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Abstract: In many electronic applications, the dielectric and structural properties of reinforced
composites are vital. In this research work, the influence of fiber proportion on the properties of a
silica fiber/epoxy (SFE) composite was investigated. The structure, morphology, dielectric constant
and loss factor, mechanical properties, and thermal stability were determined. The increase of wt.%
of silica fiber (SiO2 (f)) x = 30 to 90, reduced the dielectric constant (εr) and dielectric loss (δ) of the
SFE composite from their original values to 18.9% and 48.5%, lowering local charge displacement
towards the applied electric field. The SFE composite showed higher mechanical properties with the
increase in SiO2 (f), x = 30 to 80, the tensile strength (UTS) was raised from 91.6 MPa to 155.7 MPa, the
compression strength (UCS) was increased from 261.1 MPa to 409.6 MPa and the flexural strength
was enhanced from 192.3 MPa to 311.9 MPa. Upon further addition of SiO2 (f) to the composite,
i.e., x = 90, the mechanical properties were reduced a little, but the dielectric properties were not
changed. Increasing SiO2 (f) improved the thermal stability as weight loss was found to be 69% (x = 30)
and 24% (x = 90), and average moisture absorption was found to be 1.1 to 1.8%. A silica fiber/epoxy
composite, for microelectronics, can be made from a low-cost fiber, and its dielectric properties as
well as its mechanical and thermal stability can be tuned or improved by varying fiber fractions.

Keywords: reinforced composites; low dielectric; microwave properties; tensile properties

1. Introduction

In interconnections, printed circuit boards, and airplane skin materials, composite
material dielectric properties are important for their electrical transparency or microwave
reflection [1]. Silica fiber-reinforced ceramic matrix composites are wave-transparent mate-
rials owing to their excellent dielectric properties, good ablation resistance, fine thermal
shock damage resistance, and chemical stability [2–4]. Fiber-reinforced composites (FRC)
have high specific strength and stiffness, high temperature, and fatigue resistance [5,6]. The
mechanical performance of FRC is influenced by the phases and their interactions [6–8].
For polymer composites, the dielectric properties are based on component volume frac-
tions [9,10]. Hybrid composites are often designed from multiple reinforcements to attain
preferred electric and mechanical properties [11–13]. Silica fibers (SiO2 > 99.95%) have
many superior properties at high temperatures such as a low dielectric constant, small
coefficient of thermal expansion, low thermal conductivity, and mechanical strength [14].

Polymer-based composites are limited due to their relatively low working tempera-
tures and dielectric instability, which means that they fail to meet increasing demands of
industrial applications. Therefore, it is urgent to fabricate polymer-based composites with
stable dielectric properties over a wide range of temperature and frequency [15].

Cyanate ester (CE) has excellent dielectric properties, adhesion, mechanical strength,
thermal stability, and very low moisture absorption [16,17]. Electromagnetic wave trans-
parent materials, called “electronic windows”, are used on high-speed vehicles and aircraft
antenna windows for harsh environments, and must possess excellent dielectric, mechani-
cal, and thermal stability [18–21]. Glycidyl polyhedral oligomer silsesquioxane (G-POSS)

Materials 2023, 16, 7410. https://doi.org/10.3390/ma16237410 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16237410
https://doi.org/10.3390/ma16237410
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-2423-4069
https://orcid.org/0000-0003-2623-8474
https://doi.org/10.3390/ma16237410
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16237410?type=check_update&version=2


Materials 2023, 16, 7410 2 of 13

and γ-aminopropyltriethoxy silane coupling agent (KH-550) were introduced into SF-
reinforced Cyanate ester (CE) resin composites to exhibit comprehensive performance,
showing great potential for dielectric applications [22].

Production cost, quality, and shape requirements are important [23] when selecting a
composite manufacturing process, such as compression molding, hand lay-up, spray-up,
vacuum bagging, resin transfer molding, autoclave molding, filament winding, pultrusion,
injection molding, prepregging, and stamp forming [24]. For the glass fiber–epoxy mixture,
its effective permittivity is a function of frequency, fiber volume fraction, cure state, porosity,
and fiber orientation, and the empirical mixing formula can be adopted for the prediction
of the effective dielectric constant, such as Wiener limits, Maxwell Garnett formula, and the
Looyenga formula [25], as it mainly depends on the dielectric properties of the fiber and
resin [26]. To achieve high performance, the effect of fiber content on the tensile properties
of reinforced composites is of interest and significance for many researchers [27] as the
reinforcement raises the composite strength and modulus [28]. Glass fibers are the earliest
and most widely used reinforcement in radomes due to their low cost, low ε, δ, excellent
insulation and mechanical properties [29].

Reinforced composites from D-glass (SiO2~72–75%) and quartz fibers (SiO2 ≥ 99.9) [14]
are used in electromagnetic wave transparent applications. Along with the highest cost,
Quartz fibers possess outstanding thermal and mechanical properties with very low and
stable dielectric loss [30]. D-glass fibers are specially developed for high-performance
radomes applications but at the expense of mechanical properties [31]. High-silica-glass
fabric is made from the lowest cost variant and the weakest silica fibers (SiO2 = 95–99.5%) by
acid leaching of A-or E-glass fabric. It is commonly being used in fireproofing and industrial
insulation applications, has found limited use in aircraft and aerospace applications [32].
High-silica-glass fabric is desirable and cost-effective heat-insulating materials for less
demanding uses than those which require pure or ultrapure silica fibers [33,34].

For various electronic applications, a huge number of dielectric materials have been
developed but a single material cannot conform to all requirements along with minimum
cost. The basic characteristic property of a very good low dielectric material is that it
possesses a very low dielectric constant (ε≤ 4.5) and dielectric loss (δ≤ 0.06), however, low
cost, good mechanical properties, and environmental resistance are important as well [35].

E-GFs (SiO2~54%) possess excellent mechanical strength and a medium cost but higher
ε (5.4~6), S-GFs (SiO2~64–66%) have high strength, ε (5.1), elasticity, and cost. D-GFs have
the lowest ε and δ among all GFs and lower mechanical properties with higher cost, Quartz
GFs possess low ε and δ close to D-GFs, have the best impact, chemical and temperature
resistance, but also have the highest cost [36].

Phenolic, polyester, epoxy, cyanate ester, and bismaleimide resins are used in making
composites for various electronic and aerospace applications [36]. Polyester resin is general
purpose and has lower strength, phenolic resin is a good choice due to its high strength
but needs special handling, storage, curing time, and multiple cycles, cyanate ester is the
best for such applications but has the highest cost, bismaleimide resin is high-temperature-
resistant and high-cost with matrix embrittle issues. In comparison with these, epoxy resin
offers very good mechanical properties, easy handling, and processing, along with low
cost [35–37].

Many researchers have studied the physical, mechanical, electrical, and thermal prop-
erties of glass-fiber-reinforced composites and found that fiber–matrix nature, proportion,
orientation, direction, quantity, fiber–matrix adhesion, salinization, cyclic temperature
changes, long-term exposure conditions, hydrolytic degradation of the polymer, and fillers
all contribute towards the composite’s performance. Each of the contributing parameters
has its significance in specified application, long-term strength, stability, durability, and
performance [35–39].

Long-term stability is an important feature of composite materials, and it depends on
multiple variables, i.e., temperature, humidity, time, UV light, dust, fatigue, wind, weather,
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chemical and mechanical factors, inside physical cracking, or a combination of these [40–42].
The impacts of long-term use and their significance were not studied in this work.

This work is aimed at fabricating a low-cost dielectric composite possessing good
mechanical and thermal stability. A commercial grade fabric named “High-Silica glass” has
similar dielectric properties to the high-cost reinforcements. Here, in this work, a commer-
cial Di-glycidyl Ether of Bisphenol-A(DGEBA) epoxy resin was used due to its good me-
chanical and electrical characteristics [16] and low cost compared to other thermoset resins.

2. Materials and Methods
2.1. Materials

Raw materials used in manufacturing low-dielectric composites [29] are compared in
Tables 1 and 2. “E” refers to epoxy resin, “SF” to silica fiber, and subscript (f) to the fabric.

Table 1. Thermoset resin for dielectric applications.

Parameter Cyanate Ester
Resin

DGEBA
Resin

Polyester
Resin

Bismaleimide
Resin

Density (g/cc) 1.17 1.30 1.29 1.30

εr 2.8–3.2 3.7–4.1 2.8–4.0 3.1–3.5

δ 0.002–0.008 0.018–0.020 0.006–0.026 0.005–0.020

Flexural strength (MPa) 80 97 85 150

Cost ratio (approx) 1:1 1:0.2 1:0.15 1:0.9

Table 2. Silica fibers for dielectric applications.

Parameter Quartz-Glass High-Silica Glass D-Glass E-Glass

SiO2% 99.99 95–98 72–75 52–57

Density 2.20 2.15 2.6 2.54

UTS (GPa) 1.70 1.8 2.4 3.75

εr 3.78 4.1 4.0 6.13

δ 0.0002 0.020 0.0025 0.0038

Cost ratio (approx) 1:3 1:1 1:2 1:1.2

SFE composites were prepared from a low-cost commercial liquid DGEBA resin,
Magic® (Epoxy Industries Pakistan, Karachi, Pakistan), density 1.90–1.95 g/cc, viscosity
10,300 cPs, and epoxy content 23%. Commercial-grade silica fabric (BWT260-82) TESCNICA,
fiber dia. ~8.0 to 10.0 µm, density ~2.35 g/cc, ply thickness = 0.25 mm, softening point
~1600 ◦C, was used.

2.2. Fabrication of Composite

Unidirectional woven silica fabric was cut into layers of (200 × 200), washed with
ethanol and dried. Varying weight proportions of silica fabric (SF) to epoxy (E) (x = 30%,
40%, 50%, 60%, 70%, 80%, and 90%) were fabricated as shown in Figure 1. The scheme
included: pre-treatment of silica fabric, preparation of epoxy matrix, soaking of fabric
sheets in a resin matrix, layup, compression, and curing. Experimental conditions are
mentioned in Table 3 and identification scheme of SFE composites is presented in Table 4.
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Figure 1. Schematic (SFE composite fabrication).

Table 3. Experimental conditions—SFE composites fabrication.

Fabric
Drying

Resin
(R: H)

Degassing
(5 min) Soaking Hot

Pressing Curing Post
Curing

120 ◦C 1.6:1 5 × 10−3

mbar
20 min 100 bar 140@4 h 130@3 h

Table 4. Identification scheme for SFE composites.

Identity SF3E7 SF4E6 SF5E5 SF6E4 SF7E3 SF8E2 SF9E1

Silica% 30 40 50 60 70 80 90

Epoxy% 70 60 50 40 30 20 10

2.3. Characterization

SFE composite specimens were characterized for dielectric constant, loss tangent (PNA
Network 8362B Agilent, Santa Clara, CA, USA), density (ASTM D-792) using analytical
weighing balance (SHIMADZU-UW 3400 g), structure (FTIR—Perkin Elmer Spectrum,
USA, XRD-STOE-Seifert X’Pert PRO), morphology by Scanning Electron Microscopy (JSM-
6490A, EOL Japan), tensile strength (ASTM D 638), compression strength (ASTM D 6641),
three-point bending strength (ASTM D-7264) by universal testing machine AGX-Plus (SHI-
MADZU Japan), weight loss (TGA Q600 SDT, TA instruments), and moisture absorption
(ASTM-D 570) in both fiber directions using analytical weighing balance (SHIMADZU-UW
3400 g).

3. Results and Discussion
3.1. Density

Figure 2 shows the density of SFE composites which ranged from 1.5 g/c to 1.78 g/cc.
The density increased with increasing silica fiber levels in the composite, i.e., SiO2 (f) (x = 30
to 90). Low density (a quality of SFE composites) is a desirable property of fiber-reinforced
composites, i.e., compactness, increased with the addition of SiO2 (f) up to x = 70%, but
by further adding silica fiber (i.e., x = 80 and x = 90) the density was further raised by 2%,
which was said to be insignificant. It was found that a good fiber–matrix adhesion was
achieved up to x = 70% by increasing the density to its maximum value.
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Figure 2. Density of SFE composites.

3.2. FTIR

The presence of organic and inorganic networks in SFE composites was identified by
the FTIR spectrum as shown in Figure 3. In these all-composite proportions, SiO2 (f) (x = 30
to 90) exhibited similar bands at 3441.44 cm−1 and 2924 cm−1, OH stretching (hydroxyl
linkage) [36] and the peak at 1643 cm−1 corresponded to the C = O double bond (polyamide)
in the epoxy linkage. The clear Si-O-Si deformation band was observed at 468 cm−1 [36].
The absorption peak at 1177.9 cm−1 was attributed to the C-N-C stretching of tertiary
amine to form an epoxy–ammine network. The bending peaks located at 1097 cm−1 were
attributed to the symmetric and asymmetric stretching of C-O-C. The band observed at
800 cm−1 was due to aromatic C-H linkage deformation and was attributed as a possibility
of the vibration modes of SiO4 tetrahedron.
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3.3. X-ray Diffraction (XRD)

X-ray diffraction demonstrated the presence of (SiO2) glass fiber in epoxy resin, as in
Figure 4, with an unidentifiable XRD peak. The Bragg’s angle 2θ ranged from 20.8–22.0◦

which confirmed the amorphous nature of SF3E7, SF4E6, SF5E5, SF6E4, SF7E3, SF8E2, and
SF9E1 composites. The dispersion and adhesion of SiO2 (f) and curing of the thermoset
resin formed an amorphous phase without any additional peaks. The XRD patterns of the
fabricated composites were typical X-ray diffractogram patterns of silica wave transparent
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composites [43,44], where there was no chance of crystallization of the fiber matrix as silica
fabric is thermally stable.
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3.4. Morphology

The morphology of the SFE composites (SF6E4, SF7E3, and SF8E2) was observed by
SEM, as shown in Figure 5, where adhesion of the matrix with reinforcing fibers can be seen
SF6E4, Figure 5a–c. Minor free spaces were observed in the packed composite attributed
to the air entrapped air during soaking, compaction, and early cross-linking of the epoxy
matrix. Figure 5d–f are the SEM images of composite SF7E3, where SiO2 (f) (x = 70), showed
a better fiber–matrix adhesion than SF6E4. The appearance was similar to SF6E4 with a
small number of fibers seeming to have been pulled out in some of the areas. There were
fewer interfacial separations between fiber–matrix interfaces and small voids despite of
higher fraction of reinforcement. Free spaces due to fiber slippage during the compaction
of fabric sheets were present.
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Figure 5. SEM of SFE composites, SF6E4 with 60% SiO2 (f) [longitudinal (a,b) cross-sectional (c)],
SF7E3 with SiO2 (f) 70% [longitudinal (d,e) cross-sectional (f)] and, SF8E2 with SiO2 (f) 70% [longitudi-
nal (g,h) cross-sectional (i)].

This localized discontinuity and uneven structural morphology are evident in Figure 5f.
The SEM images of SF8E2, where x = 80, are shown in Figure 5g–i. Due to the higher SiO2 (f)
content, a more uniform distribution of fibers was created as compared to the SF6E4 and
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SF7E3 composites. Figure 5i showed the interfacial bonding between fiber–matrix interfaces
where silica fiber plies were tightly packed and well-aligned due to higher SiO2 (f)% which
reduced the fiber pull-out. Figure 5h,i showed a uniform and good fiber adhesion among
all of these composites. Fiber–matrix adhesion and interfacial separations were compared
to the loaded silica fibers [43,45].

Figure 6 showed the EDS spectra of SFE composite (SF8E2). FTIR, XRD, and SEM
images represented a similar physical nature, while the elemental composition extracted
from EDS revealed the amorphous nature of SFE composite. Minute proportions of sodium,
magnesium, aluminum, and calcium were present as these were contained in the high-silica
fibers. The presented EDS spectra were found to be in good agreement with the previously
reported results and, generally, this qualitative information is considered as supporting
evidence along with other characterizations [42].
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3.5. Dielectric Constant

In the fabricated SFE composites, the dielectric constant (εr) as a function of frequency
(in S-band) is shown in Figure 7. With the increase in SiO2 (f) at x = 30, 40, 50, 60, 70, and
80%, the dielectric constant (εr) at 4GHz was decreased from 3.82, 3.73, 3.57, 3.45, and 3.19
to 3.17, respectively. However, the dielectric constant was unchanged even after further
adding SiO2 (f), up to x = 90. Comparatively, higher dielectric constants were observed in the
SFE composite with SiO2 (f) x = 30% to 60% than those where SiO2 (f) x = 70%, 80%, and 90%.
The constituent (SiO2 (f) and epoxy resin) formed the heterogeneous dielectric structure
in which the increased wt.% of SiO2 (f) created space charge polarization with the packed
interfacial boundaries. The increased (x) wt.% of SiO2 (f) decreased the hopping electrons
and local charge displacement towards the electric field in low electric polarization. The
dielectric dispersion was increased in the real and imaginary parts of the dielectric constants
and thus the dielectric constants were decreased.

In SF7E3, SF8E2, and SF9E1, the charge migration and re-orientation of relatively
polarizable molecules were restricted. Due to the curing (epoxy), the movement of free
ions was stopped, which decreased the ionic conductivity. The fast growth of large epoxy
networks reached a point where the contribution from dipole relaxation was dominant
over the ionic conductivity. These all contributed to low dielectric constant values.

3.6. Dilecetric Loss Tangent

The electromagnetic behavior of dielectric material is primarily described by its relative
dielectric constant and tan (δ) loss. When interacting with the electromagnetic fields, the
absorption of electromagnetic waves (within a dielectric material) is due to a high loss
tangent (δ) which slows down the transmission of signals. The δ (4GHz) was decreased as
0.071, 0.070, 0.057, 0.047, 0.041, 0.036 and 0.036 corresponds to the increased (SiO2 (f) wt.%)
at x = 30, 40, 50, 60, 70, and 80, respectively, as shown by Figure 8. Since the constituent
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materials (SiO2 (f) and epoxy resin) are non-magnetic, the low dielectric loss was found in
the resultant SFE composite. The tangent loss reached its lowest value of 0.036 for SF8E2
(x = 80) and S9E1 (x = 90) and a comparatively higher dielectric loss factor was observed
for SF3E7, SF4E6, SF5E5 and SF6E4 than those which contained SiO2 (f) at x = 70, 80, 90.
The higher proportion of SiO2 (f) in the composite restricted the local charge displacement
towards the electric field. Due to this restriction on the charge migration, polarization
was reduced, and tangent loss was decreased. This lowest value of dielectric tan (δ) loss
was evidence that charge polarization had been fixed. The lower energy dissipation was
evident from the significant reduction (49%) of dielectric loss. Other contributing factors
toward the tangent loss value, such as cure conditions, post-curing, resin properties, and
plies orientation, were not included in this study.
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3.7. Electrical Conductivity

Dielectric material possesses high resistivity as there are no free electrons to carry
current, thus the electrical conductivity of these materials is very low [42]. SFE composite
is made from insulating materials (SiO2 fiber and Epoxy resin). Due to this insulating
nature, the resultant composite has low electrical conductivity. High-silica fibers possess
high resistivity of ≥1000 Ω.m [46,47] and electrical conductivity is inversely proportional
to resistivity. The electrical conductivity is denoted by the following relation σ =ω. ε0 × ε′
tan δ, where
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ω = frequency
ε0 = 8.85 × 10−12

tan δ = ε′ ′/ε′

The σwas found at 9.65933× 10−20,9.29892× 10−20, 7.24717× 10−20, 5.77487× 10−20,
4.65801 × 10−20, 4.06431 × 10−20, 4.06431 × 10−20, which corresponds to the increased
SiO2 (f) (wt.% at x = 30 to 90).

3.8. Tensile Properties
3.8.1. Ultimate Tensile Strength (UTS)

The ultimate tensile strength (UTS) was increased from 91.6 to 155.7 MPa, correspond-
ing to increased SiO2 (f) proportion in the composite as shown in Figure 9. As the SiO2 (f)
(x) increased, UTS was increased from 91.6 MPa (at x = 30), 96.3 MPa (x = 40), 108.5 MPa
(x = 50), 115.1 MPa (x = 60), 132.3 MPa (x = 70) and 155.7 MPa (x = 80), which was the
highest value. The overall UTS was 41.1% increased, formed a tough composite structure,
and resulted in failure at higher loads. Optimum fiber–matrix proportion is key to yielding
the higher tensile strength of the composite. However, further addition of SiO2 (f), x = 90,
the tensile strength was reduced to 146.3 MPa which attributed that balance between
fiber–thermoset resin was changed, and the adhesive bonding was reduced due to weak
interfaces. Fibers in the composite were pulled at relatively lower loading due to higher
fiber proportion.
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3.8.2. Ultimate Compression Strength (UCS)

Overall, the addition of the silica fibers enhanced the compressive strength (UCS), as
shown in Figure 9, revealed that UCS increased from 261.06 MPa (at x = 30), 278.30 MPa
(x = 40), 320.07 MPa (x = 50), 345.4 MPa (x = 60), 382.8 MPa (x = 70) and 409.64 MPa (x = 80)
with the increase in SiO2 (f) from 30 to 80 wt. %. From the initial value of UCS, it was 40.4%
increased and reached to its highest value (409.64 MPa) for SF8E2 which revealed that
SiO2 (f) enabled it to bear high compressive loads. However, after approaching to maximum
value, further addition of SiO2 (f) resulted in a slightly lower UCS to 405.14 MPa (at x = 90).
It seemed that stresses due to compressive load were borne by fibers, rather than the epoxy
and fiber–matrix interface.

3.8.3. Flexural Strength

Flexural strength represents the collective effects of tensile, compressive, and shear
stresses liable for the failure of any material against the applied load. Upon increased
wt.% of SiO2 (f) from 30 to 80 wt.%, the flexural strength (Figure 9) was 41% increased. The
flexural strength was 192.36 MPa (at x = 30), 207.05 MPa (x = 40), 230.02 MPa (x = 50),
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235.75 MPa (x = 60), 277.2 MPa (x = 70) and the highest value reached 311.9 MPa (x = 80).
With the onward addition (x = 90), the composite fractured at a 1% lower flexural load
which showed that the flexural toughness of SF8E2 and SF9E1 were nearly similar. A similar
value of flexural strength indicated that the toughness of the composite was transformed to
become slightly brittle with the increasing fiber proportion.

3.9. Thermo-Gravimetric Analysis

Thermo-mechanical behavior of SFE composites against the rising temperature was
determined by thermo-gravimetric analysis (TGA) as shown in Figure 10. The thermo-gram,
showing the degradation profile by TGA curves, represented the major degradation which
was due to the removal of the polymeric part from the composite. Cured thermoset resin
and SiO2 (f) both contributed to thermal resistance from 200 ◦C to 250 ◦C, where all the SFE
composites samples remained stable. Above 250 ◦C, degradation started, and the major
degradation was seen from 300 ◦C to 500 ◦C, with maximum weight loss. The de-binding
in the multilayer fiber-reinforced composite was due to the softening of the organic part
(polymeric resin) and the start of the degradation of epoxy. SFE composites with SiO2 (f) at
x = 60, 70, 80, and x = 90, offered a better thermal resistance due to higher SiO2 proportion.
The degradation of the composite has two regions, from ambient to 250 ◦C, where these
composites (SF3E7, SF4E6, SF5E5, SF6E4, SF7E3, SF8E2, and SF9E1) remained stable. From
300 ◦C to 500 ◦C the maximum degradation of SF3E7 was 68% (at x = 30). The polymeric
part melted and then carbonized completely due to its inherent organic nature. However,
in the second region, from 300 ◦C to 500 ◦C, the behavior of the samples at (x = 30, 40, 50)
was found to be different from the samples at (x = 60, 70, 80, 90). It was very clear that the
increased proportion of silica fibers (x = 60 to 90) formed a glassy substrate to protect the
interface and thus reduced the degradation.
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3.10. Moisture Absorption

Average moisture absorption of (SFE SF3E7, SF4E6, SF5E5, SF6E4, SF7E3, SF8E2, and
SF9E1) was found to be 1.1 to 1.3% (longitudinal fiber direction) while in traverse fiber
directions it was found to be 1.6 to 1.8%. Moisture absorption is significant in determining
composite long-term strength and stability as it not only degrades the fiber–matrix bonding,
but also mechanical properties (due to plasticizing effect), and electrical properties (due to
high ε of water = 70). Moisture was absorbed in the exposed surface as moisture uptake is a
function of the shape ratio (specimen surface area and volume) [40,42]. As described herein,
in the traverse cut composites, 6.1% more moisture was absorbed than in longitudinal cut
specimens due to the higher surface area and interfaces available for moisture absorption.
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3.11. Property Comparison of Glass Fiber/Epoxy Composite

The properties of the glass fiber composite depend on multiple variables including the
nature of the fiber, bonding matrix, their proportion, fiber orientation, direction, mixing
ratios, processing methods, curing conditions (temperature, pressure, time, cycle, resin
degassing, mixing, impregnation time, heating mode, heating rate, stacking sequence, pre-
heating of raw materials and mold as well as post-curing. Besides many other contributing
factors towards the resultant properties of the composite, to the best of our knowledge,
the similar/related properties of glass fiber composites (D-GFs, E-GFs, Quart GFs, and
high-silica glass fiber) are compiled in Table 5.

Table 5. Comparison of the properties of glass fiber epoxy composites (low dielectric application).

Parameter D-GFs E-GFs Quartz-GFs High-Silica-GFs

SiO2% (wt.) ≥72 ≥54 ≥99.9 ≥96.5

Density (g/cc) ≤1.78 ≤1.74 ≤1.73 ≤1.76

XRD (2θ) range 20◦~22◦ 20◦~22◦ 20◦~22◦ 20◦~22◦

ε 2.8–3.4 5.4–6 2.95~3.3 3.17~3.82

δ 0.001~0.01 0.06~0.08 0.001~0.005 0.07~0.036

Compression (Mpa) 461.63 725.61 442.2 382.8~405.1

Tensile Strength (Mpa) 144.35 198.49 103.91 132.3~155.7

Flexural Strength(Mpa) 141.6 189.6 113.6 277.7 to 311.9

% Weight loss (TGA) 25.2 21.3 18.9 26.5

Moisture absorption% 1.3 2.3 1.1 1.1~1.3

Cost Ratio Highest Medium High Low

References [33–42,45–48] This work

4. Conclusions

In this research work, the loading of SiO2 (f) (w/w%) on properties of reinforced wave
transparent composites was studied. FTIR spectra revealed the Si-O peak while –OH,
C = O, C-H, and C-N-C peaks were also found. Their amorphous nature was revealed by
XRD while the SEM images showed the composite morphology along with fiber–matrix
adhesion. Increased proportion of SiO2 (f) (SF = x at 30 to 90 w/w%) resulted in excellent
transmission, low εr from 3.85 to 3.12, and low δ from 0.07 to 0.036. With increased SiO2 (f)
(at x = 30 to 80), the UTS, UCS, and bending strength was increased, however, with more
than optimum addition of SiO2 (f) (x = 90) in the composite, the mechanical properties
were reduced by 4.3% (UTS), 1% (UCS), and 1.7% (bend), respectively. SFE composite
thermal stability was improved with the addition of SiO2 (f), as 24% weight loss was seen
(x = 90) whereas 69% weight was lost (x = 30) while low moisture absorption was found
from 1.6 to 1.8%. In conclusion, this silica fabric can be a useful, promising, and cost-
effective reinforcement for fabricating a reinforced composite, exhibiting excellent dielectric
properties, good mechanical and thermal stability, and low moisture absorption.
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