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Abstract: Vortex- friction stir welding (VFSW) utilizes a stir bar made of an identical material to the
workpiece to rub the workpiece’s top surface, which avoids the keyhole defect in conventional friction
stir welding. It presents great potential in the repair field of aluminum alloys. In this study, the
effect of stir bar diameter, rotation speed, and welding speed on the weld formation was investigated
in the VFSW of 6061-T6 aluminum alloy. The weld macrostructure, penetration, and mechanical
properties were characterized. The results show that a large diameter of the stir bar can enhance
the vortex material flow, increase the heat input, and eliminate the incomplete-penetration defect.
The increase in rotation speed within limits can enhance the weld penetration and the mechanical
properties of the weld nugget zone (WNZ). However, too high a rotation speed reduces the weld
penetration and weakens the mechanical properties of the WNZ. The increase in welding speed
reduces the weld penetration but enhances the mechanical properties of the heat affected zone.
The incomplete-penetration defect significantly weakens the ductility of the VFSW joint. It can be
eliminated by enlarging the stir bar diameter and choosing a moderate rotation speed and a lower
welding speed.

Keywords: vortex material flow; friction stir welding; weld formation; process parameters; mechani-
cal properties

1. Introduction

Because of their excellent high strength/weight ratio and corrosion resistance, alu-
minum alloy components are widely used in the aerospace and railway vehicle fields [1–3].
During their manufacturing process and the subsequent long-time service, some defects
occur inevitably, such as fusion welding defects (porosity and cracks) [4], corrosion pits [5],
wear [6], fatigue cracks [7], etc. At the manufacturing stage, once a defect occurs, a repair
treatment is necessary, which can greatly save costs [8]. During service, if the above defects
occur, the component needs to be replaced. This increases the operational and maintenance
costs. If the component with defects can return to service by repair, the lifetime of the
component is prolonged [9,10]. Therefore, high-quality repair processes are very necessary
for aluminum alloy components.

Some repair processes based on local melting have been developed. For example,
Vishnukumar et al. [11] adopted wire arc additive manufacturing to repair the corroded
surfaces in AA5052 structures. Yang et al. [12] utilized the cold metal transfer technique
to repair the heat-affected zone of the 7075-T651 aluminum alloy MIG welding joint.
Li et al. [13] used the identical welding parameters to the original weld to repair the 7N01
aluminum alloy MIG welded joint. However, these repair processes based on local melting
always suffer from metallurgical disadvantages such as grain coarsening, alloying element
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burning loss, and element segregation, which are not good for the mechanical properties of
the aluminum alloy components.

Friction stir welding (FSW), as a solid-state welding technique, is a good alternative
to avoid the metallurgical disadvantages in local melting repair processes. However,
the inherent keyhole defect in FSW needs additional repair treatment. For this purpose,
many derivative processes have been developed to repair the keyhole defect. TWI [14]
and the NASA Marshall Space Flight Center [15,16] first used friction plug welding to
repair the keyhole defect. Huang et al. [17,18] proposed filling friction stir welding to
repair the keyhole defect left at the end of the FSW seam. Zhou et al. [19] developed self-
refilling friction stir welding to seal the keyhole left by FSW in stainless steel. Ji et al. [20]
proposed active-passive filling friction stir repairing to close the keyhole defect in FSW of
7N01-T4 aluminum alloy. Reimann et al. [21] applied refilled friction stir spot welding for
termination hole closure in bobbin tool FSW joints in 3 mm thick AA2198-T8 workpieces.
Although these methods eliminate the keyhole defect in FSW, the production efficiency is
decreased due to the increase in the production procedure.

Recently, Liu et al. [22] proposed a novel modified FSW process, named vortex-
material-flow-based friction stir welding, abbreviated as “vortex- friction stir welding” or
VFSW. In VFSW, the tool consists of a consumable stir bar which has the identical material
to the workpieces and a non-expendable holder which is used to fix and restrain the stir
bar. The holder drives the stir bar to rotate at a high speed and rub the workpieces’ top
surface. A vortex material flow is formed under the stir bar due to the momentum transfer
between the identical materials. With the moving of the tool along the joint line, the vortex
material flow drives the material from the front side to the rear side, forming a sound
joint [22–25]. Owing to the above principle of the VFSW process, it avoids the keyhole
defect at the weld end. On the contrary, a lug boss is formed at the weld end when the
stir bar is separated from the workpiece. This advantage makes the VFSW process show
great potential in the aluminum alloy component repair field. To obtain good repair quality,
welding process parameters optimization is very important. Previous studies have found
that rotation speeds that are too high or too low lead to surface defects due to no vortex
material flow occurring [23]. At the same time, too high a welding speed results in an
incomplete-penetration defect [23].

Weld penetration is a key factor for repair quality. In VFSW, the weld penetration is
highly dependent on the process parameters, such as the stir bar diameter, the rotation
speed, and the welding speed. However, the relationship between the weld penetration and
the process parameters has not yet been examined. In this study, two stir bars with different
diameters were used to reveal the effect of the diameter of the stir bar, the rotation speed,
and the welding speed on the weld penetration in VFSW of aluminum alloy. This study
provides an important reference for the parameter preference in VFSW of aluminum alloy.

2. Experimental Section
2.1. Materials

The base material (BM) used in this study is 6061-T6 aluminum alloy. The dimen-
sions of the workpieces are 200 mm in length, 60 mm in width, and 3 mm in thickness.
The tensile strength, elongation, and microhardness are 323.5 MPa, 16.7%, and ~100 Hv,
respectively [23]. The stir bar is also 6061-T6 aluminum alloy. The holder is made of H13
tool steel.

2.2. Process Parameters

The process parameters involved in VFSW mainly include the stir bar diameter, rota-
tion speed, and welding speed. As shown in Figure 1, two kinds of stir bars were used in
this study. Their diameters (d) were 12 mm and 16 mm, respectively. The corresponding
diameters of the holder end were 14 mm and 20 mm, respectively. The used rotation speed
(ω) varied from 600 rpm to 1000 rpm. The welding speed (v) ranged from 30 mm/min to
100 mm/min. The above parameters were selected to ensure that good weld surface forma-
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tion could be obtained during the experiment. The plunge depth of the holder end was
0.3 mm to make sure the holder end was closely touching the workpieces. The type of FSW
machine used in this study was HT-JM16×8/1, manufactured by Aerospace Engineering
Equipment (Suzhou, China) Co., Ltd.
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Figure 1. The geometry of the VFSW tool: (a) dimensions of the holders; (b) the holders used; (c) the
stir bars before welding.

2.3. Welding Procedure

The schematic of the VFSW process is shown in Figure 2. It mainly consists of four
steps, i.e., tool rotating, tool plunging, vortex material flow forming, and tool traversing.
In the first step, the holder drives the stir bar to rotate at a high speed. Next, the tool
is plunged against the workpiece, during which the friction heat is generated and the
workpiece material is softened. In the third step, the holder is closely pressed on the
workpiece’s top surface. A vortex material flow is formed and becomes stable. Finally,
the tool traverses along the welding direction. The region where the vortex material flow
passed forms a welding seam. The true VFSW process is shown in Figure 3. During the
tool traversing stage, a weld is formed following the holder end. At the tool pulling-
out stage, the stir bar is separated from the workpiece, and a lug boss is formed. The
region where the vortex material flow passed forms a welding seam. After welding, the
macrostructure of the joint was observed using an optical microscope (Leica, DMi8, Wetzlar,
Germany) from the transverse cross-section. The local area, which has special features, was
characterized by SEM (ZEISS Gemini 500, Oberkochen, Germany). The weld penetration
was measured based on the metallograph of the joint using ImageJ software (IJ 1.53k,
https://imagej.net/ij/download.html, accessed on 20 June 2022). The tensile properties of
the joints under various process parameters were tested using a universal testing machine
(DDL100, Sinotest Equipment, Changchun, China). The microhardness was measured by a
DHV-1000Z Vickers hardness testing machine (Truer, Shanghai, China) along the mid-line
in the thickness direction of the weld.
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3. Results and Discussion
3.1. Weld Morphology

Figure 4 shows the weld morphology obtained under different stir bar diameters. The
widths of the weld’s top are 14 mm and 20 mm, respectively, for the two kinds of stir bars.
It means that the width of the weld’s top is determined by the diameter of the holder end
but not the diameter of the stir bar. The weld top surface is relatively smooth except for the
flashes occurring at the advancing side (AS). The amount of flashes at d = 16 mm is more
than that at d = 12 mm. This is because more material is pushed aside by the holder with a
larger diameter. At the end of the weld, a lug boss is formed when the stir bar is separated
from the workpieces. The height of the lug boss is different for the two kinds of stir bars. It
is higher at d = 12 mm than that at d = 16 mm. It means that the height of the lug boss is
stir-bar-diameter-dependent.
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Figures 5 and 6 show the effects of the rotation speed and the welding speed on
the weld morphologies, respectively. The height of the lug boss is also rotation-speed-
dependent but not welding-speed-dependent. This is because the rotation speed affects
the heat softening and the deformation hardening of the junction between the stir bar and
the workpiece simultaneously, which has been discussed in detail in a previous study [25].
The stir bar diameter and the rotation speed jointly determine the weakest zone between
the vortex material flow and the holding end of the stir bar during the holder being
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pulled out. The existence of the lug boss replaced the keyhole defect inherently occurring
in conventional FSW. This is a great advantage for the VFSW process. In addition, the
rotation speed also affects the weld surface’s smoothness. As the rotation speed increases
to 1000 rpm, the weld top surface is significantly roughened, as shown in Figure 5d.
Meanwhile, the welding speed nearly does not affect the weld surface smoothness. This is
attributed to the obvious change in welding temperature caused by the rotation speed [24],
while the small change is caused by the welding speed.
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3.2. Weld Macrostructure

Figure 7 shows the weld macrostructures obtained under different stir bar diameters.
The weld macrostructure in VFSW is like that in conventional FSW. From the center to
two sides, it contains the weld nugget zone (WNZ), the thermal/mechanical-affected zone
(TMAZ), the heat-affected zone (HAZ), and the base material (BM). The definition of the
advancing side (AS) and the retreating side (RS) are also appropriate for the VFSW process.
The diameter of the stir bar has a decisive influence on the shape of the WNZ, which can
be verified by the width of the weld’s bottom. For example, at the same rotation speed
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and welding speed, the weld’s bottom at d = 16 mm is significantly wider than that at
d = 12 mm, as shown in Figure 7a,e. The shapes of TMAZ are also different for different
stir bar diameters, as shown in Figure 7b,d,f,g. The boundary between the TMAZ and
the WNZ is more obvious for a small stir bar diameter. This indicates that the change in
grain size is more significant at d = 12 mm. The area of the HAZ at d = 16 mm is also
significantly larger than that at d = 12 mm. These mean that the larger diameter of the stir
bar elevates the heat input. The larger diameter of the stir bar also enhances the material
flow at the weld’s bottom, as shown in Figure 7e. In addition, a zigzag line exists in the
WNZ at d = 12 mm, but no obvious zigzag line occurs at d = 16 mm. The zigzag line is
believed to be the remnants of the oxide layer on the butt surface, which is broken into
oxide particles during the welding [26–28]. This means that the larger diameter of the stir
bar can eliminate the zigzag line via enhanced plastic deformation. At the lower part of the
WNZ, at d = 12 mm, a kissing bond defect is observed, as shown in Figure 7c.
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corresponding magnified pictures of TMAZ-AS and TMAZ-RS in (e); (ω = 600 rpm, v = 30 mm/min).

Figure 8 shows the EDS mapping of a typical kissing bond defect. The Al and Mg
elements are missing within the defect. This proved that the kissing bond defect contains
cracks. The aggregation of the O element is also observed. It indicates that oxides also exist
in the kissing bond defect. In a word, the kissing bond defect in VFSW essentially consists
of discontinuous cracks and oxides, which are bound to seriously affect the mechanical
properties of the joint. Therefore, this kind of defect is defined as an incomplete-penetration
defect in this study.
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Figure 8. EDS mapping of a typical incomplete-penetration defect (obtained at d = 12 mm,
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3.3. Weld Penetration

Figure 9 shows the weld transverse cross-sections at various rotation speeds. The shape
of the stir zone has no obvious change as the rotation speed increases. The incomplete-
penetration defects exist under all conditions. To observe the incomplete-penetration
defects, the magnified figures of the local area marked by A–E in Figure 9 are shown in
Figure 10. The original butting surface has been distorted in all the incomplete-penetration
defects. However, the interface is relatively smooth near the weld bottom surface. It
gradually becomes jagged far away from the bottom surface, which means that the bonding
quality is improved. The distortion degree of the original butting surface can be described
by the tilted angle of the interface. As shown in Figure 10, at 600 and 700 rpm, the tilted
angle of the interface reaches 50◦, which means the vortex is strong. As the rotation speed
increases, the tilted angle of the interface decreases. Especially at 1000 rpm, the tilted
angle is only 19◦, which means that the vortex becomes very weak if the rotation speed is
too high.
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in Figure 9.

Figure 11 shows the weld transverse cross-sections at various welding speeds. Differ-
ent from those at various rotation speeds, the volume of the stir zone becomes smaller and
smaller as the welding speed increases. The magnified incomplete-penetration defects in
Figure 12 show that the distortion of the original interface becomes weaker and weaker as
the welding speed increases. The tilted angle of the original butting surface decreases from
48◦ to 6◦ as the welding speed increases from 30 mm/min to 100 mm/min. This means
that the welding speed has a great influence on the intensity of the vortex material flow
beneath the stir bar.
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Figure 13 shows the weld penetration to the rotation speed and the welding speed.
The weld penetration was measured based on the metallographs, as shown in Figure 13c.
The weld penetration is equal to subtracting the thickness of the incomplete-penetration
defect from the total weld thickness. Owing to the existence of the incomplete-penetration
defect at d = 12 mm, the weld penetration is always smaller than the thickness of the
workpieces. This allows us to detect the relationship between the weld penetration and the
process parameters. In Figure 13a, as the rotation speed increases, the weld penetration first
slightly increases to ~2 mm at ω = 700 rpm, and then significantly decreases to ~1.53 mm at
ω = 1000 rpm. As the welding speed increases from 30 mm/min to 100 mm/min, the weld
penetration first rapidly decreases and then slowly decreases. The factors determining
the welding penetration mainly include the depth and the intensity of the vortex material
flow in VFSW. The former determines the volume of plastic deformation. The latter affects
the metallurgical bonding quality. Owing to the boundary conditions’ constraint for the
vortex material flow, the intensity of the vortex material flow at the weld lower part
is quite weak under some parametric conditions, although plastic deformation occurs.
Therefore, the incomplete penetration is formed. According to the weld penetration, it can
be concluded that increasing the rotation speed can enhance the vortex to some extent. It
is easily understandable that the high rotation speed increases the momentum input into
the vortex. However, too high a rotation speed cannot enhance the intensity of the vortex.
This is because the resulting high temperature at too high a rotation speed severely softens
the material. Accordingly, the viscosity of the material declines. Thus, the efficiency of
the momentum transfer decreases significantly, resulting in the weakening of the vortex
intensity at the weld lower part.
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Figure 13. Weld penetration: (a) variation with rotation speeds, v = 30 mm/min; (b) variation with
welding speeds, ω = 900 rpm; (c) schematic of the weld penetration measurement; (d = 12 mm).

The welding speed affects the vortex from two aspects. On the one hand, increasing
welding speed reduces the heat input per unit distance, resulting in the weakening of the
material softening. On the other hand, the kinematics and the dynamics of the vortex are
superimposed by the welding speed. Intuitively, the high welding speed is adverse to the
vortex, but it needs further investigation. To sum up, both the depth and the intensity of
the vortex decrease as the welding speed increases. Therefore, the welding penetration
decreases gradually as the welding speed increases.

3.4. Mechanical Properties

Figure 14 shows the microhardness profile of the joints measured along the horizontal
mid-line of the weld. Figure 15 shows the fracture locations of the joints during the uniaxial
tensile tests. Figure 16 shows the corresponding effective tensile strength. All the data were
obtained at d = 12 mm. The effective tensile strength in this study is defined as the tensile
load divided by the weld penetration. Owing to the existence of incomplete-penetration
defects, the original tensile strength cannot characterize the bonding quality within the
weld penetrated zone. Therefore, effective tensile strength is introduced in this study. It
is reasonable because the incomplete-penetration defect mainly consists of discontinuous
cracks and oxides, which nearly have no bearing capacity. What needs to be pointed
out is that the effective tensile strength only can be used to evaluate the WNZ where
metallurgical bonding occurs. It cannot be used to evaluate the whole joint because all
the joints were fractured at the WNZ during the tensile test due to the existence of the
incomplete-penetration defect, as shown in Figure 15.
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The measured mechanical properties for when the welding speed is constant and
30 mm/min are shown in Figures 14a and 16a. The rotation speed mainly affects the micro-
hardness in the WNZ. With the increase in the rotation speed, the average microhardness
in the WNZ first increases and then decreases. The effective tensile strength in Figure 16a
also presents the same change trend. At ω = 900 rpm, the microhardness has a maximum
value of up to ~70 Hv. The corresponding effective strength reaches ~215 MPa, which is
equivalent to that in conventional FSW [29]. Liu et al. [30] reported that the strengthening
mechanism of the WNZ in the VFSW of 6061-T6 aluminum alloy is mainly solid solution
strengthening. A higher temperature promotes solid solution strengthening [31]. Therefore,
the high temperature caused by a relatively high rotation speed is beneficial to the tensile
strength of the WNZ. This can be used to explain why the microhardness increases with the
increasing rotation speed. However, if the rotation speed is too high, the interface material
between the stir bar and the workpieces is severely softened and even locally liquefied.
The momentum transfer from the stir bar to the workpieces is therefore suppressed. This
not only decreases the intensity of the vortex but also reduces the welding temperature.
Therefore, both the microhardness and the effective tensile strength at ω = 1000 rpm de-
crease. The HAZ has the minimum microhardness for the joint. The minimum value at
various rotation speeds changes little. This is because the over-aging effect occurs in the
HAZ [30]. The precipitates in the HAZ were mainly the β′ phase, which evolved from the
β” phase in the BM and coarsened under the heating, leading to the severe softening of the
HAZ. The heating time is the determining factor for over-aging [31]. Therefore, at the same
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welding speed, the HAZ material close to the TMAZ nearly undergoes the same over-aging
treatment, and the minimum microhardness in the HAZ hardly changes.

The microhardness and the effective tensile strength are shown in Figures 14b and
16b, respectively, for when the rotation speed is constant and 900 rpm. The welding
speed ranges from 30 mm/min to 100 mm/min. The welding speed mainly affects the
microhardness of the HAZ, as shown in Figure 14b. As the welding speed increases, the
minimum microhardness value in the HAZ also increases. This is because the welding
speed determines the heating and cooling rates. The dwell time of high temperatures at
higher welding speeds is shorter. Therefore, the over-aging occurring at higher welding
speeds is weaker. In the WNZ, a higher welding speed results in a shorter time for solution
treatment. However, owing to the solid solution being very fast [31], the effect of the
welding speed on the mechanical properties of the WNZ is very small. The effective
tensile strength presents very small fluctuations with the increase in welding speed, as
shown in Figure 16b. At v = 100 mm/min, because the weld penetration is only 1.42 mm,
the microhardness measured positions may enter the incomplete-penetration defect zone.
Therefore, an obvious decrease in the microhardness is observed, as shown in Figure 14b.

Figure 17 shows a typical fracture surface morphology of the joint at the rotation speed
of 900 rpm and the welding speed of 30 mm/min. The local magnified figures of the upper
part, the mid part, and the lower part are shown in Figure 17b–d, respectively. In Figure 17b,
a lot of large and deep dimples are observed, which are the typical characteristics of ductile
fracture, indicating the good bonding quality at the weld’s upper part. In Figure 17c,
the dimples are relatively small and shallow, which indicates that relatively small plastic
deformation occurred at the weld mid-part during the tensile test, showing the decline of
the ductility. In Figure 17d, the dimples are very small and even nearly disappeared. No
obvious tear ridge exists. Some cleavage steps are even observed. These results show that
the joint fracture is in a mixed ductile/brittle fracture mode. This indicates that the crack
propagation originated from the incomplete-penetration defect and traverses through the
good weld part during the tensile tests.
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4. Conclusions

The effects of stir bar diameter, rotation speed, and welding speed on the weld pene-
tration and the joint quality in VFSW of 6061-T6 aluminum alloy have been investigated
carefully. The following conclusions can be drawn:



Materials 2023, 16, 873 13 of 14

(1) A larger diameter of the stir bar can enhance the vortex material flow in VFSW, increase
the heat input, and eliminate the incomplete-penetration defect. For a sheet of 3 mm
in thickness, a stir bar of 16 mm in diameter is suitable to obtain a defect-free weld.

(2) Owing to the resulting high temperature and large momentum input, the increase
in rotation speed within limits can enhance the weld penetration and the mechan-
ical properties of the WNZ. However, too high a rotation speed reduces the weld
penetration and weakens the mechanical properties of the WNZ. With d = 12 mm
and v = 30 mm/min, the maximum weld penetration reaches ~2 mm at ω = 700 rpm,
and the maximum effective tensile strength reaches ~215 MPa at ω = 900 rpm.

(3) Because of the decrease in the heat input per unit distance, the increase in welding
speed reduces the weld penetration invariably but enhances the mechanical properties
of the HAZ due to the over-aging becoming weak. However, it nearly does not affect
the mechanical properties of the WNZ.

(4) As a crack origin, the incomplete-penetration defect significantly weakens the ductility
of the VFSW joint.
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