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Abstract: In this study, an antimicrobial packaging material was successfully developed with blends
of high-density polyethylene (HDPE) and chitosan (CS) made by melt processing. In the different
HDPE/CS composites, the CS content effect (up to 40%), and the addition of quaternary ammonium
salt functionalized chitosan (CS-CTAB) as an additive were evaluated by X-ray diffraction (XRD),
differential scanning calorimetry (DSC), thermogravimetric analyses (TG), tensile strength, scanning
electron microscopy (SEM) and antimicrobial activity. When analyzing the effect of the additive in the
different HDPE/CS composites, it was observed that the compositions with 10 and 20 %wt of chitosan
showed better elongation values (~13% and 10%) as well as a higher decomposition temperature at
20% mass loss (T20) varying from (321–332 ◦C and 302–312 ◦C), respectively, in relation to the other
compositions, regardless of the type of additive used, it acted as an antimicrobial agent, promoting
inhibition of microbial growth against the strains gram-positive and gram-negative used in this work,
making the different HDPE/CS composites suitable candidates for use in food packaging.

Keywords: HDPE; chitosan; quaternary ammonium; additive; antimicrobial activity

1. Introduction

High-density polyethylene (HDPE) from fossil fuels, has aroused much interest due to
its fabulous thermal, mechanical, barrier properties, low cost, and ease of production. Thus,
it is one of the most consumed polymers in the world in the production of packaging, as
well as, everyday utensils such as buckets, bowls, pots, and toys, among others [1]. How-
ever, despite such advantages, plastic packaging has a large impact on the environment
and human health due to the non-biodegradable nature of the plastics and the presence
of additives in the formulations of plastic packaging, aiming to improve their properties,
that can migrate to food during processing and storage [2]. Thus, to reduce the impact
of petroleum-based plastic packaging and to improve food quality, various alternative
solutions are being attempted. Among them, packaging from bio-sourced and biodegrad-
able plastics is an eco-friendly and sustainable solution. Nevertheless, the high cost, land
availability to produce raw materials, durability level, and material performance compared
to petroleum-based plastics are considered drawbacks to taking complete advantage of
biodegradable plastics for socio-economic benefits [3]. Alternatively, polymer blends and
composites containing natural polymers such as collagen, starch, elastin, and chitosan as
biodegradable additives have been developed [4–12]. The production process of these
types of systems is relatively easy and inexpensive and can be commercialized [13].

Chitosan is an abundant natural polymer, derived from the deacetylation of chitin
(a homopolymer of β(1–4) linked N-acetyl-D-glucosamine) obtained from the shells of
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crustaceans [14,15]. As a natural renewable resource, chitosan has a number of unique
properties such as being biocompatible, biodegradable, and non-toxic, and can interact
with metal ions, dyes, proteins, nucleic acids, lipids, herbicides, pesticides, and humic
acids [16–18]. Chitosan is a natural polycationic polysaccharide and has an excellent
antibacterial property against various bacteria, viruses, and fungi [19–21]. Generally,
antibacterial activity is governed by molecuPlease check intended meaning has been
retained.lar weight (Mw), degree of deacetylation, temperature, and pH of solution [22–24].

The mixture of HDPE with chitosan is an alternative method for obtaining eco-friendly
and high-performing packing materials. In addition, if initially, HDPE does not have an-
timicrobial and antifungal activities for packaging applications [25–29], by combining with
chitosan [4,5,12,30,31], its biodegradation and antimicrobial activity can be improved [32].
Therefore, the use of chitosan as an additive sustainable for polymer-based composites is
beginning to receive quite some attention. Chitosan acts as a biodegradable additive and,
giving antimicrobial properties, it is a renewable polymer, has relative abundance, is easily
biodegradable, inexpensive, has low abrasive nature, and is non-toxic [32–34].

Despite the benefits that can be achieved with the use of chitosan as a filler in the
HDPE-based composite material for food packaging, research in this regard is still lim-
ited [31,35–40] and, as far as we know, there is no study concerning the additivation of
HDPE/chitosan with quaternary ammonium salt (cetyl trimethyl ammonium bromide-
CTAB) functionalized chitosan. Thus, our major interest is to explore the potential of the
incorporation of quaternary ammonium salt functionalized chitosan (CS-CTAB), developed
in our laboratory, on morphological, thermal, mechanical, and antibacterial properties of
HDPE/chitosan composites.

In addition, it is reported in the literature that the synthesis of a chitosan-based
antimicrobial agent by salt quaternary ammonium grafting retains its properties and
exhibits a remarkable improvement in antibacterial properties compared to unmodified
chitosan [41–46]. It is important to highlight that in 2018 [38], a work carried out by our
research group, synthesized in our laboratory, demonstrated a modified clay with chitosan
impregnated with CTAB to be used as a compatibilizer in HDPE/chitosan blends and,
therefore, the thermal properties and some of the mechanics were improved, making the
mixtures of HDPE/chitosan suitable candidates for food packaging.

In light of this, different formulations of HDPE/chitosan were prepared in this work
by melt processing, using quaternary ammonium salt functionalized chitosan as an addi-
tive in order to elucidate the effect of these on thermal, morphological, mechanical, and
antibacterial properties of HDPE/chitosan composites for food packaging.

2. Materials and Methods
2.1. Materials

High-density polyethylene (HDPE), GM9450F, with a melt flow index of 9.3 g/10 min
(190 ◦C/2.16 kg) (ASTM D 1238), density of 0.952 g/cm3 (ASTM D 792), produced by
Braskem (São Paulo, Brazil) was donated by Rava Embalagens (Paraíba, Brazil). Chitosan
(CS) from crab shells, as supplied by Polymar (Ceará, Brazil) with 95% deacetylation degree
and viscosity of 74.03 cps was used since the high amount of active primary amine on the
chitosan backbone provides excellent reactive sites for chemical modifications. The quater-
nary ammonium salt used was cetyl trimethyl ammonium bromide (C16H33(CH3)3N+Br−,
MW: 364 g/mol), labeled CTAB, supplied by Vetec (São Paulo/Brazil) and it was used
without any further purification. Analytical grade reagents (glacial acetic acid and sodium
hydroxide) were purchased from Vetec and were used as received. All the samples
were prepared with distilled water throughout the experiment. The microorganisms
used in this study were Escherichia coli (ATCC 25922), Salmonella sp. (ATCC 14028), and
Staphylococcus aureus (ATCC 25923) and donated by State University of Paraíba (Campina
Grande, PB, Brazil).
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2.2. Preparation of CTAB Functionalized CHITOSAN

The CTAB functionalized chitosan (CS-CTAB) was prepared according to method
previously published [38]. Chitosan solution was made by dissolving the required amount
of chitosan powder (3 g) into 1% aqueous acetic acid solution (300 mL). The reactants
were magnetically stirred at 45 ◦C for 2 h, and then the CTAB (0.0662 g) was added to the
reaction mixture and stirred at the same temperature for another 2 h. The CTAB amount
was determined to react with 100% of the amino groups present in the chitosan and was
calculated using Equation (1):

ϕ =
αMS

ME + αM1 + (1 − α)M2
(1)

here ϕ is the amount of CTAB necessary to react with 1 g of chitosan; MS, ME, M1, and
M2 are the molar mass of CTAB, glucose skeleton, amino group, and acetamide group,
respectively, and α = 0.95 is the deacetylation degree.

When the reaction was complete, two different methods for obtaining CS-CTAB
powders were employed: evaporation and precipitation. For the first method, the CS-CTAB
reaction mixture was oven dried under air circulation at 50 ◦C for 115 h, subsequently
grounded with an agate mortar, and sieved to 74 µm for use. For the precipitation method,
the CS-CTAB reaction mixture was maintained at room temperature (24 h), then it was
precipitated via the addition of NaOH solution 1 M (130 mL), followed by centrifugation
at 3800 rpm for 5 min at room temperature. The precipitated material was collected,
oven dried under air circulation at 50 ◦C for 96 h, and, also grounded and sieved in the
conditions previously described. The CS-CTAB powders were obtained by evaporation
and precipitation and coded as CS-CTABE and CS-CTABP, respectively.

2.3. Preparation of HDPE/Chitosan Composites

Melt processing of neat HDPE, HDPE/CS unadditived and HDPE/CS additived with
CS-CTAB (HDPE/CS/CS-CTAB) was carried out in a Haake Rheomix 3000 laboratory
internal mixer (Waltham, MA, USA), equipped with a mixing chamber with high-intensity
rotors (roller type) operated at 60 rpm with chamber wall temperature kept at 170 ◦C. Batch
mass was selected to fill 90% of the processing chamber volume during the last stage of
the process (fully molten material). HDPE, as received, was processed for 10 min. For
composites, HDPE was loaded first and after 6 min, CS, CS/CS-CTAB (dried under vacuum
for 48 h at 50 ◦C) were added without interrupting the process and the mixing continued for
another 4 min. After the melt processing, each sample was grounded, dried under vacuum
for 24 h at 80 ◦C, and compression molded in a hydraulic press at 160 ◦C for 5 min to obtain
samples in accordance with Standard ASTM D-638, Type 4. The prepared composites are
summarized in Table 1.

Table 1. Compositions of the prepared samples.

Code Composition HDPE (g) CS (g) CS-CTAB (g)

HDPE 100 50 0 0
HDPE/CS9 90/10 45 5 0
HDPE/CS8 80/20 40 10 0
HDPE/CS7 70/30 35 15 0
HDPE/CS6 60/40 30 20 0

HDPE/CS9/(CS-CTAB)E 90/10/0.1 45 5 0.05
HDPE/CS8/(CS-CTAB)E 80/20/0.2 40 10 0.10
HDPE/CS7/(CS-CTAB)E 70/30/0.3 35 15 0.15
HDPE/CS6/(CS-CTAB)E 60/40/0.4 30 20 0.20
HDPE/CS9/(CS-CTAB)P 90/10/0.1 45 5 0.05
HDPE/CS8/(CS-CTAB)P 80/20/0.2 40 10 0.10
HDPE/CS7/(CS-CTAB)P 70/30/0.3 35 15 0.15
HDPE/CS6/(CS-CTAB)P 60/40/0.4 30 20 0.20
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2.4. Characterization

X-ray diffraction (XRD) was employed to assess the HDPE/chitosan composites
crystallinity. A Bruker D2 Phaser X-ray diffractometer (Houston, TX, USA) with CuKα
radiation (λ = 1.54 Å) operating at 40 kV and 40 mA was used to carry out the experiments
at room temperature. The spectra were recorded over a 2θ range of 15–30◦ using a scan
rate of 0.02◦/s.

The HDPE/chitosan composites crystallinity (Xc) was calculated from the XRD data
by following Equation (2) using simple peak area method [47].

Xc(%) =

(
Ic

Ic + kIa

)
(2)

where Ic is the diffraction intensity associated with the planes crystalline and Ia is the
intensity of the amorphous halo. k is constant of proportionality of HDPE in the value from
1.235 [48].

Chitosan (CS) and cetyl trimethyl ammonium bromide (CTAB) samples were charac-
terized by XRD as powder sieved through a 200 mesh, and pure HDPE and HDPE/chitosan
composites were characterized in the form of plates.

Differential scanning calorimetry (DSC) was used to study the crystallization and melt-
ing behavior of the HDPE/chitosan composites using a Shimadzu DSC (Kyoto, Japan)—60 in-
strument. The sample was cut into small pieces and ~5 mg of each sample was used for
analysis. To remove the thermal history, the sample was heated from 30 ◦C to 200 ◦C, kept
at 200 ◦C for 3 min and cooled to −130 ◦C and then reheated up to 200 ◦C at a heating rate
10 ◦C/min under argon atmosphere. The second heating scan was used to determine the
crystalline melting enthalpy of the matrix.

The crystallinity (Xc) of samples was determined by the following Equation (3).

Xc(%) =
∆Hexperimental /WHDPE

∆Htheorical
∗ 100

(3)

where ∆Hexperimental is the observed heat of fusion of the sample, WHDPE is weight fraction
of HDPE in the composites and ∆Htheorical is the heat of fusion of 100% crystalline HDPE
and was taken to be 277 J/g [49].

Thermogravimetric analysis (TG) was employed aiming to evaluate the thermal stabil-
ity of the samples under argon environment and flow of 50 mL/min, using a Shimadzu
60H thermogravimetric analyzer (TG) (Kyoto, Japan). Approximately 10 mg of sample
was placed in the alumina crucibles at a heating rate 10 ◦C/min from room temperature to
900 ◦C.

Tensile test was conducted in a Shimadzu Universal machine (Kyoto, Japan), Model
autograph AG-X 10 KN, employing a crosshead speed 5 mm/min. The test was performed
according to Standard ASTM D638 (Type IV). Six samples from each composition were
tested. All the measurements were carried out at room temperature (30 ± 2 ◦C).

Scanning electron microscopy (SEM) used to evaluate the effects of adding additive
(CTAB-CS) on the morphology of the HDPE/CS composites was a FEI Quanta 450 instru-
ment (Hillsboro, OR, USA). The cryofractured sample was obtained after being submerged
in liquid nitrogen for approximately 15 min. A fine layer of gold was deposited over the
fracture surfaces prior to test. The instrument was operated at 10–15 KV.

Antibacterial properties of the HDPE/CS8 composites with and without additive
(CS-CTAB) were determined by the microbial adhesion assay according to Standard JIS Z
2801:2000 (E) [50]. 24 h culture of Gram-negative bacterium, Escherichia coli and Salmonella
sp. and a Gram-positive bacterium, Staphylococcus aureus were selected as test microor-
ganisms. The strains were grown on Brain-heart infusion agar (BHI) in a bacteriological
incubator at 37 ◦C for 24 h. Then, suspensions of the microorganisms were prepared in
saline solution on the 0.5 McFarlands’ scale. The HDPE/CS8 formulations were sized at
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1 cm2, 70% ethanol sterilized and placed in a 24-well culture dish with 900 µL Mueller
Hinton broth culture medium (KASVI) and 100 µL of microorganism suspension. Then,
the 24-well culture dish was placed in a bacteriological incubator at 37 ◦C for 24 h. Then,
the samples were removed from the dish, washed with saline solution at 0.9% and the
microorganism was fixed by immersion glutaraldehyde at 2.5% followed by sequentially
dehydration using 15, 30, 50, 70, 85 and 99.6% of ethanol. After that, the samples were
incubated at 50 ◦C for 24 h. The evaluation of antibacterial activity was carried out using a
Scanning Electronic Microscopy (SEM)-FEI Quanta 450 instrument (Hillsboro, OR, USA).
The sample surface was sputter-coated with gold to prevent the occurrence of electrostatic
charge during observation.

3. Results and Discussion

Figure 1 shows the XRD pattern for HDPE and HDPE/CS hybrids for HDPE, it ob-
served the presence of two crystalline peaks at 21◦ and 23.3◦, related to the (110) and (200)
planes, respectively, characteristics of the orthorhombic structure of the crystal polyethy-
lene [51,52]. For all the HDPE/CS composites, with and without the additive (CS-CTABE
and CS-CTABP), crystalline peaks were observed in the region of 21◦ and 23◦, which is char-
acteristic of the crystalline phase of the HDPE, and another peak of low intensity around
20◦ belonging to chitosan, as expected. By comparing all XRD patterns, a slight decrease
in the intensity of the crystalline peaks of the HDPE/CS composites was observed as the
chitosan content increased. This behavior may be associated with the chitosan structure
to clutter the packaging of the HDPE molecules, thus reducing the crystallinity index [52].
Similar behavior was assessed by De Araujo et al. (2018) [38] when using the clay from our
region impregnated with a quaternary ammonium salt. A scattering peak also appears at
2θ = 19.3◦, which stands for the amorphous portion.
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In comparative analysis (Table 2), it is observed in general that the Xc of composites
with the additive (CS-CTAB)P showed a slight increase in its degree of crystallinity in
relation to composites with (CS-CTAB)E. It is suggested that the additive prepared by
the precipitation method (CS-CTAB)P, favored a greater rearrangement of the HDPE/CS
molecules in the composition, possibly due to the lower CTAB salt content used in ob-
taining the functionalized chitosan (CS-CTAB)P. The same behavior was observed by
De Araújo et al. (2018) [38]. This result was also analyzed through the DSC as shown next.

Table 2. Crystallinity (Xc) of HDPE and HDPE/CS composites as evaluated using Equation (1).

Sample Xc (%)

HDPE 54
HDPE/CS9 45

HDPE/CS9/(CS-CTAB)E 45
HDPE/CS9/(CS-CTAB)P 50

HDPE/CS8 43
HDPE/CS8/(CS-CTAB)E 41
HDPE/CS8/(CS-CTAB)P 39

HDPE/CS7 38
HDPE/CS7/(CS-CTAB)E 34
HDPE/CS7/(CS-CTAB)P 40

HDPE/CS6 39
HDPE/CS6/(CS-CTAB)E 32
HDPE/CS6/(CS-CTAB)P 36

Table 3 shows the thermal properties determined by differential scanning calorimetry
(DSC) under heating and cooling for pure HDPE and HDPE/CS composites. The crys-
tallization (Tc) and melting (Tm) temperatures for pure HDPE were 115 ◦C and 130 ◦C,
respectively. Regarding the different compositions, it is observed that the incorporation of
different contents of chitosan and additives (CS-CTABE and CS-CTABP) to HDPE had no
major effect on Tm and Tc. Behavior similar to this has been reported in the literature [35].

Table 3. DSC of HDPE and HDPE/CS composites.

Sample Tc (◦C) ∆Hc (J/g) Tm (◦C) ∆Hm (J/g) Xc (%)

HDPE 115 155 130 184 64
HDPE/CS9 115 110 130 141 53

HDPE/CS9/(CS-CTAB)E 111 69 125 97 37
HDPE/CS9/(CS-CTAB)P 115 63 129 96 36

HDPE/CS8 114 40 129 99 42
HDPE/CS8/(CS-CTAB)E 110 51 124 82 35
HDPE/CS8/(CS-CTAB)P 110 53 124 84 36

HDPE/CS7 113 45 128 56 27
HDPE/CS7/(CS-CTAB)E 114 42 128 61 30
HDPE/CS7/(CS-CTAB)P 116 57 129 77 37

HDPE/CS6 114 50 127 63 36
HDPE/CS6/(CS-CTAB)E 115 41 128 53 30
HDPE/CS6/(CS-CTAB)P 113 44 128 52 30

By increasing the concentration of chitosan, the melting point of the composites
tends to decrease, especially for compositions HDPE/CS8/(CS-CTAB)E and P (124 ◦C) in
relation to HDPE/CS8 (129 ◦C). This decrease in the melting point would reduce the energy
consumption during the manufacturing process, resulting in lower production costs; this
indicates the feasibility of the proposed approach [53].

The degree of crystallinity (Xc) for HDPE was 64% as observed also by Kahar et al.
(2016) [54]. The incorporation of different contents of chitosan in the HDPE composi-
tions greatly affected this property (Table 3). There is a decrease in the values of (Xc) for
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HDPE/CS composites in different proportions as the chitosan content was increased. This
is possibly due to chitosan causing disorder in the HDPE crystalline system [10,35]. A
small difference among the values of Tm and Tc was observed in both composites with and
without additive (CTABP and CTABE) but the percentage crystallinity was greatly affected
by the incorporation of chitosan. It shows that chitosan inhibits the close packing of the
PE chains. The lower crystallinity of composites with additive was due to the chitosan
content. The chitosan structure reduced the flexibility of composites which lowered the
peak crystallization temperature and consequently reduced crystallinity. A similar trend
has been reported in the literature [35,55,56].

In this study, TG was conducted to assess the effect of chitosan (CS) and chitosan
functionalized with quaternary ammonium salt (CS-CTABE and CS-CTABP) addition on
the thermal properties of HDPE. Thermal stability studies are necessary in the case of
materials that are used for packaging applications as the polymer may be subjected to heat
processes during their preparation, processing, or conception.

Figure 2 shows the TG curves for chitosan (CS), organic salt (CTAB), and chitosan
functionalized with quaternary ammonium salt by two different methods, evaporation, and
precipitation (CS-CTABE and CS-CTABP). Pure chitosan shows three events of mass loss.
The first event occurs at an initial decomposition temperature (Ti) of 52 ◦C and refers to the
water loss associated with the amino groups in the polysaccharide structure. The second
event takes place at around 263 ◦C and is altered by the decomposition of organic matter
that begins with the breakdown of glycosidic bonds accompanied by the decomposition
of the acetylated and deacetylated units of the polymer. The third event occurs in a Ti of
approximately 498 ◦C, resulting from the decomposition of the polymer residues [57,58].
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For chitosan functionalized with quaternary ammonium salt (CS-CTAB) obtained by
the evaporation and precipitation methods (Figure 2), three mass loss events are observed.
The first loss of mass occurs in a Ti of 42 ◦C, belonging to water and acetic acid present
in both samples. The second event takes place in a Ti at 225 ◦C and is associated with
organic salt (CTAB) [59], present in the chemical functionalization of chitosan. For chitosan
functionalized with quaternary ammonium and prepared by the evaporation method
(CS-CTAB)E, there is a loss of mass related to the second event, around 60%. Such loss
may be associated with the excess of organic salt (CTAB) present in the sample, from the
evaporation method itself. On the other hand, for chitosan functionalized with quaternary
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ammonium and prepared by precipitation (CS-CTAB)P, a loss of mass related to the second
event of only 29% is observed, much lower than the percentage presented by the sample
obtained by the evaporation method. The third event occurs in a Ti of 425 ◦C, resulting from
the decomposition of organic salt and polymer residues [59,60]. There is a residual mass
of approximately 25% for the (CS-CTAB)P sample. The (CS-CTAB)E sample is completely
decomposed. This is possibly due to the NaOH residues retained in the sample after the
precipitation process. These samples (CS-CTAB)E and (CS-CTAB)P were used as additives
in the HDPE/CS composites. Therefore, TG was conducted to assess the effect of chitosan
(CS) and samples (CS-CTABE and CS-CTABP) as additives on the thermal properties of
HDPE-based composites. Thermal stability studies are necessary in the case of materials
that are used for packaging applications as the polymer may be subjected to heat processes
during their preparation, processing, or conception [38].

Table 4 shows the degradation temperatures step of HDPE and HDPE/CS composites,
with and without additive.

Table 4. Degradation temperature events of the HDPE, CS, HDPE/CS and HDPE/CS/(CS-CTAB).

Sample Ti–Tf (◦C)

I II III T20 (◦C)

HDPE 463–489 460
CS 62–98 263–309 496–592 266

HDPE/CS9 40–78 263–311 459–490 440
HDPE/CS9/(CS-CTAB)E 37–76 270–312 460–491 321
HDPE/CS9/(CS-CTAB)P 36–73 271–310 456–488 332

HDPE/CS8 38–77 268–312 458–489 302
HDPE/CS8/(CS-CTAB)E 37–76 269–312 469–490 302
HDPE/CS8/(CS-CTAB)P 30–81 266–310 456–487 312

HDPE/CS7 36–78 265–310 451–486 302
HDPE/CS7/(CS-CTAB)E 38–77 269–311 454–486 293
HDPE/CS7/(CS-CTAB)P 39–78 267–312 456–488 291

HDPE/CS6 50–93 267–309 406–488 290
HDPE/CS6/(CS-CTAB)E 42–82 267–314 456–487 293
HDPE/CS6/(CS-CTAB)P 37–82 268–311 455–488 289

Ti—onset temperature and Tf —end temperature.

From Table 4, only one mass loss event is observed whose decomposition temperature
stage (Ti–Tf ) is in the range of 463–489 ◦C, corresponding to the decomposition of the pure
HDPE [1,35]. It is possible to observe also that the CS and all other compositions exhibited
the same decomposition profile, presenting three stages of mass loss. Such losses are char-
acteristic of the components present in the mixture HDPE/CS as considered individually.

The first stage below 100 ◦C was mainly attributed to the loss of water absorbed from
the materials. The second stage, ranging from 263 ◦C to 314 ◦C, was due to the thermal
degradation of chitosan. In this stage, degradation of chitosan took place, which involved
dehydration, deacetylation, and chain scission reactions. The third stage (406–491 ◦C) was
attributed to the decomposition of the HDPE matrix. These data are in accordance with the
reported in the literature [61].

It is clear from the Table 3 data that the thermal stability of HDPE/CS and HDPE/CS/(CS-
CTAB) composites are similar to those of HDPE. Chitosan and chitosan’s functionalized (CS-
CTAB)E, P had no significant effect on the overall characteristics of each weight loss stage
of the HDPE-based composites, regardless of the method (evaporation or precipitation)
or the weight ratio used. Special attention is given to the composite HDPE/CS8/(CS-
CTAB)E where a mass loss event in the range of 469–490 ◦C is observed. This event may be
associated with the content of organic salt and chitosan present in the sample.

The degradation of HDPE was not significantly affected when blended with chitosan
and chitosan functionalized with quaternary ammonium salt (CS-CTAB). The composites
HDPE/CS and HDPE/CS/(CS-CTAB) prepared by melting may perhaps avoid degradation
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and/or a drastic loss in the antibacterial properties of the final material prepared by melt
processing. This behavior is according to the literature [38,62].

Still, according to Table 3, it can be seen that the decomposition temperature at
20% of mass loss (T20), presented greater thermal stability for all compositions based on
HDPE/CS9 and HDPE/CS8 with and without (CS-CTAB)E, P. Remarkable thermal stability
was observed for the compositions HDPE/CS9 and HDPE/CS8 containing (CS-CTAB)P,
332 and 312 ◦C, respectively. Such results were expected, since these compositions had
lower amounts of chitosan and organic salt in the mixture when compared to the composites
HDPE/CS7 and HDPE/CS6. This indicates that increasing the chitosan concentration tends
to slightly improve the composite thermal degradation [53].

The properties of the tensile strength, Young’s modulus, and elongation at break of
HDPE, HDPE/CS, and HDPE/CS/(CS-CTAB) composites are presented in Table 5.

Table 5. Tensile properties of HDPE, HDPE/CS and HDPE/CS/(CS-CTAB) compositions.

Sample Tensile Strength
(MPa)

Elastic Modulus
(MPa)

Elongation at
Break (%)

HDPE 16.38 ± 2.11 400.72 ± 52.49 67.14 ± 12.33
HDPE/CS9 16.70 ± 0.58 443.50 ± 25.59 15.99 ± 0.65

HDPE/CS9/(CS-CTAB)E 14.49 ± 0.31 399.28 ± 11.43 12.79 ± 0.09
HDPE/CS9/(CS-CTAB)P 16.61 ± 0.39 421.18 ± 12.61 12.10 ± 0.22

HDPE/CS8 18.35 ± 0.98 538.28 ± 21.47 12.01 ± 3.92
HDPE/CS8/(CS-CTAB)E 16.94 ± 0.39 435.20 ± 16.41 9.63 ± 1.11
HDPE/CS8/(CS-CTAB)P 15.15 ± 0.63 467.57 ± 13.29 9.18 ± 1.31

HDPE/CS7 17.26 ± 0.45 537.47 ± 16.41 11.88 ± 0.88
HDPE/CS7/(CS-CTAB)E 17.99 ± 0.67 538.97 ± 19.37 6.75 ± 1.20
HDPE/CS7/(CS-CTAB)P 17.08 ± 0.71 571.40 ± 22.68 7.21 ± 0.49

HDPE/CS6 17.52 ± 0.60 597.84 ± 22.78 9.17 ± 1.35
HDPE/CS6/(CS-CTAB)E 15.41 ± 0.57 576.45 ± 43.41 5.93 ± 0.53
HDPE/CS6/(CS-CTAB)P 14.34 ± 0.54 563.34 ± 18.61 5.61 ± 0.46

The HDPE/CS8 composite showed a slight increase in tensile strength when compared
to that of pure HDPE. However, for the other HDPE/CS9, HDPE/CS7 and HDPE/CS6
compositions, the addition of chitosan did not significantly affect this property. In a
comparative analysis, it is verified in general that the tensile strength of HDPE was not
affected by the addition of chitosan and chitosan functionalized (CS-CTAB), regardless of
the additive type and its quantity.

It is observed that Young’s modulus increased with the incorporation of CS and (CS-
CTAB)E, P in HDPE compositions with respect to the pure HDPE. Thus, it is possible to
see an increase in this property as the chitosan content in the mixtures increased (Table 4),
but it was not affected by (CS-CTAB) preparation method (evaporation or precipitation). It
is suggested that chitosan has a Young’s modulus value greater than that of pure HDPE.
According to Vasile et al. (2013) [10], the mechanical properties of the LDPE and chitosan
blends decreased except for the Young’s modulus, which increased with the addition of
chitosan because this biopolymer is more rigid than PE. Behavior similar was also observed
by De Araujo et al. (2018) [38]. Sunilkumar et al. (2012) [13] in their studies reported that
this is because chitosan is an immiscible component, has low ductility, and is a rather brittle
material; thus, its addition made the blend more rigid than pure LDPE film.

From Table 5, a significant reduction in the elongation at break values for composites
in all proportions without and with additives when compared to pure HDPE is observed.
Such behavior was expected, since chitosan, despite being a strong material, presents
ductility lower than that of HDPE. Among the compositions analyzed, the composites
HDPE/CS9 and HDPE/CS8 showed the best values of elongation at break, with and
without additives. In particular, the HDPE/CS9/(CS-CTAB)P sample obtained the highest
elongation at break (12.10%—Table 5) compared to all other compositions. Such results
corroborate the TG data, previously discussed. This elongation property can be improved
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with the incorporation of compatibilizers such as vinyl triethoxysilane [35] and maleic
anhydride [39], for example.

According to Agrawal et al. (2008) [63], and Ferreira et al. (2011) [64], an increase in
the elongation at break indicates an increase in the toughness of the material. As observed,
functionalized chitosan (CS-CTAB)E and P, showed a positive effect on the elongation at
break for the composition HDPE/CS9 while for the other compositions this reduction in
the toughness can favor greater biodegradation of the materials with the incorporation of
the additive (CS-CTAB)P and E.

According to Kusumastuti et al. (2020) [53], with the increase of the chitosan content,
both tensile strength and Young’s modulus increased; however, the elongation decreased.
Behavior similar has been observed in our study. According to Sloan et al. (1986) [65],
the Young’s modulus or elastic modulus is greatly influenced by the uniform particle’s
dispersion into the matrix. Reesha et al. (2015) [11] suggested that the low tensile strength
results from an uneven dispersion of chitosan in the LDPE matrix. Thus, the homogeneity
or even particle distribution of the blended polymer is a key to increasing both tensile
strength and Young’s modulus [53].

A possible interaction of additive (CS-CTAB) with the HDPE/chitosan composite is
represented according to Scheme 1 below.
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Scheme 1. Schematic representation of the possible interaction of the additive (CS-CTAB) with the
HDPE/Chitosan composite.

In view of the results obtained in the tensile tests and in order to evaluate the effect of
the additive (CS-CTAB) in the HDPE/CS composites, scanning electron micrograph (SEM)
analyses were performed whose micrographs are shown in Figure 3.

In the micrograph of the HDPE/CS8 composite (Figure 3), it is possible to perceive a
rough surface with the presence of voids as well as small particles of chitosan dispersed in
the HDPE matrix. Such behavior indicates a possible weak interfacial adhesion between
the polymers [66].
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For the sample, HDPE/CS8 (CS-CTAB)E (Figure 3), a smoother, uniform, and homoge-
neous surface is verified, but it contains clusters of crystals (CS-CTAB)E of varying sizes
dispersed along the HDPE matrix. The presence of these crystals is possibly due to the
evaporation method used in the preparation of this additive (CS-CTAB)E, which favors a
greater amount of organic salt in the functionalization of chitosan. This salt content may
also be responsible for the presence of agglomerates throughout the matrix. However, an
improvement in interfacial tension was observed for this mixture as reported in Table 4.
The composition HDPE/CS8(CS-CTAB)P (Figure 3) also presented a surface similar to the
sample HDPE/CS8(CS-CTAB)E with the difference that in this micrograph there is the
presence of few and small particles (CS-CTAB)P distributed in the matrix polymeric. This
characterizes a good interfacial adhesion of the mixture, considering that the additive (CS-
CTAB)P acted positively in the compatibilization of the system. These results corroborate
with the mechanical properties data presented in Table 4.

In view of this, it is suggested that the chitosan functionalized with quaternary ammo-
nium salt played an important role as a sustainable additive in decreasing the domain sizes
of the dispersed phase and reducing the interfacial tension, thus, contributing to the better
interfacial adhesion between HDPE and chitosan used in this study. The incorporation of
this additive, in addition to improving some properties as reported above, can promote
greater biodegradation of materials applied to the packaging sector.

In order to evaluate the antimicrobial property of the additive (CS-CTAB) in the
HDPE/CS8 composites intended for food packaging, these were subjected to microbial
adhesion tests against three strains: one Gram-positive (Staphylococcus aureus), and two
Gram-negative (Salmonella sp. and Escherichia coli). Then, these formulations were analyzed
by scanning electron microscopy (SEM), whose micrographs are shown in Figure 4.

The tests showed that the growth of the two bacteria (S. aureus and E. coli) was
inhibited in the presence of HDPE formulations containing chitosan. This fact proves that
chitosan does not lose its functionality even if the mixtures are processed in the molten
state at a temperature of 170 ◦C, below its decomposition temperature, since the thermal
behavior studies presented above and by other authors have shown that the main process
chitosan decomposition occurs in the 270–337 ◦C range, which is attributed to the chitosan
depolymerization reaction [67]. Vasile et al. (2013) [10] also analyzed this behavior in their
studies on low-density polyethylene and chitosan composites.

Chitosan has been investigated as an antimicrobial material against a wide range of
target organisms like algae, bacteria, yeasts, and fungi in experiments involving in vivo and
in vitro interactions with chitosan in different forms (solutions, films, and composites) [68].
Generally, in these studies, the chitosan is considered to be a bactericidal (kills the live
bacteria or some fraction therein) or bacteriostatic (hinders the growth of bacteria but does
not imply whether or not bacteria are killed), often with no distinction between activities.
Recent data in the literature has the tendency to characterize chitosan as bacteriostatic
rather than bactericidal [69], although the exact mechanism is not fully understood and
several other factors may contribute to the antibacterial action [70,71]. Three models have
been proposed, the most acceptable being the interaction between positively charged
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chitosan molecules and negatively charged microbial cell membranes. In this model, the
interaction is mediated by the electrostatic forces between the protonated NH+3 groups
and the negative residues, presumably by competing with Ca2+ for electronegative sites on
the membrane surface [22,43,68,72].
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The bacterial effectiveness of gram-positive or gram-negative bacteria is, however,
somewhat controversial. Some authors have stated that chitosan generally showed stronger
effects for gram-positive bacteria than for gram-negative bacteria [73–76]. Conversely, it
has been demonstrated that hydrophilicity in gram-negative bacteria is significantly higher
than in gram-positive bacteria, making them most sensitive to chitosan [77]. These findings
are confirmed by several in vitro experiments in which gram-negative bacteria appear to
be very sensitive to chitosan, exhibiting increased morphological changes on treatment
when compared to gram-positives [78–82]. The charge density on the cell surface is a
determinant factor to establish the amount of adsorbed chitosan. More adsorbed chitosan
would evidently result in greater changes in the structure and in the permeability of the cell
membrane. This would suggest that the antibacterial mode of action is dependent upon the
host microorganism [71,83]. A possible mechanism of antimicrobial action is under study
by our group, and we hope to make this contribution soon.

On the other hand, the incorporation of the additive (CS-CTAB)P in the HDPE/CS8
formulations led to total inhibition of the growth of Salmonella bacteria and partial inhibition
against S. aureus and E. coli strains. Among them, the additive acted positively only against
the proliferation of Salmonella bacteria, however, in the other formulations its antimicrobial



Materials 2022, 15, 7418 13 of 17

action was quite discreet. When adding the other additive (CS-CTAB)E in the HDPE/CS8
formulations, there is a positive effect against the S. aureus strain, demonstrating efficiency
in its antimicrobial action, while for the other formulations against the E. coli and Salmonella
strains, no antimicrobial effect was observed, only a partial inhibition against the E. coli
strain, and no antimicrobial effect against Salmonella as seen in the micrograph (Figure 3),
characterized by the presence of a large number of rods along the surface.

These results showed that quaternization does not always enhance the antibacterial
activity of CS and that the effect of pH on the antibacterial activity of quaternary am-
monium CS is uncertain. The discrepancies among different reports on the antibacterial
activity of CS and its quaternary derivatives are most likely caused by various intrinsic and
extrinsic factors that are related to the CS itself (e.g., type, MW, DD, viscosity solvent, and
concentration) and the environmental conditions (e.g., test strain, its physiological state,
and the bacterial culture medium, pH, temperature, ionic strength, metal ions, and organic
matter), respectively [83].

Quaternized chitosan was studied widely as an antibacterial agent [43,46,71,84,85] but
the exact mechanism of antibacterial activity of quaternary ammonium chitosan was still
not confirmed. The effect of positive charge was advocated further [85]. The cell envelope
of Gram-positive bacterium (S. aureus) was fully composed of lipoteichoic acids [86], which
provided a molecular linkage with quaternized chitosan and resulted in the damage
of membrane functions while the outer membrane of Gram-negative bacterium (E. coli)
contained lipopolysaccharide (LPS) and the outer LPS layer was a potential barrier against
foreign molecules. It was possible that the disparities in bacterial membrane functions
would generate the differences in antibacterial effect for S. aureus and E. coli. All in all,
it is generally considered that the antibacterial effects against S. aureus and E. coli were
due to the mutual attraction between the positive charge of quaternized chitosan and the
negative charge of the microbial cell membrane surface, resulting in the damage of the cell
membrane. The broken cell membrane led to the leakage of intracellular constituents or the
entrance of macromolecules, and the bacteria would hardly breed [71,87].

In view of the above, the positive effect of the antimicrobial activity of the additives
prepared by precipitation and evaporation against the strains Salmonella sp. and S. aureus,
respectively, used in the HDPE/CS8 composites was evidenced. On the other hand,
remarkable antimicrobial activity was observed for the HDPE/CS8 composites without
additive against the two strains S. aureus and E. coli. Bearing in mind that this work has the
aim of production of food packaging with antimicrobial activity, and in view of the results
obtained, it can be considered that different HDPE/CS8 formulations exhibited satisfactory
antimicrobial activity for a given strain in the study.

4. Conclusions

Different HDPE/Chitosan composites containing up to 40% of CS and an additive
based on chitosan functionalized with quaternary ammonium salt were investigated in this
work. The incorporation of this additive in the different formulations of HDPE/CS played
a synergistic role together with chitosan, obtaining materials with satisfactory thermal and
mechanical properties making them suitable candidates for food packaging. This additive
(CS-CTAB) also promoted a positive effect on antimicrobial activity when incorporated
into the composites. It can see also that the HDPE/CS composites without the additive
exhibited satisfactory antimicrobial activity against the two strains S. aureus and E. coli,
as found in contaminated food. The newly obtained materials showed good inhibition
activity against gram-positive and gram-negative bacteria in the study. Finally, it can be
concluded that HDPE/CS composites prepared in our study can not only passively protect
food against environmental factors but can increase the shelf life of food products.
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