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Abstract: Secondary dendrite arm spacing (SDAS) is one of the most important factors affecting
macrosegregation and mechanical properties in solidification processes. Predicting SDAS is one of the
major parameters in foundry technology. In order to predict the evolution of microstructures during
the solidification process, we proposed a simple model which predicted the secondary dendrite arm
spacing based solely on the tip velocity (related to the tip supersaturation) and cooling rate. The
model consisted of a growing cylinder inside a liquid cylindrical envelope. Two important hypotheses
were made: (1) Initially the cylinder radius was assumed to equal the dendrite tip radius and (2) the
cylindrical envelope had a fixed radius in the order of the dendrite tip diffusion length. The numerical
model was tested against experiments using various Pb–Sn alloys for a fixed temperature gradient.
The results were found to be in excellent agreement with experimental measurements in terms of
SDAS and dendrite tip velocity prediction. This simple model is naturally destined to be implemented
as a sub-grid model in volume-averaging models to predict the local microstructure, which in turn
directly controls the mushy zone permeability and macrosegregation phenomena.

Keywords: secondary dendrite arm spacing; directional solidification; sub-grid model; microstructures

1. Introduction

Solidification is one of the most significant phenomena for many materials, particu-
larly metals and alloys. Researchers have made significant progress in our understanding
of solidification microstructures over the past decades. During the solidification process,
the solid–liquid interface becomes unstable due to the thermal or solute gradients. These
interface perturbations indicate the formation of different solid structures such as cells and
dendrites or both at the same time where the cell-to-dendrite transition (CDT) occurs. The
dendritic microstructure is characterized by an array of primary dendrite arm spacings,
λ1, secondary dendrite arm spacings, λ2, and even higher-order arms that form a complex
structure [1]. Due to the importance of predicting secondary arm spacing in foundry tech-
nology, numerous studies of solidified binary alloy microstructures have been performed to
determine experimentally the interdependent structure parameters such as λ1 and λ2, and
solidification parameters, such as temperature gradient (DT), growth rate (V), and cooling
rate (CR). In directional solidification studies, the growth velocity, V, and the temperature
gradient in the liquid, DT, may be controlled independently, allowing one to investigate the
dependence of structural parameters (λ1, λ2) on either DT (at constant V) or V (at constant
DT). Several researchers [1–5] report that as the growth rate, temperature gradients, and
cooling rate increase, the primary and secondary dendritic arm spacing decrease. Roósz
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et al. [6] measured the secondary dendrite arm spacing (SDAS) of an Al-7 wt% Si alloy
at various locations within solidified samples, subjected to different temperature condi-
tions, using microgravity experiments. By considering the actual liquidus temperature (TL)
affected by macrosegregation, SDAS was calculated as a function of average processing
parameters and the actual liquidus temperature was calculated using the classical Kirk-
wood’s equation. These studies demonstrated that the predicted SDAS is dependent on the
temperature range and various solidification parameters, such as front velocity and temper-
ature gradient. The authors reported that the experimental and the predicted SDAS were in
good agreement. Roósz et al. [7] calculated the SDAS based on two methods. The first was
the empirical method, which is known to use the local solidification time, which can be
derived either from measured cooling curves (equiaxed solidification), or calculated from
the temperature gradient and front velocity (directional solidification). This equation is not
usable for calculating the SDAS during solidification (it is possible to calculate the final
SDAS in an arbitrary position of the sample). The second method is known as a dynamical
method; the SDAS can be calculated at the end and during solidification. The results of the
two simulation methods were compared with the results of unidirectional solidification
experiments performed with an Al-7% Si alloy. Comparing the two calculation methods,
the authors stated that the correctness of the methods was similar. However, the simulation
results in terms of microsegregation will be more correct using the dynamical method.
Their study demonstrated that using the dynamical method based on the known cooling
curve, the SDAS can be calculated at the end and during solidification in good agreement
with these experimental results. Furthermore, the research reveals a correlation between
the final SDAS and the cooling rate: higher cooling rates produce a finer SDAS, while a
longer local solidification time leads to the formation of coarser SDAS. Nikolić et al. [8]
built a deep learning (DL) model for SDAS prediction through a high-pressure die-cast
of an EN AC 42,000 AlSi7Mg alloy. The authors predicted the SDAS based on processing
parameters: pouring temperature, insulation on the riser, and chill-specific heat, while the
dataset was based on numerical simulation results. The authors claimed that the technique
based on DL can predict SDAS with very high accuracy. Zhang et al. [9] used the CAFE
model of ProCAST to predict the solidification process of different slabs of steel alloys.
Based on the simulation of the slab temperature field, a secondary dendrite arm spacing
model was established. Their research focused on investigating the relationship between
element content, secondary dendrite arm spacing (SDAS), equiaxed crystal ratio (ECR),
and macrosegregation in continuously cast experimental slabs. The authors reported that
macrosegregation was closely related to the SDAS. The SDAS increased with increasing C
and Si content. Also, smaller SDAS could make the solidification structure more compact.
Ferreira et al. [10] have used reliable methods to correlate the thermal parameters with
secondary dendrite arm spacing during unidirectional solidification of an Al-4.5 wt%Cu
alloy. Indeed, spacing of the arms for the studied alloy was numerically predicted using
a phase-field model and validated against the experiments. The authors observed that
the secondary dendrite arm spacing decreased as the cooling rate increased. Ramirez-
Vidaurri et al. [11] have studied the solidification evolution of an ASTM F75, [12] alloy
during directional solidification. Indeed, their work was devoted to obtain SDAS–time and
SDAS–cooling rate relationships. They found coarser SDAS was obtained with a slower
cooling rate. Also, the authors proposed a model based on a lateral-remelting mecha-
nism to describe the SDAS coarsening of multicomponent alloys. The model satisfactorily
reproduced the experimental results. Üstün and Çadirli [13] have studied the effect of
growth rate on coarsening of secondary dendrite arm spacings in directional solidification
of an Al-8.8La-1.2Ni ternary alloy. They found that the secondary dendritic arm spacing
was very sensitive to growth rate and an increase in growth rate from 8.3 to 83 µm/s
decreased SDAS from 60 to 25 µm. Cicutti et al. [14] developed a simple mathematical
model able to estimate the relationship between primary and secondary dendrite arm
spacing in continuous casting products for low-carbon steels. The model predicted a λ1/λ2
ratio of approximately 2.6 which was almost constant along the slab thickness. The results
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were found to be in good agreement with published experimental data. Ren et al. [15]
have developed a comprehensive numerical model using the finite volume method that
accurately predicts the occurrence of solute enrichment-induced dendritic fragmentation in
directional solidification of nickel-based superalloys. Their model revealed a remarkable
interplay between temperature gradient, cooling rate, and dendrite arm spacing in control-
ling dendritic fragmentation. Under a higher temperature gradient, the primary dendrite
tip experienced direct melting by the solute-enriched melt, preventing fragment formation
during the re-melting process. In contrast, a relatively low-temperature gradient promoted
larger dendritic arm spacing, providing ample space for melt convection. This facilitated
the dilution of solute in the interdendritic region by the peripheral melt, effectively inhibit-
ing further solute enrichment and dendritic fragmentation. The authors also claimed that
for low cooling rates, dendritic fragmentation was not observed. However, a higher cooling
rate promoted the growth of ternary dendritic arms on the side branches, hindering the
transfer of solute-enriched melt to the growing dendrite. This reduced solute transfer led
to a lower segregation index in the channel and facilitated channel blockage. The model
successfully captured these intricate relationships between temperature gradient, cooling
rate, solute transport, and dendritic fragmentation, demonstrating a good agreement with
experimental observations. In a remarkable study, Ren et al. [16] proposed a novel model to
simulate the dynamic evolution of dendrite morphology during both growth and remelting
processes. The model was successfully applied to simulate the growth of a single Al-4.5 wt%
Cu alloy nucleus immersed in an undercooled melt. Their simulations revealed a distinct
fragmentation mechanism, where fragment formation occurred primarily at the connection
points between downstream dendrite arms and vertical primary dendrite arms, while no
fragment formation was observed on the upstream side. This phenomenon was attributed
to the preferential melting of downstream arms due to their larger interdendritic spacing
and increased solute enrichment. Additionally, the researchers observed that the presence
of forced convection significantly enhanced the growth rate of upstream dendrite arms,
further contributing to the preferential fragmentation of downstream arms. Notably, the
model’s predictions for dendrite tip velocity were found to be in reasonable agreement with
analytical results for different undercooling conditions. Zheng et al. [17] used a phase-field
model to simulate the evolution of dendritic structure during solidification, incorporating
coupled heat and solute diffusion. Coarsening and remelting of the secondary arms were
also simulated. They found that the base of the secondary arms did not decrease as pre-
dicted by coarsening theory, and the arms spacing remained unchanged when the arm grew
into a steady state; however, the volume of the arms increased. Also, both remelting and
coarsening of secondary arms were observed, which agreed with the coarsening theory and
experimental observations. Theoretical and experimental models for predicting dendritic
growth in multicomponent alloys are scarce due to the complexity of the task. One notable
mathematical model was developed by Kirkwood, which considers the dissolution of small
arms from their tips to determine secondary dendrite arm spacing (λ2) as a function of time
during solidification for both isothermal and constant cooling rate conditions [18]. An ex-
isting expression used for calculating λ2 in binary alloys, based on dendrite ripening as the
primary coarsening mechanism, was extended to multicomponent systems by Rappaz and
Boettinger [19]. These researchers proposed a comprehensive model of equiaxed dendritic
solidification for multicomponent alloys, capturing the interplay between dendrite growth
kinetics and the global solute balance at the local grain scale. Their approach was validated
against experimental λ2 values for various superalloys, demonstrating that the calculated
values closely matched the experimental scatter.

Easton et al. [20] used a dendrite ripening model to predict secondary dendrite arm
spacing (SDAS) for multicomponent aluminum alloys and validated their findings against
experimental data. Their analysis revealed that the final SDAS was influenced by both the
solidification time and the solute profile of the alloys. Intriguingly, despite the substantial
variations in solidification times and solute segregation among the alloys, these two factors
largely offset each other, resulting in surprisingly consistent SDAS predictions across the
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alloy range. The experimental and modeling results demonstrated that elements that
induce significant constitutional undercooling near the onset of solidification, such as Ti,
which significantly reduces grain size, have minimal impact on SDAS. Instead, elements
with strong partitioning behavior towards the end of solidification were found to be more
effective in suppressing SDAS coarsening. In Ref. [21], researchers extended an existing
expression for calculating secondary dendrite arm spacing (λ2) of multicomponent alloys,
which primarily considered dendrite ripening as the coarsening mechanism. This exten-
sion incorporated a back-diffusion treatment, broadening the range of non-equilibrium
solidification conditions for which the predictions were valid. The proposed approach was
validated against experimental λ2 values for ternary alloys cast both horizontally (H) and
vertically (V) under transient heat flow conditions: Al-6 wt%Cu-4 wt%Si alloy (H and V),
Al-3 wt%Cu-5.5 wt%Si alloy (H and V), Al-3 wt%Cu-9 wt%Si alloy (H), Al-6 wt%Cu-2.5/8 wt%Si
alloys (H), and Al-3 wt%Cu-0.5 wt%Mg alloy (H). The predictions were found to be in
good agreement with the experimental λ2 scatters for all the Al-Cu-Si alloys examined,
with a slight tendency to overestimate the λ2 values for the only Al-Cu-Mg alloy cast. Sari
et al. [22] proposed a model able to tackle the growth and the coarsening of secondary
side dendrite arms with only two adjacent side arms in concurrence. Their model was
applied to directional solidification of an Al-06 wt%Cu alloy in a Bridgman experiment.
The authors reported a fast growth of both arms at an earlier stage of solidification, fol-
lowed by remelting of the smaller arm. In addition, the numerical results were in good
agreement with an available proposed time-dependent expression that covered growth
and coarsening.

In previous publications, the authors proposed a method to predict the secondary den-
drite arm spacing based on solidification parameters, such as temperature gradient, growth
rate, and cooling rate. In the current work, a numerical model was developed to predict the
evolution of secondary dendrite arm spacings during directional solidification of the Pb–Sn
alloys. The analysis was based on the hypothesis that the secondary arm spacing is linearly
related to the main dendrite tip radius. Therefore, a system of equations that correlated the
thermal parameters with secondary dendrite arm spacing will be presented. The model
was applied and compared to directional solidification experiments with different Pb–Sn
alloys conducted by Çadirli et al. [23] that have been carried out to obtain data on dendritic
growth under constant temperature gradients and different growth rates. In addition, the
model presented in this paper was extended to consider dendrite growth incorporating
curvature effects and solute diffusion. With these modifications, the model could be used
to predict the coarsening phenomena for future research.

2. Hypothesis

The specific area of the solid/liquid interface is an important integral measure for the
morphological evolution during the solidification process. In order to calculate the size of
the side branches of the columnar dendrite, these side arms were simplified as cylinders (see
Figure 1) which allowed us to use a mathematical model for these geometry types, [24,25].
An expression used for calculation of the arm radius, rc, of Pb–Sn alloys which is related to
the calculation of dendrite arm growth, specifically considers the curvature effect as given
by Gibbs–Thomson coefficient (Γ). In dendritic growth models, the dendrite arm radius
(rc) evolves over time due to various factors such as diffusion, solute redistribution, and
thermal gradients.

drc

dt
=

Dl

rcln
( R f

rc

) Cl − C1 − Γ
ml rc

C∗
l − C∗

s
(1)

Equation (1) was proposed to calculate the growth rate which represented a rate
equation governing the change in rc with respect to time ( drc

dt ). It incorporated terms related
to solute diffusion (Dl), the dendrite arm radius (rc), a characteristic length scale (Rf),
concentration gradients (Cl, C1, Cl*, Cs*), and parameters (Γ, ml) related to the system under
consideration. The presence of the term (Dl/rcln(Rf/rc)) suggested that solute diffusion
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plays a role in dendrite growth; the term ((Cl − C1 − Γ
mlrc

)/(C∗
l − C∗

s )) represented the
concentration gradient driving dendrite growth, possibly incorporating solute partitioning
effects and the influence of curvature, where, rc on the right-hand side was calculated from
the previous time step. This equation represented a simplified model for dendrite growth
incorporating curvature effects and solute diffusion. Its derivation and specific application
would depend on the underlying assumptions and context of the dendritic growth process
being studied.
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Figure 1. Schematic representation of the dendrite side branches which are simplified as cylinders.
On the left, typical dendrite images were obtained from the high-resolution camera for uc = 0.2 K
and initial acetone concentration C0 = 0.0086 mol% (almost pure SCN), (reprinted from Ref. [25],
Copyright 2012, with permission from Elsevier). In the middle, simplifications of the side arms as
cylinders. On the right, representation of one arm on both the front and side view.

The arms had a radius, rc, that grew gradually with time according to Equation (2) as
the solidification time proceeded inside a cylinder of radius Rf as shown in Figure 2. By
multiplying Equation (1) by rc and using (rcdrc =

1
2 drc

2), Equation (1) becomes as follows:

drc
2

dt
= 2

Dl

ln
( R f

rc

) Cl − C1 − Γ
ml rc

C∗
l − C∗

s
(2)

Cl* is the solute concentration in liquid at the solid/liquid interface of the secondary
arm, which is expressed by Cl* = Cl − Γ/rc where Cl is the liquidus concentration taken
from the phase diagram. Cs*, is the solidus concentration at the equilibrium, Γ is the
Gibbs–Thomson coefficient, and ml is the liquidus slope.

This work was based on two main hypotheses. The first was to assume the initial
secondary arm radius was equal to the tip radius of the main dendrite rc = Rtip. The
second was that the envelope radius should be in the order of the diffusion length at the tip
Rf ~2Dl/vtip, vtip being the tip growth velocity.

Inside this envelope, the solid fraction, fs, of the arm growth was defined as the ratio
of the volume of the growing arm to the volume of the total envelope with radius Rf. It
developed in accordance with Equation (3) from a finite value (when rc = Rtip) to possibly
reach fs = 1 (when rc = Rf).

fs =
Vr

Vtot
=

(
πrc

2L
πR2

f L

)
=

rc
2

R2
f

, with fl = 1 − fs (3)
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Figure 2. (a) Columnar dendrite (reprinted from Ref. [25], Copyright 2012, with permission from
Elsevier). (b) Side view of a cylindrical arm enveloped in a cylindrical volume with a radius Rf.

The solute distribution field was assumed to be isotropic around each secondary
arm as shown in Figure 2. The average liquid concentration, Cavr, inside the envelope
was obtained by solving the conservation equation of the solute at equilibrium and at the
solid–liquid interface as given in Equation (4).

∂( fl Cavr)

∂t
= −∂( fs)

∂t
(C∗

s − C∗
l ) (4)

The concentration at Rf is noted by, C1, vr is the growth rate of the arm, and δc is the
diffusion distance that can be written as: δc = Dl/vr, where Dl is the liquid diffusion.

The left term of Equation (4) represented the rate change of the average concentration
(Cavr) of the liquid phase with respect to time. However, the term on the right-hand side
represented the rate of change of the solid fraction with respect to time. The equation
essentially described the change in the average concentration of the liquid phase over
time as a result of the solidification process. It related this change to the rate of change of
the solid fraction and the concentration difference between the solid and liquid phases at
equilibrium. This type of equation is commonly encountered in models describing phase
transformations, where the evolution of different phases (solid, liquid) and their associated
properties (e.g., concentration) are considered over time during solidification processes.

In the cylindrical coordinate, the diffusion equation [26] can be written in the form:

∂C
∂t

= Dl

(
∂2C
∂r2 +

1
r

∂C
∂r

)
(5)

Since the growth of secondary arms is very slow, the steady state condition can be
assumed ( ∂C

∂t = 0), [27]. In this condition, Crank [28] presented the solution of Equation (5)
according to the following form:

C = aln(rc) + b (6)
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where a and b are constants to be determined from the boundary conditions:{
C = C1 at rc = R f
C = C∗

l at rc = r

Equation (6) gives an infinite concentration at rc = ∞. So, the boundary condition must
be limited at some radius noted Rf. It represents the available space around the arm. This
radius corresponds to the radius at which the tip Peclet number equals 1. For a specific
liquid diffusion (Dl) and initial dendrite tip velocity (vtip), Rf is assumed for now to be
equal to:

R f = 2
Dl
vtip

(7)

After the application of the boundary conditions, the solution becomes:

C(r) =
C1ln

(
r
rc

)
+ C∗

l ln
( R f

r

)
ln
( R f

rc

) (8)

The general form of Equation (8) enables the estimation of concentration during
the growth.

The average liquid concentration (Cavr) can also be estimated as a function of the
liquid concentration (C1) at Rf, as given in Equations (9) and (10).

Cavr =
1

π
(

R2
f − r2

c

)∫ R f

rc
C(r)·2πrdr (9)

Then:

Cavr =
1(

R2
f − r2

c

)
ln
( R f

rc

)
C1

(
R2

f ln
(

R f

)
− r2

c ln(rc)−
(

1
2+ln(rc)

)(
R2

f − r2
c

))
+

C∗
l

((
1
2+ln

(
R f

))(
R2

f − r2
c

)
− R2

f ln
(

R f

)
+ r2

c ln(rc)
) (10)

As a solid/liquid interface advances with growth rate (vi), the liquid concentration
(Cl*), and the solid concentration (Cs*), the quantity of the solute rejected per unity time
will be vi(Cl* − Cs*); this must be balanced by the creation of a concentration gradient in
the liquid, thus [23],

vi(c∗l − c∗s ) =
Dl

rcln
( R f

rc

) (C∗ − C1) (11)

where vi =
drc
dt and C∗ = Cl − Γ

mlrc
.

The “far field” liquid concentration C1 at the position Rf can be estimated from
Equation (9), [24].

C1 =

(
R2

f − r2
c

)
ln
( R f

rc

)
Cavr − C∗

l

((
1
2+ln

(
R f

))(
R2

f − r2
c

)
− R2

f ln
(

R f

)
+ r2

c ln(rc)
)

(
R2

f ln
(

R f

)
− r2

c ln (rc)−
(

1
2+ ln(rc)

)(
R2

f − r2
c

)) (12)

Thus, the main equation systems were Equations (2), (4), and (12) that predict the
evolution of arm radius (rc), average liquid concentration (Cavr), and the concentration (C1)
at (Rf).

3. Main Dendrite Tip Kinetic Growth

To obtain a value of the radius Rf it was necessary to estimate the main dendrite tip
growth velocity. The growth kinetics of a dendrite are strongly dependent on the mass
transfer that occurs near its tip. Figure 3 shows a schematic of the dendrite composition
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ahead of the tip dendrite along its z-axis. Note that the composition at the tip is Cl* and
declines to some value C1 at distance δc (the diffusion distance of the solute) ahead of
the tip [29]. The change in the melting point is due to the curvature effect ∆Tc often
called curvature or Gibbs–Thomson undercooling. The resolution of these phenomena is
based on the Ivantsov function which can treat those phenomena that occur ahead of this
paraboloid shape.
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Figure 3. Schematic of dendrite tip having a paraboloid evolution shape and the solute distribution
ahead of the dendrite tip.

In order to treat those phenomena that occur at the dendrite tip that have a paraboloid
of revolution shape, Ivantsov gave a mathematical solution for this shape by defining a
relation between the supersaturation (Ω) and the Ivantsov function (Iv (Pe)) as given in
Equations (13) and (14), respectively, where E1 is the exponential integral function given
elsewhere [30]. An approximation was suggested by Kurz [26] in order to calculate the tip
Peclet number by inversing the Ivantsov solution as defined in Equation (15).

Ω = Iv(Pe) =
C∗

l − C0

C∗
l (1 − k)

(13)

Iv(Pe) = Peexp(Pe)·E1(Pe) (14)

Pe1 = − Ω
ln(Ω)

(15)

Error =
Pe
Pe1

(16)

Pe(Ω) = I−1
v (Ω) = − Ω

ln(Ω)
F(Ω) (17)

Figure 4 illustrates the variation of Peclet number as a function of the supersaturation,
Ω, that was given by both the Ivantsov function and Kurz approximation. The estimated
Peclet numbers from the Ivantsov function and Kurz approximation were very close to
each other. The accuracy of the Kurz approximation for estimating Pe with respect to the
Ivantsov function showed a relative error of about 20% at small supersaturation values as
presented in Figure A2 in Appendix B which is relatively high and it cannot be negligible.
However, the deviation decreased at higher supersaturation values. In order to obtain a
more accurate approximation we proposed a new solution (Equation (17)), where (Iv

−1

(Ω)) was the inverse Ivantsov solution (new proposed approximation) and F(Ω) was a
fitting function of the error equation (more detailed in Appendix B). In Figure 4, one can
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easily notice that the new proposed approximation was in much better agreement with the
Ivantsov profile.
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Figure 4. The supersaturation (Ω) vs. Peclet number given by the Ivantsov function (Equation (14))
presented by red, the Kurz approximation (Equation (15)) presented by blue, and our new approxi-
mation presented by the black dashed line (Equation (17)).

In light of the previous approximation that allowed us to calculate the Peclet number
for a given supersaturation (Ω), the corresponding tip radius (Rtip) could be calculated ac-
cording to Kharicha et al. [31] by Equation (18), where σ is the stability constant (σ = 1/4п2),
Pe is the Peclet number that is obtained from Equation (17), and Cl* and Cs* are the liquidus
and solidus concentration, respectively. Therefore, the corresponding tip velocity (vtip)
could be evaluated based on the formula of the Peclet number (Pe = Rtip vtip/2Dl), as
defined in Equation (19).

Rtip =
Γ

2 Pe ml σ
(
C∗

l − C∗
s
) (18)

vtip =
2 Pe Dl

Rtip
(19)

4. Comparison of the Solidification Parameters between Experiment Measurement and
Numerical Predictions

The present model was then tested against the experiments presented by Çadirli
et al. [23]. They studied the effect of several parameters (growth rate V, temperature
gradient DT, and cooling rate CR) during directional solidification of different Pb–Sn
binary alloys on the formed primary and secondary dendrite arm spacings λ1 and λ2,
respectively. The validation of the above equations system concerned the prediction of
both the secondary dendrite arm spacing and tip velocity. To achieve that, a numerical
code was created in the trial to reproduce the experiments. The liquidus slope (ml) of the
corresponding phase diagram is defined in Equation (20), where, the temperature (T) is a
function of time (T(t) = TL − CR × t) and CR is the cooling rate defined in Equation (21). The
liquidus and solidus concentrations (Cl and Cs) of the Pb–Sn phase diagram are presented
in Appendix A.

ml(T) =
1(

∂Cl
∂T

) =
1

4p1T3 + 3p2T2 + 2p3T + p4
(20)

where p1–4 are constants presented in Table A1 in Appendix A.
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The cooling rate used in these experiments was calculated as a function of the thermal
gradient DT (measured in (◦C/m)) multiplied by the tip velocity vtip, as expressed in
Equation (21). The final radius Rf was expressed as a function of Peclet number pondered
with the corrective factor (A = 1, 0.5 or 0.3) and tip radius (Rtip) as defined in Equation (22)
that could predict the value of the secondary dendrite arm spacing.

CR = DT vtip[
◦C/s] (21)

R f = A
1

2Pe
Rtip (22)

Based on experimental data, Hachani et al. [32] have provided the following estimation
of the diffusion coefficient for Pb in the liquid alloy as a function of temperature:

Dl(T) = 1.4 × 10−7exp
(
−2.29 × 104

RT

)[
m2/s

]
(23)

where 1.4 × 10−7 is a constant prefactor, 2.29 × 104 represents an activation energy term in
units of Joules per mole (J/mol), R is the ideal gas constant (R = 8.314 J/mol/K), and T is
the temperature in Kelvin.

The numerical and the experimental measurements are reported in Table 1. The
numerical results were obtained for fixed thermal gradient DT, and by adapting the initial
undercooling of each Pb–Sn alloy that achieved the same tip velocities in the simulation
and experiments. Once this condition was achieved, the corresponding parameters of
this growth velocity were presented as shown in Table 1. Also, the cooling rate could be
calculated by Equation (21). In addition, the corrective factor, A, was chosen to slightly
modify the envelope radius Rf.

Table 1. Comparison between experimental and numerical solidification parameters of the Pb–Sn alloy.

50% 35% 20% 10% 5% C0

17.11 18.45 15.29 16.36 18.58
Tip Velocity

(m/s)
×10−6

Experimental0.037 0.031 0.0254 0.0237 0.016 CR
(◦C/s)

14.7–30.3 13.8–29.9 26.8–58.9 20.2–53.7 25.4–63.7
λ2
(m)

×10−6

5.3051 3.5911 2.1144 1.2808 0.7684
Under

Cooling
(K)

17.11 18.45 15.29 16.36 18.59
Tip Velocity

(m/s)
×10−6

Numerical
calculation

0.3 0.5 1 0.3 0.5 1 0.3 0.5 1 0.3 0.5 1 0.3 0.5 1 A

08.22 13.71 27.41 10.11 16.86 33.71 16.30 27.17 54.35 19.49 32.48 64.96 19.97 33.28 66.5
λ2 predicted

(m)
×10−6

0.0825 0.0932 0.0964 0.1158 0.1507 Ω

0.0331 0.0393 0.0412 0.0537 0.0797 Pe

1.81 2.65 4.48 6.98 10.57
Rtip
(m)

×10−6

0.469 0.622 0.831 1.063 1.237

D
(m2/s)
×10−9

[32]

Figure 5 presents the secondary dendrite arm spacing versus the initial concentration
of the five studied alloys. All the experimental results were found to lie between the black
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and the green lines obtained with A = 1 and A = 0.5; few data needed a lower A down to 0.3.
Based on our theory, the results obtained with A = 1 represented the fully developed arms.
Lower values obtained with A = 0.3–0.5 did not finish their growth or were stopped due
to competition in growth between parallel arms. In addition, the predicted SDAS values
decreased as the initial concentration increased (higher value of SDAS was obtained with
the smaller initial concentration 5 wt%Sn and lower SDAS with 50 wt%Sn).
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A = 1, 0.5, and 0.3, respectively.

On the other hand, a very good agreement between the numerical and the experimental
velocities was obtained as reported in Table 1. A very close agreement was achieved for
Pb-5 wt%Sn as given in Table 1, where the experimental velocity was 18.58 µm/s and the
numerical predicted velocity was 18.59 µm/s. However, for Pb-10 wt%Sn, Pb-20 wt%Sn,
Pb-35 wt%Sn, and Pb-50 wt%Sn, the numerical and the experimental tip velocities were
exactly the same; their values were 16.36, 15.29, 18.45, and 17.11 µm/s, respectively. In
addition, the initial undercooling for different Pb–Sn alloys is also presented in Table 1
and also presented in Appendix A by the blackheads. Based on the results presented in
Table 1 and in Figure A1 (in Appendix A), it can be easily noticed that the tip undercooling
of the Pb-5 wt%Sn alloy was 0.7684 ◦C. Then, as the initial concentration of the alloy (C0)
increased from 5-wt% to 50-wt% (first column in Table 1), the tip undercooling increased
from 0.7684 K to 5.3051 K. In addition, faster cooling rates (CR = 0.037 ◦C/s) were obtained
for higher tip undercoolings and higher initial concentrations (C0 = 50 wt%). Moreover, a
maximum tip Peclet number of about 0.08 was obtained with the Pb-5 wt%Sn alloy which
corresponded to Ω = 0.1 (see Table 1). The corresponding error of the Kurz approximation
for Ω ~ 0.1 was about 20% (see Figure A2 in Appendix B) which is relatively high and is not
negligible. Our proposed correction (Equation (17)) provided us with a better estimation of
the tip Peclet number. In our model, the accuracy of the secondary dendrite arm spacing
prediction was directly related to the knowledge of tip kinetics.
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5. Conclusions

The present paper deals with the prediction of secondary dendrite arm spacing during
directional solidification of different Pb–Sn alloys. The model showed its effectiveness to
predict SDAS based solely on tip supersaturation and cooling rate. The numerical results
were obtained for the fixed thermal gradient DT, and by adapting the initial undercooling
of each Pb–Sn alloy that achieved tip velocities similar to those of other experiments. In
good qualitative agreement with other experiments, the model predicted formation of
coarser arms for lower initial alloy concentrations, slower cooling rates, and the values of
the SDAS decreased as the initial concentration increased. Quantitatively, the calculated
SDAS and tip velocities by the proposed model exhibited a very good agreement with the
available measurements. Further model verifications in the future will aimed at considering
other alloy systems. However, sufficient thermophysical properties, dendrite tip, and
experimental conditions need to be accurately known as for the Pb–Sn alloys used in
this work. This model will be implemented as a sub-grid model for the prediction of the
evolution of the main secondary arms spacing during microscopic solidification processes
which are important for freckles prediction and to control the mushy zone permeability.

Author Contributions: Conceptualization, M.A. and A.K.; Methodology, A.K.; Software, A.K.;
Validation, A.K.; Formal analysis, I.S. and A.K.; Investigation, I.S., M.A., L.H., K.Z., N.A., M.W.
and A.K.; Resources, I.S., M.A. and A.K.; Data curation, I.S. and A.K.; Writing—original draft, I.S.;
Writing—review & editing, I.S., M.A., S.A., L.H., K.Z., N.A., M.W. and A.K.; Visualization, M.A. and
A.K.; Supervision, A.K.; Project administration, M.A. and A.K.; Funding acquisition, S.A. and N.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Deanship of Scientific Research at Imam Mohammad Ibn
Saud Islamic University, (IMSIU) through Research Partnership Program no. RP-21-12-02.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

C0 The initial concentration of the alloy T Temperature, (K)
C1 Liquid concentration at r = Rf TL Liquidus temperature, (K)
Cavr Average liquid concentration DT Thermal gradient, (K/m)
Cl*, Cs* Liquidus and solidus concentrations Γ Gibbs Thomson coefficient, (m K)
ml Liquidus slope, (K wt%−1) rc The arm radius, (m)
Dl Liquid diffusion coefficient, (m2 s−1) Rf The radius of the cylindrical envelope, (m)
Ω Supersaturation Rtip The radius of the tip dendrite, (m)
UC Initial undercooling, (K) V, vtip Experimental and numerical growth rate of the arm, (m/s)
CR Cooling rate, (K s−1) σ The stability constant (σ = 1/4п2)
δc Diffusion distance, (m) fl, fs Liquid and solid fractions
E1 The integral exponential function A Corrective factor
Iv Ivantsov function λ 1, λ2 Primary and secondary dendrite arm spacing, (m)
Pe Peclet number Vr Volume of the arm, (m3)
pi,qi constants Vtot Total envelope volume, (m3)
R Ideal gas constant, (8.314 J/mol/K) F Fitting function
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Figure A1. Phase diagram of Pb-Sn (right part), liquidus and solidus concentration are presented in
black and blue. Also, the blackheads correspond to initial arm undercooling (at t = 0 s) as shown in
Table A1. While, the red dashed lines represent the initial concentration of the studied alloys.

Cl(T) = p1T4 + p2T3 + p3T2 + p4T + p5 (A1)

Cs(T) = q1T4 + q2T3 + q3T2 + q4T + q5 (A2)

Table A1. The corresponding constants of the liquidus and solidus concentration of the Pb–Sn
phase diagram.

Cl (T)

p1 p2 p3 p4 p5

−2.9739 × 10−9 6.4158 × 10−6 −5.1601 × 10−3 1.8292 −240.28

Cs (T)

q1 q2 q3 q4 q5

8.5229 × 10−11 −2.0961 × 10−7 1.8436 × 10−4 −7.0726 × 10−2 10.296

Appendix B

The fitting function of the error F(Ω) was separated into two parts (as separated by
black dashed line at Ω = 0.2 in Figure A2), the first one (Equation (A3)) is for Ω < 0.2 and
the second one for Ω > 0.2 defined in Equation (A4).
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Figure A2. Kurz error equation (black line) and the fitting function (F(Ω), dashed red line) for
various Ω.

F(Ω) = p1Ω6 + p2Ω5 + p3Ω4 + p4Ω3 + p5Ω2 + p6Ω + p7 (A3)

F(Ω) = q1Ω4 + q2Ω3 + q3Ω2 + q4Ω + q5 (A4)

where p1−p7 and q1−q5 are constants presented in Table A2.

Table A2. The corresponding constants of the fitting function F(Ω).

F(Ω) (Equation (A3))

p1 p2 p3 p4 p5 p6 p7

11,460 −8248.5 2375.8 −351.2 28.753 −1.2251 0.80449

F(Ω) (Equation (A4))

q1 q2 q3 q4 q5

0.19968 −0.34927 0.34839 0.020202 0.77974
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