right corner
700 1190 One tiny pore at up left corner
850 967 No pores

24

400 1890 One large pore at bottom left corner and two tiny pores at
up right corner

500 1760 One large pore at up left corner and one tiny pore at bottom
600 1077 One tiny pore at bottom
700 923 No pores

28

400 1430 Two tiny pores at bottom
550 1296 One tiny pore at up left corner
580 1162 One tiny pore at up left coener
650 960 No pores

34

350 1630 Two tiny pores at bottom right corner
400 1295 One tiny pore at bottom
500 921 One tiny pore at bottom
600 867 No pores

Figure 10. The variation curves of unbalanced force with fiber number increasing for different fiber
aspect ratio, which can be divided into four stages: I, II (the first stable period), III, IV (the second
stable period). The red symbol is the optimum fiber number determined hereinbefore.
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Figure 11. A series of cross section images used to analyze fiber area percentage at the optimum
amount of fiber by Image Pro Plus image processing software (Image Pro Plus 6.0, Media Cybernetics,
Bethesda, MD, USA).

Table 4. The statistical fiber area proportion of the optimum fiber number for each fiber’s aspect ratio.

Fiber’s Aspect Ratio Cross-Sectional Area Fiber Area Proportion of Fiber Area

17 52,269 81,859 80.08%
20 80,052 62,264 77.91%
24 62,300 49,035 78.71%
28 85,069 66,796 78.52%
34 70,754 56,851 80.35%

The variation curves of fiber area proportion with fiber number increasing are shown
in Figure 12. For the fiber’s aspect ratio of 34, this variation curve was divided into
four stages. Firstly, as the fiber number increased to 440, fiber area proportion gradually
increased to about 76%. Subsequently, the fiber area proportion was around 76% without
variation, along with the fiber number increasing to 560, which was similar to the variation
curve of unbalanced force in Figure 10. This illustrated that the sealing effect kept the same
with the increase in fiber number. In the third stage, the fiber area proportion exceeded the
critical value of 76% and reached a critical seal state, with the fiber number increasing to
680. Therefore, the optimum fiber number should be selected in this section. When the
fiber area proportion increased to around 82%, the fiber area proportion stayed unchanged
as the fiber number increased to 740, which was the reason that the sealing effect kept the
same in the second stabilization period, as demonstrated in Figure 10. The other variation
curves of fiber area proportion for the models with the fiber’s aspect ratio of 17, 20, 24, and
28 were similar to this curve.

Four stages can be divided for both the variation curves of unbalanced force and fiber
area proportion, which include the sealing failure stage, first stabilization period, critical
seal period, and second stabilization period. Furthermore, the demarcation lines of every
two stages for these curves are practically identical. The changes of unbalanced force and
fiber area proportion were synchronous, which indicates that the convergence degree of
the number of drops was connected with porosity on the cross-section.
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Figure 12. The variation curves of cross-section fiber area percentage with fiber number for different
fiber aspect ratio, which can be divided into four stages: I, II (the first stable period), III, IV (the
second stable period). The red symbol is the optimum fiber number determined hereinbefore.

After verifying the reasonability of optimum fiber number for different fiber aspect
ratios, the optimum fiber amount at each fiber’s aspect ratio was plotted in Figure 13 with
the dashed line as the fitting curve. The fitting curve can be expressed by the equation
y = 1010.6 × 10−0.108x, and the relevant factor was 0.9651. The diagram showed that the
optimum fiber number decreased gradually with the increase in the fiber aspect ratio.
The sealing performance of the simulated grease was considered effective when the fiber
number fell within the area above the fitting curve, denoted as “Stable Zone” in this study.
On the other hand, the area below the curve was named “Failure Zone”, within which the
sealing grease sample was considered to fail in sealing.

Figure 13. The fitting curve between the optimum amount of fiber and fiber aspect ratio.

Based on the above conclusion, the optimum fiber number decreased with the increase
in the fiber’s aspect ratio. In other words, for the same grease volume, less fiber number
would be required by the sealing grease with higher fiber aspect ratios to reach the same
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sealing state. The curve in Figure 14 presents the relationship between the fiber’s aspect
ratio and the number of fiber spheres for the optimum fiber number. Each fiber sphere in
the model was considered as one molecule of the fiber. The same quantity of fiber spheres
means the same quantity of fiber molecules, and thus the same mass of fiber if sealing
grease is made of the same material. The number of fiber spheres was unchanged and
kept at about 3500 regardless of the optimum fiber number, which implied that the sealing
grease sample made of the same fiber material and quality could reach the same seal state
and seal effect, independent of the fiber’s aspect ratio.

Figure 14. The variation of total fiber spheres number with fiber’s aspect ratio at the optimum
fiber number.

4. Conclusions

The fiber content has a great influence on the performance of sealing grease. This study
investigated the effect of the viscosity of a tackifier and the aspect ratio on the optimal fiber
number using the discrete element method, which can provide a theoretical and statistical
reference for sealing grease design. The conclusions are as follows:

(1) Viscosity grade had a significant impact on the pumpability of sealing grease, which
was verified by experiment and DEM simulation of rheology tests. However, the
viscosity of sealing grease showed little influence on the optimum fiber number.
Noting that the increase in viscosity can improve the sealing effect, apparently.

(2) Compared with the influence of viscosity, the increase in fiber’s aspect ratio reduced
the optimum fiber number, which was verified by the curves of unbalanced force
and fiber area proportion of the DEM models. Furthermore, the variation curves of
the unbalanced force and fiber area proportion were practically identical and can be
divided into four stages. Although the optimum fiber number was dependent on
fiber’s aspect ratio, the mass of fiber is related to the total number of fiber spheres.
This study shows that the sealing grease sample made of the same fiber material and
quality can reach the same seal state and seal effect.

(3) The DEM models and simulation results provided a solid and convenient tool to
predict the quality of sealing grease. Many other parameters affecting the optimum
fiber content and sealing performance, such as fiber type and fiber gradation, should
be further considered in the DEM simulation for a more complete parametric study
for guiding and improving the sealing grease design with numerical simulation.
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