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Abstract: In this research, we report the synthesis of Si–TmC–B/PCD composites using Si, B, and
transition metal carbide particles (TmC) as binders at high pressure and high temperature (HPHT
method, 5.5 GPa and 1450 ◦C). The microstructure, elemental distribution, phase composition,
thermal stability, and mechanical properties of PCD composites were systematically investigated.
The Si–B/PCD sample is thermally stable in air at 919 ◦C. The initial oxidation temperature of the
PCD sample with ZrC particles is as high as 976 ◦C, and it also has a maximum flexural strength of
762.2 MPa, and the highest fracture toughness of 8.0 MPa·m1/2.

Keywords: PCD composites; the second phase; thermal properties; mechanical properties

1. Introduction

The hardest substance known to man is diamond, and natural diamond can reach a
Vickers hardness of 70–120 GPa [1]. It also offers excellent properties such as high wear
resistance, high strength, high thermal conductivity, low coefficient of thermal expansion,
and good biocompatibility [2–5]. Since the successful synthesis of manmade diamonds,
the polycrystalline diamond (PCD) industry has grown rapidly [6]. It is widely used in oil
drilling, aerospace, geological exploration, machining, and biomedicine [7–12]. However,
when PCD drill bits are used for drilling in abrasive hard rock formations or nonuniform
rock formations, their rock-breaking performance and drilling speed decrease rapidly, and
the life of the drill bit is also limited by the thermal stability of PCD [13].

The major reason for the poor thermal stability of PCD is due to the existence of metal
sintering aids such as Fe, Ni, Co, and Cr. Co is one of the most common metal sintering aids
in the synthesis of PCD; however, Co also acts as a catalyst for the conversion of diamond to
graphite [14]. Owing to the catalytic effect of Co, which leads to the reduction of its thermal
stability, the graphitization temperature of PCD decreases to 700 ◦C, which seriously affects
the lifetime of PCD at high-temperature conditions [15,16]. In addition, the substantial
difference in the coefficient of thermal expansion between diamond (~1.2 × 10−6) and
Co (~12.3 × 10−6) leads to thermal stresses and microcracks at high temperatures, which
weakens the performance of PCD [17].

With the goal to enhance the thermal stability of PCD materials, the following methods
are commonly used. Etching the metal by electrolysis or chemical treatment, however,
by removing of the Co creates a lot of pores, which leads to a dramatic reduction in the
strength and hardness of PCD [18,19]. The process of leaching also incurs additional costs,
and the PCD substrate is more difficult to braze without a metal binder. Alternatively,
alkaline earth carbonates such as MgCO3, Li2CO3, and CaCO3 are used instead of metals
as sintering aid [20]. Westraadt et al. [13] concluded that the function of CaCO3 as a
sintering aid is a catalytic solvent, comparable to the function of metals in conventional
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PCD, and no significant changes were found in the flank wear scars produced by processing
silicone rods after vacuum heat treatment at 1200 ◦C in sintered PCD, indicating better
wear resistance and thermal stability of PCD. Tian et al. [1] synthesized the first direct
synthesis of nanotwinned diamond with an average twin thickness of 5 nm using nano-
onion carbon precursors at 20 GPa and 2000 ◦C using no sintering aid, and due to the
lower energy of the twin boundaries, the presence of ultrafine nanotwins retarded the
graphitization and oxidation of diamond, and the oxidation temperature in air (~980 ◦C)
was 210 ◦C higher than that of natural diamond (~770 ◦C). Another alternative is to use
a chemically noble bonding phase, such as SiC, which is usually formed by reacting Si
with diamond. As the melting point of Si (1400 ◦C) decreases with increasing pressure, it
provides a stable temperature area for the diamond. The high melting point of the product,
silicon carbide, ensures adaptability to high-temperature environments. Liu et al. [14]
investigated a new triple-layer structure of polycrystalline diamond compact (PDC), in
which WC/Co cemented carbide was used as the substrate, diamond–SiC–Co composite
as the intermediate layer, and diamond–SiC composite as the working layer. The Co in
the substrate was prevented from penetrating into the working layer, which enhanced
the thermal stability, and it was shown that the initial oxidation temperature of the triple-
layer structure PDC was increased by 40 ◦C compared to that of the conventional PDC
(~780 ◦C). Si-coated diamond prepared by chemical vapor deposition effectively prevents
the existence of oxygen-containing functional groups on the diamond surface, and Si-
coated PCD has 12% and 30% higher onset oxidation temperature and wear resistance than
uncoated PCD, respectively [21]. Contrary to Co/PCD products, this material typically has
a poorer fracture toughness. [13].

In this paper, Si–TmC–B/PCD (TiC, ZrC, VC, NbC, and WC) materials with high
thermal stability and high toughness were prepared by sintering under high pressure and
high temperature conditions using Si–B/PCD as a control experiment (CE). Si and diamond
generate SiC in situ, which improves the thermal stability of PCD materials, and small-size
transition metal carbides and B are introduced to fill the internal voids and play the role of
fine grain strengthening while generating excellent performance of transition metal diboride
(TmDB), which improves the phase composition of the sintered body. Systematic studies
on the microscopic morphology, phase component, and thermomechanical properties of
the Si–TmC–B/PCD system were carried out.

2. Experimental Methods
2.1. Fabrication of Samples

Starting materials included diamond powder, silicon powder, boron powder, and TmC
powder (TiC, ZrC, VC, NbC, and WC). The diamond powder (with an average particle
size of 1 µm, 3.5 µm, and 10 µm and a purity of 99.99%) was supplied by Zhongnan Jete
Superhard Materials Co., Ltd. (Zhengzhou, China). The silicon powder (with an average
particle size of 1 µm and a purity of 99.99%), boron powder (with an average particle size
of 0.8–5 µm and a purity of 99.5%), and TmC powder (with an average particle size of
1–2 µm and a purity of 99.9%) were supplied by Eno High-Tech Materials Development
Co. Ltd. (Qinhuangdao, China). PCD consisted of a mixture of diamond powder and
binder powder. According to the previous experiments, the mass ratio of diamond powder
to binder powder was 85:15. The diamond powder and binder powder (Si:B = 95:5 for
Si–B/PCD sample and Si:TmC:B = 60:35:5 for Si–TmC–B/PCD samples) were mixed in
a planetary ball mill. Then we added anhydrous ethanol and ZrO2 grinding balls with
a ball to powder ratio of 2:1 ratio into the ball mill and mixed the mixture thoroughly at
400 r/min for 3 h. After vacuum drying for 24 h, it was passed through a 120 mesh screen.
In order to eliminate gas adsorption on the surface of the material, it was treated in an
H2 atmosphere (pressure of 3.0 × 10−3 Pa) at 380 ◦C for 24 h. The sintering process was
performed in a Hinge-Type Six-Anvil Press with sintering conditions of HPHT (5.5 GPa,
1450 ◦C) and a holding time of 90 s. The sintered samples were cylinders of 26 mm in
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diameter and 6 mm in thickness. They were cut by laser into 4 mm × 6 mm × 24 mm
rectangular shapes and mirror-polished for testing and characterization.

2.2. Characterization of Samples

The microscopic morphologies of the samples were measured by SEM (S-4800, Hitachi,
Tokyo, Japan). The elemental composition of different regions was determined by energy
dispersive spectroscopy (EDS, X-MAX20, Oxford, UK). Phase composition was performed
by X-ray diffraction (XRD, D/MAX-2500, Rigaku, Tokyo, Japan). The flexural strength of
the samples was tested by a three-point bending experiment (XWW, Beijing Jinshengxin
Detecting Instrument Co., Ltd., Beijing, China) with a loading rate of 0.5 mm/min. The
density of the samples was determined by an electronic balance (BSA224S-CW, Sartorius
Scientific Instruments Co., Ltd., Beijing, China). The fracture toughness was measured by
using a Vickers diamond indenter hardness durometer (HMAS-010, Shanghai Runguang
Technology Co., Ltd., Shanghai, China). The thermal stability of the samples was deter-
mined by thermogravimetry and differential scanning calorimetry in an air atmosphere
using a simultaneous thermal analyzer (NETZSCH STA, 449F3, Selb, Germany) with a
heating rate of 10 ◦C/min and a heating range of 40–1300 ◦C. The samples were prepared
into CNMN 120408 type inserts for straight turning of Ti-6Al-4V (TC4) alloy on a CNC lathe
(CK6136, Guangzhou Numerical Control Equipment Co., Ltd., Guangzhou, China) shown
in Figure 1. The tool wear condition was measured under an optical digital microscope
(MUSTCAM, Shenzhen Maike Vision Electronics Co., Ltd., Shenzhen, China), and the
average flank wear VBa ≥ 0.3 mm was used as the tool failure criterion [22]. The summary
of working parameters is shown in Table 1.
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Figure 1. Machine tool setup.

Table 1. Experimental conditions for turning.

Cutting Tool PCD

Rake angle α 0◦

Nose radius rε 0.8 mm

Processing material TC4

Cutting velocity v 100 m/min
Cutting depth α 0.1 mm

Feed rate f 0.15 mm/rev

Cutting method Dry
Air supply 0.7 MPa
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The three-point bending experiments were performed on rectangular samples [23],
and Equation (1) was used to calculate the value of flexural strength.

δ =
3FL
2bh2 (1)

where F is the damage load, L is the span, and b and h are the width and thickness.
According to the Vickers microcracks indentation method (VIM), we evaluated the

fracture toughness of the samples [12]. The fracture toughness value was calculated using
Equation (2) with a trial load of 30 N.

KIC = 0.016
(

E
Hv

) 1
2 F

C
3
2

(2)

where E is the Young’s modulus, Hv is the Vickers hardness, F is the trial load, and c is the
average radial half-crack length measured from the center of the indentation. The Oliver
and Pharr methods were used to obtain the Young’s modulus [24,25].

3. Results and Discussion
3.1. Microstructure and Phase Composition Analysis

Figure 2 displays the microstructure of PCD samples, both Si–B/PCD samples as a
control experiment and Si–TmC–B/PCD samples; they both have only a few holes and no
obvious cracks. The dark-colored blocky area is diamond particles, and the light-colored
area is the binder, which is tightly wrapped around the diamond particles. According to the
cross-grain fracture characteristics on the diamond fracture surface, the bond strength of the
binder to the diamond is stronger than the diamond’s fracture strength in specific planes
and orientations, which results from the rapid sintering procedure at high temperatures
and pressure. Si fills in between diamond particles in a molten state and reacts with the
diamond in situ, producing SiC; B facilitates the interfacial penetration of diamond and
Si particles and also binds to the dangling bonds of the diamond surface, making a dense
sintered body out of the diamond and binder [26].
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Figure 2. FESEM images of Si–TmC–B/PCD samples, (a) Si–B/PCD, (b) Si–TiC–B/PCD, (c) Si–ZrC–
B/PCD, (d) Si–VC–B/PCD, (e) Si–NbC–B/PCD, and (f) Si–WC–B/PCD.

Figure 3 displays the XRD pattern of the PCD samples. The main crystalline phases
in the samples are diamonds and SiC, and the Si–B/PCD samples as a control experiment
have relatively high Si powder content in the initial powder, due to the nonaddition of
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carbide particles, and thus contain residual Si, and the Si in the rest of the samples has been
completely consumed. In other samples, in addition to transition metal carbides, a small
amount of transition metal diborides which have high hardness, strong wear resistance,
and high temperature resistance properties are detected [27]. It indicates that the sintering
drive is sufficient at 1450 ◦C and 5.5 GPa, and the homogeneous and dense PCD composites
are successfully prepared.
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The Si–ZrC–B/PCD samples with high thermal stability and excellent mechanical
properties were analyzed by energy dispersive spectroscopy (Figure 4). In Figure 4c–f,
it is easy to see that Zr and Si are mainly distributed at the grain boundaries, and B is
diffusely distributed in the sample, which is due to the similar atomic radius of both boron
and carbon atoms, which can easily undergo position substitution and enter the internal
diamond interstices. It plays the role of filling internal vacancies and other defects and
improving the internal structure. The line scanning at the grain boundaries shows that the
peaks of C, Zr, and B elements, as well as C and Si elements, appear to increase significantly
at the grain boundaries, indicating that the three substances, SiC and the in situ-generated
ZrB2 and ZrC, act together at the grain boundaries to form a dense sintered body with the
diamond grains.
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3.2. Thermal Stability Analysis

The TG–DSC method is used to characterize the thermal stability of PCD samples in
an air environment. The top of the exothermic peak cannot accurately represent the thermal
stability due to the degradation of the PCD mechanical properties caused by the strong
chemical reaction; therefore, it is reasonable to adopt the initial oxidation temperature as
the evaluation criterion for the thermal stability of PCD samples.

As shown in Figure 5, the thermal stability of the Si–TmC–B/PCD samples was
universally higher than that of the Si–B/PCD sample, and the initial oxidation temperature
increased by 33–57 ◦C. The sample with the additive ZrC particles has the highest thermal
stability (~976 ◦C) (Figure 5c), and the Si–TiC–B/PCD sample has the least enhancement
of thermal stability (~952 ◦C) (Figure 5b). Si is more active than SiC and diamond in the
presence of air, and, as a result, the oxidation of Si remaining in the area of the binder
in Si–B/PCD sample occurs first, and the increase in temperature and the exothermic
process of Si oxidation accelerates the oxidation reaction of SiC and diamond [21]. With
the addition of TmC particles, the relative content of silicon in the raw material decreases,
and all silicon at the grain boundaries reacts to form SiC with a high melting point and
excellent antioxidant properties. SiC prevents oxygen from coming into contact with
diamond and slows down the oxidation of the diamond. Meanwhile, TmC particles have
excellent properties of high melting point, hardness, and thermal conductivity, and the
introduction of TmC particles is beneficial to enhance the thermomechanical properties
of PCD [28]. The coefficient of thermal expansion of the introduced TmC particles has
a minimum value of 6.22 × 10−6 K−1 for ZrC and a maximum value of 7.74 × 10−6 K−1

for TiC [29,30]. During the heating up and oxidation process, the Si–ZrC–B/PCD sample
generates the least thermal stress inside the material; therefore, this sample has the highest
thermal stability. In addition, the uniformly distributed boron atoms cause the excess
valence electrons on the diamond surface to be bound, eliminating the hanging bonds on
the diamond surface so that there are no excess valence electrons to react with the oxygen
atoms. Boron atoms react with oxygen when heated to form a low-melting-point B2O3,
which reacts with metal oxides in the molten state to form stable borates, thus forming
a protective film on the diamond surface, reducing the rate of oxidation and improving
the thermal stability of PCD. The thermal stability of Si–ZrC–B/PCD samples increases by
235 ◦C and 262 ◦C compared to other Si/PCD and Co/PCD [21,26].
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TC4 alloy, which has high strength and corrosion resistance, generates high cutting
temperatures during machining due to its high chemical reactivity and low thermal conduc-
tivity [9,31]. Using the PCD tool for straight turning of TC4 alloy, the variation of average
flank wear VBa with cutting length L of the PCD tool is shown in Figure 6. It can be found
that when VBa = 0.3 mm and tool failures occur, PCD with TmC particles has a general
increase in cutting length compared to Si–B/PCD, increasing up to 26.2–120.2%. The Si–
ZrC–B/PCD sample with the longest cutting length shows the highest wear resistance with
a life of 5162 m. It is easily seen that the PCD tool cutting length variation law is basically
consistent with the results of the thermal stability of PCD specimens in Figure 5; the higher
the thermal stability, the larger the cutting length of the tool. This is because when the tool
is close to failure, the friction generated by the tip dulling causes a rapid accumulation of
heat and a sharp increase in tool wear, which eventually leads to tool failure.
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3.3. Mechanical Properties Analysis

Figure 7 shows the trend of flexural strength and relative density of the samples.
Generally speaking, the density of PCD is extremely high under HPHT synthesis conditions,
and the relative density of the Si–B/PCD sample can reach 97.5%. After adding TmC
particles, the relative density of PCD increases significantly, where the Si–ZrC–B/PCD
sample has the maximum flexural strength of 762.2 MPa while obtaining the maximum
relative density of 99.72%, and the flexural strength increases up to 14.1%. It is well known
that the generation of vacancies is closely related to the ionic radius, and the larger the
radius mismatch between cations, the higher the number of vacancies generated and the
lower the activation energy for crystal growth [32]. The ionic radius difference between
Zr4+ and Si4+ is the largest, r(Zr4+)/r(Si4+) = 1.8, so the introduction of ZrC has a strong
promotion effect on the sintering of Si–B system PCD, which makes Si–ZrC–B/PCD obtain
excellent mechanical properties. In the figure, it can be seen that the trend of flexural
strength tends to be consistent with the change in relative density. Normally, the factors
that affect the strength of a material include composition, porosity, and grain size. In the
control experiment, the residual unreacted Si causes a decrease in the bond strength at
the diamond grain boundaries; therefore, this sample has a lower ability to resist bending
without fracture. In contrast, in the Si–TmC–B/PCD samples, the relative content of Si in the
raw material decreased due to the introduction of TmC particles with excellent mechanical
properties, and dense sintered bodies are synthesized under HPHT conditions; in addition,
fine diffuse TmC particles (Figure 4) are uniformly distributed in the matrix as a second
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phase, producing a significant dispersion strengthening effect, which is advantageous to
enhancing the mechanical qualities of the material [33].
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The fracture toughness of PCD samples was measured using the indentation method,
and the results are shown in Figure 8. The fracture toughness of TmC particle samples
was improved by 25–45%, and the toughness of ZrC particle samples was as high as
8.0 MPa·m1/2. Figure 9 shows the high-magnification FESEM image. In Figure 9a, obvious
cracks and fracture features of intercrystalline are visible, which indicates that the sample
is easily fractured from the grain boundaries after being pressured because of the low
bonding strength at the grain boundaries. The TmC particles are introduced into the PCD
matrix as a second phase, which plays the role of fine grain reinforcement. In addition, the
transition metal diboride generated by the in situ reaction with the diffusely distributed
B atoms is uniformly distributed at the grain boundaries, and the degree of densification
is further enhanced. The typical feature of river stripes in Figure 9b–f indicates that the
bonding strength at the diamond grain boundaries is enhanced above the fracture strength
in the specific direction and plane of the diamond; thus, transcrystalline fracture occurs.
The variation of fracture pattern from intercrystalline fracture to mixed fracture dominated
by transcrystalline fracture is a typical feature of increased fracture toughness [34]. TmC
particles also hinder further crack expansion by pinning the crack at the crack tip [35]. In
addition, the mismatch of the elastic modulus between the TmC particle and the binder
leads to a load transfer effect that consumes the energy required for crack expansion and
therefore provides a toughening effect [36].
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4. Conclusions

In this experiment, Si–TmC–B/PCD composites were synthesized using Si, B, and
transition metal carbide particles as binders at 5.5 GPa and 1450 ◦C. The results show
that the thermal stability of PCD is significantly improved. With the addition of carbide
particles, the flexural strength and fracture toughness of PCD samples are greatly enhanced.

1. No large holes and cracks are observed in the microstructure of the prepared PCD.
The generation of SiC and a small amount of transition metal diboride indicates that the
sintering driving force is sufficient and the components within the PCD are tightly bonded
and form a dense sintered bulk.

2. The transition metal carbide, SiC, and transition metal diboride are tightly bonded at
the grain boundaries, effectively preventing oxygen contact with the diamond and slowing
down the oxidation of PCD. The initial oxidation temperature of the Si–ZrC–B/PCD sample
is up to 976 ◦C.
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3. The transition metal carbide particle, as a second phase, plays a significant role
in fine grain strengthening, which results in excellent flexural strength of Si–ZrC–B/PCD
sample, up to 762.2 MPa.

4. The transition metal carbide particle changes the fracture mode of PCD, forming
a mixed fracture mode dominated by transcrystalline fracture, and also plays the role in
pinning the crack and hindering the crack expansion. In addition, the mismatch of the
elastic modulus between the transition metal carbide particle and the binder causes a load
transfer effect that consumes the energy required for crack extension.

5. Future studies can explore the effect of nanoscale transition metal carbide particles
on the thermal stability and mechanical properties of PCD.
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