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Abstract: This study proposes a low-temperature transient liquid phase bonding (TLPB) method
using Sn58Bi/porous Cu/Sn58Bi to enable efficient power-device packaging at high temperatures.
The bonding mechanism is attributed to the rapid reaction between porous Cu and Sn58Bi solder,
leading to the formation of intermetallic compounds with high melting point at low temperatures.
The present paper investigates the effects of bonding atmosphere, bonding time, and external pressure
on the shear strength of metal joints. Under formic acid (FA) atmosphere, Cu6Sn5 forms at the porous
Cu foil/Sn58Bi interface, and some of it transforms into Cu3Sn. External pressure significantly
reduces the micropores and thickness of the joint interconnection layer, resulting in a ductile fracture
failure mode. The metal joint obtained under a pressure of 10 MPa at 250 ◦C for 5 min exhibits
outstanding bonding mechanical performance with a shear strength of 62.2 MPa.

Keywords: TLP bonding; porous Cu; formic acid; soldering; intermetallic compounds

1. Introduction

Third-generation/wide bandgap semiconductors are the materials used in electronic
devices that have a larger bandgap than traditional silicon-based semiconductors. These
materials include compounds, such as gallium nitride (GaN) and silicon carbide (SiC),
and they possess a large bandgap available for the critical operation conductions at high
breakdown voltages and high current density. Additionally, those compound semicon-
ductors with good thermal stability and thermal conductivity can resist a higher working
temperature than the traditional semiconductor (Si) [1–3]. Therefore, those third-generation
semiconductors with continuous development for various applications (electric vehicles,
power control, the fifth-generation mobile network, and communication satellites) [4–8].
However, when their working temperature can achieve up to 200~450 ◦C, the thermal
stability and high-temperature resistance of the interconnecting materials must also be
upgrading and developing, especially to replace the traditional solder interconnections not
available for working at a temperature higher than 200 ◦C [9,10].

Interconnections using Cu/Ag particle sintering have been developed in some stud-
ies. However, such a method generally requires bonding temperatures above 300 ◦C and
bonding times greater than 30 min [11–13]. As the world moves towards reducing energy
consumption and achieving carbon neutrality, there is a significant need for developing
reliable joints of electronic packaging that can be fabricated at low temperatures and with-
stand high temperatures [14,15]. Recent advancements in low-temperature transient liquid
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phase bonding (TLPB) have resulted in the development of die package joints capable of
withstanding higher service temperatures at lower bonding temperatures [16,17]. The basic
principle of low-temperature TLPB is that the intermediate layer bond quickly melts into a
liquid phase, and then diffuses and reacts with the metal to be bonded in a solid–liquid
phase to form a corresponding intermetallic compound (IMC) [18–22]. The mixture of
low-melting alloys (Sn-based solders) and high-melting-point metal Cu metallurgical sys-
tem is widely used in the TLPB process because of the activated interfacial reaction. After
TLPB, the joints consisting of high-melting IMC and Cu can be applied for high-operating-
temperature devices. However, how to keep lowering the bonding temperature and time,
and simultaneously improve the bonding strength, is a concern.

The eutectic Sn-58Bi alloy performs good wettability with bonding metallic sub-
strates [23–26]. The eutectic Sn-58Bi alloy contains precipitated Bi that creates numerous
phase boundaries and serves as a secondary phase within the Sn matrix [27–29]. This
effectively strengthens the Sn matrix and enhances its mechanical properties. Furthermore,
Sn-58Bi alloy possesses a low melting temperature and great mechanical strength [30–32].
Therefore, Sn-58Bi alloy is a good candidate for serving as one of the materials for low-
temperature TLPB.

Porous Cu foil refers to a type of copper foil that has a three-dimensional porous
structure and has a wide range of applications in various fields, such as in energy storage
devices (e.g., batteries, supercapacitors) and catalysts [33,34]. Porous Cu foil can also be
used in TLPB as an interlayer material. When porous Cu foil is used as an interlayer
material in TLPB, the Cu foil’s porous structure facilitates the wetting and spreading of
the liquid phase, promoting the formation of a uniform bond. Moreover, the high surface
area of the porous Cu structure enables efficient diffusion of the liquid phase, thereby
accelerating the formation of the IMC. These desirable properties make porous Cu foil an
excellent candidate for enhancing bonding time and reliability.

During the preparation and packaging process, oxide films tend to form on the surface
of Cu substrates and Sn58Bi solder, impeding atomic diffusion and weakening bonding
efficiency. This problem is especially pronounced in porous Cu foil with high chemical
activation and surface area. Flux is typically used to remove these oxide films during the
bonding process. However, due to the porous structure of Cu foil, especially one with
high porosity and large specific surface area, it can be challenging for the flux in solder
paste to fully infiltrate and remove the oxide films. To address this challenge, the use
of a formic acid (FA) atmosphere has been investigated to facilitate reduction–oxidation
reactions and improve the soldering reaction between solders and Cu substrates. The FA
atmosphere can effectively remove oxide films in porous Cu while also protecting bonding
materials from oxidation at high bonding temperatures. Overall, the use of a FA atmosphere
offers a promising approach for enhancing bonding efficiency and reliability in porous Cu
foil applications [35–37].

Although the use of Sn-58Bi solder, porous Cu, and FA bonding/soldering has been
studied for electronic interconnects, there is a scarcity of research on the low-temperature
transient liquid phase (TLP) reaction and TLPB reliability when utilizing both Sn-58Bi
solder and porous Cu foil under a FA atmosphere.

In this study, TLPB of Cu/Sn58Bi-porous Cu-Sn58Bi/Cu was assembled at 250 ◦C
under a FA atmosphere by different bonding times and pressures. The bonding strength
and deformation behavior in the TLPB joints were studied. Additionally, the capillary
phenomenon between the Sn-58Bi solder and the porous Cu skeleton was explored.

2. Experimental Procedures
2.1. Materials

In this study, the Cu/Sn58Bi-porous Cu-Sn58Bi/Cu structure was utilized to estab-
lish the intermetallic compound (IMC) bonds. The bottom and top bonding substrates
were made of high-purity Cu plates (99.9%) measuring 12 mm × 20 mm × 2 mm and
4 mm × 4 mm × 2 mm, respectively. A micro-sized porous Cu foil with a thickness of
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1 mm and 96.43% porosity was used as the bonding interlayer between Sn58Bi solders
(Senju Co., Ltd., Huizhou, China).

2.2. Experiment and Analysis

Figure 1a shows the schematic of the TLP bonding process using the Sn58Bi sol-
der/porous Cu foil/Sn58Bi solder sandwich structure under a FA atmosphere. The Cu
plates and porous Cu foil were immersed in 8% HCl solution for 5 and 3 min to deduct the
surficial oxidation layer, respectively. Then, they were cleaned by ethanol ultrasonic pool
for 5 min to remove the surficial organic matter. A 0.2 mm thick Sn58Bi solder paste was
brushed on the top and bottom surfaces of the porous Cu foil, and then the Sn58Bi/porous
Cu/Sn58Bi sandwich structure formed. Before the bonding process, the pre-treated sample
was placed on the platform in a sintering machine and the gaseous FA was introduced into
the chamber, as shown in Figure 1b,c.
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Figure 1. Schematic graph of the method in this study: (a) bonding process under FA atmosphere;
(b) Sn58Bi solder/micro-size porous Cu foil/Sn58Bi solder sandwich structure; (c) partial enlarged
view of the sandwich structure.

The sample prepared at 250 ◦C in air atmosphere for 5 min was selected as the reference
in order to illustrate the effect of FA atmosphere. In addition, the effects of other process
parameters upon FA, such as bonding time, bonding temperature, and applied external
pressure on the shear strength of metal welded joints, were also studied. Table 1 shows the
specific experimental parameters of each sample, and the heating rate was set as 2 ◦C/s
constantly. Shear test was performed after the bonding process in order to evaluate the shear
strength of the joint using a shear tester (MFM1200), and the testing speed was 200 µm/s.
Figure 2 shows the shear strength testing schematic diagram. The calculation method for
shear strength is shown in Formula (1), and the average value of three joints is taken as
the measured shear strength value. The cross-sectional morphologies and structures of the
joints under different process parameters were studied by optical microscope (OM) and
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scanning electron microscope (SEM, Quanta FEI 450), with the accelerating voltage of 5 kV.
The failure modes of the joints during shear strength test were also discussed.

τ =
F
S

(1)

Formula:

- F—Shear load. The unit is N;
- S—Metal joint contact area. The unit is m2;
- τ—Shear strength. The unit is MPa.

Table 1. Summary of heating processes.

Process
Number Temperature (◦C) Bonding

Time (min) Atmosphere Pressure
(MPa) Catalytic

1 250 5 Air No -
2 250 5 FA No -
3 250 10 FA No -
4 250 20 FA No -
5 250 5 FA 3 -
6 250 5 FA 5 -
7 250 5 FA 10 -
8 250 5 FA 20 -
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Figure 2. Schematic diagram of shear strength test.

3. Results and Discussion
3.1. Effect of Bonding Atmosphere on the Shear Strength of Joints

Figure 3a shows the shear strength of TLPB joints under the FA and air atmosphere.
The shear strength of the latter (12.9 MPa) is lower than the former (15.8 MPa), and their
fracture morphologies are shown in Figure 3b,c. Figure 3b exhibits that a small amount of
solder adheres to the Cu substrate after the FA TLPB. That indicates the formation of an
intermediate solder layer providing a good bonding to the Cu substrate. Conversely, the
overall peeling fracture was observed on the fracture surface of the TLPB joint under the
air atmosphere, exhibiting the mechanical connection between the porous Cu foil, Sn58Bi,
and substrate. The FA removed the oxide film on the surface of the bonding materials,
activating the TLPB. The Sn formate can be formed on the diffusion interfaces between the
Sn-58Bi and Cu substrates/porous Cu during the chemical reaction of the FA the Sn oxide
at 150 ◦C (Formulas (2)–(4)):
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SnO + 2HCOOH (g)→ Sn (HCOO)2 + H2O (g) (2)

SnO2 + 2HCOOH (g)→ Sn (HCOO)2 + H2 (g) + CO2 (g) (3)

Sn (HCOO)2 → Sn + H2 (g) + CO2 (g) (4)
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Therefore, the oxide-free interface activated the soldering and bonding process [38–40].
A similar reduction reaction also occurred between the FA molecule and the CuO, and the
Cu substrate and porous structure could be protected from oxidation. Conversely, the air
bonding can lead serious oxidation to reduce the bonding strength.

3.2. Effect of Bonding Time on the Shear Strength of Joints

During the low-temperature TLPB process, there are four stages including solder
melting, solid–liquid phase interaction, isothermal solidification, and homogenization of
the solder joint. They require enough time for the diffusion processes. If the bonding time
is not long enough, the incomplete TLPB causes a low bonding strength. On contrary, an
excessively long bonding time induced the structure coarsening of the materials and the
overgrowth of the brittle IMC, which dramatically reduced the bonding strength of the
joints. Therefore, the TLPB time was optimized by examining the shear strength of the
joints assembled by TLPB under the FA atmosphere at 250 ◦C for 5, 10, and 20 min.

Figure 4 summarizes the shear strengths of the joints. The shear strength was increased
with the increase in the TLPB time, and the highest shear strength (21.4 MPa) was achieved
by the bonding time of 20 min, with an enhancement of 38.96% compared with that of
5 min. However, the shear strength of the solder joints increases slowly with the bonding
time when it is more than 10 min.

In the reference, the lead-free solder joint by soldering possessed a shear strength of
~15 MPa [41,42]. In our results, the strength by the bonding time of 5 min can be regarded
as well completed, and the increases in the bonding strengths with the bonding times
can enhance the TLPB reliability. Therefore, the combination of the Sn58Bi, porous Cu
film, and FA atmosphere is successful. Additionally, it is worth noting that the bonding
strength of our joints may be a little lower than that of Cu/Sn58Bi/Cu solder joints at room
temperature; it still shows the advantage of much shorter soldering time while comparable
bonding strength at elevated temperatures.
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Figure 5 shows the SEM images of fracture surface on the bottom Cu substrate side
under different heating times. A few filled pores of porous Cu foil and the obvious skeleton
of the porous Cu were observed after 5 min of TLPB. Figure 5a,b show a magnified image
of the filled pores, in Figure 5a, and the porous structure can be observed, indicating the
incomplete reaction of the low-temperature TLPB. Conversely, the porous structure of the
Cu foil was filled by Cu-Sn IMCs in the 20 min TLPB case, as shown in Figure 5e,f. The
pores in the porous Cu are gradually filled with the increase in the bonding time. The
Cu3Sn (74.05 at % Cu, 25.95 at % Sn, by EDS analysis) preferred to generate on the copper
foam skeleton and the Cu6Sn5 (57.03 at % Cu and 42.97% at % Sn, by EDS analysis) formed
at the edge of the porous Cu skeleton, indicating the diffusion-controlled reaction between
Cu and Sn during the soldering process. Remarkably, the structures were observed in
both joints, as shown in Figure 5c,g. In addition, Figure 5d,h show that the amount of the
generated IMCs in the joint of 20 min TLPB is more than that of 5 min TLPB. That was
believed to enhance the bonding strength of the joint [43–45]. Addition of porous Cu, it
seems, cannot decrease the growth rate of IMCs, but it can suppress the formation of voids
at the soldering interface and improves the shear strength of the solder joints during the
aging process, according to Liu’s report [46].
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3.3. Effect of Applied Pressure on Shear Strength of Joints

During the liquid bonding process, defects such as pores and microcracks are formed
at the bonding interface generally due to liquid phase volatilization, solid–liquid phase
transition, and interfacial reaction. These defects might be the original source of fatigue
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cracks, change the propagation mode and rate of the cracks, and then accelerate the
expansion of the microcracks under shear stress, decreasing shear strength and the service
reliability of the solder joint significantly. The applying of local pressure onto the chip or
substrate during TLP bonding can reduce the porosity of the bonding interface significantly,
which in turn improves the bond strength of the solder joints [47,48]. Herein, the effect
of the bonding pressure of the low-temperature TLPB under the FA atmosphere was also
investigated. The bonding process was carried out at 250 ◦C for 5 min with the applied
pressure of 0, 3, 5, 10, and 20 MPa. Figure 6 shows the shear strength of the TLPB joints
under various pressures. The bonding time played the key role in the TLPB strength.
The shear strengths of the joints were 15.4, 34.2, 48.4, 62.2, and 71.2 MPa via the bonding
pressure of 0, 3, 5, 10, and 20 MPa, respectively. Enhancement of the bonding strength was
362% from the bonding pressure of 0 MPa to that of 20 MPa.
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According to the reference, a bonding strength of approximately 15–25 MPa was
achieved in the Cu/Sn/Cu joint under a bonding pressure of 5 MPa [49]. This strength
is comparable to that observed at 3 MPa in Figure 6. Moreover, it should be noted that
the TLPB joint demonstrated superior high-temperature performance compared with the
Cu/Sn58Bi/Cu solder joint. Therefore, the findings of this study suggest the promising
potential of TLPB utilizing Sn58Bi solder, porous Cu, and FA.

According to the morphologies of the fractured joints after shear test shown in Figure 7,
the micropores of the fractured porous Cu skeleton in the joints with bonding pressures is
significantly reduced compared with that with bonding pressure (Figure 5a). The pores
in the porous Cu are progressively filled. Additionally, the micropores pores left reduced
with the increase in the bonding pressure, and the edge of the joint by 5 MPa bonding was
integrated with the substrate, and only a small amount of foam-like structure remained
in the middle of the joint. Fractures of the joints with 3 and 5 MPa bonding were brittle
fractures, and that with 20 MPa bonding possessed a ductile–brittle fracture due to the
observation of both tearing edge and smooth cuts. This also indicates the latter possesses
the highest bonding strength.

Figure 8 shows the EDS images of the fractured joints after shear test formed by
different bonding pressures. The voids in the bonding area gradually decreased with
the increase in the bonding pressure. In the joints by the 3 and 5 MPa bonding, the
Sn and Bi obviously have a stronger and more uniform distribution in contrast to Cu,
indicating the initial formation of the metallurgical bonding at the interface (Figure 8a,b).
As the pressure increased to 20 MPa, the solder could react with the porous Cu and the
Cu substrates thoroughly; consequently, the pores in the joint almost disappeared after
the strong metallurgical bonding at the interface (Figure 8c). The application of bonding
pressure can reduce the soldering porosity significantly through this low-temperature TLPB,
improve the contact areas among the solder, porous Cu foil, and the substrate, and then
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promote the interdiffusion reaction at the interface. Remarkably, the pressure should be
controlled in an appropriate range with the aim to improve the shear strength significantly
while avoiding damage to the chips.
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4. Conclusions

In this study, a highly effective TLPB process utilizing a sandwich structure of Sn58Bi
solder/porous Cu foil/Sn58Bi solder under FA atmosphere was developed. The rapid
reaction between Sn58Bi and Cu within the sandwich structure, followed by the instant
formation of intermetallic compounds such as Cu6Sn5 and Cu3Sn, resulted in the establish-
ment of a strong metallurgical bond at the interface. The effects and mechanisms of various
parameters, such as bonding atmosphere, time, and external pressure on the shear strength
of the metal joints were thoroughly investigated. The results are summarized below:

(a) The FA could reduce the oxides of solder and Cu; thus, the interconnection between
porous Cu and Cu substrate was fulfilled, and the shear strength was approximately
22.48% higher than that obtained under the air atmosphere.

(b) The strength of metal joints increased with increases of bonding time significantly
within 10 min due to the rapid infiltration and reaction between Sn58Bi solder and
porous Cu layer with the help of FA. Beyond that, the shear strength increased slowly
with the increase in bonding time, which might be the full and complete reaction
between them within 10 min.

(c) The applied pressure showed obvious influence on the shear strength of the joints, and
it could be promoted to 34.2, 48.4, 62.2, and 71.2 MPa with the application pressure of
3, 5, 10, and 20 MPa, respectively, while the shear strength was only 15.4 MPa in the
non-pressure case. The mechanism should be ascribed to the accelerated infiltration
and reaction at the Sn58Bi solder/porous Cu interface and the compact structure at
the interfacial zone upon pressure.

These findings prove that the LTPB system consisting of the Sn58Bi, porous Cu film, and
FA is promising to realize low-temperature bonding with high-temperature applications.
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