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Abstract: The goal of this paper is to fabricate innovative diaphragm headphones using graphene
oxide paper (GOP) and GOP/epoxy nanocomposites (GOPC). Initially, graphene oxide suspension is
fabricated, and the vacuum filtration method is adopted to make GOP. Then, vacuum bag molding
is used to fabricate GOPC from GOP. Hot pressing and associated molds are adopted to fabricate
line-indented (GOPC-L) or curve-indented patterns (GOPC-C) on the GOPC. The performances of
one kind of GOP and three kinds of GOPC diaphragm headphones are analyzed based on their
sound pressure level (SPL) curves achieved by the Soundcheck measurement system. There are four
important processing parameters that will influence the performance of the diaphragm, including
material type GOP versus GOPC, indented pattern type, sonication time on suspension, and graphene
weight fraction in suspension. Compliances of various diaphragms are measured by the Klippel
LPM laser measurement system. The results indicate that effects of sonication time and graphene
weight fraction on SPL of GOP and GOPC headphones are in reverse, and this is associated with their
difference on compliance (modulus), mass, damping ratio, and microstructure uniformity. Either
GOPC-L or GOPC-C seems to improve the microstructure of the GOPC, and leads to better SPL
performance. The correlation between the previous four factors and SPLs of four kinds of diaphragm
headphones is proposed by using scanning electron microscope (SEM) to examine the microstructure
of these diaphragms.

Keywords: graphene oxide paper; nanocomposite; sound pressure level; compliance; line-indented
pattern; curve-indented pattern

1. Introduction

Graphene, the one-atom-thick strong bonded carbon membrane, exhibits intriguing
electronic, thermal, mechanical, and optical properties. By stacking a few layers of graphene
nanosheets, the material becomes graphene papers (GPs). GPs can preserve most properties
that monolayer graphene possesses. Initially, Dikin et al. [1] fabricated GO (graphene oxide)
paper from GO water solution by a vacuum filtration method. The GO paper had a
tensile strength of 120 MPa. Suk et al. [2] first fabricated monolayer graphene by a CVD
method and then transferred this graphene film onto PET (polyethylene terephthalate)
as graphene/PET nanocomposite film to be a loudspeaker. A sound wave was created
to the surrounding air by the nanocomposite film due to thermoacoustic effect, and the
sound pressure level (SPL) of this film was around 50 dB. Xu [3] found that the piezoelectric
PVDF film could be sandwiched by two graphene layers. Once the voltage was applied
on graphenes, the reverse piezoelectric effect could lead to the vibration of PVDF film
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and sound waves were created. A few layers of graphene were grown on the surface of
the polar X-cut (110) of a piezoelectric La3Ga5.5Ta0.5O14 crystal using the CVD method [4],
which indicates a good matching of crystal lattice parameters between piezoelectric and
two-dimensional graphene crystals. This hybrid material has high potential to apply as an
advanced acoustic headphone.

Kim et al. [5] used nitrogen-doped reduced graphene oxide arrays (N-rGOA) to make
a thermoacoustic array loudspeaker. A new type of flexible headset (earphone) based on
graphene using a laser direct writing method was introduced by Ren et al. [6]. Compared to
the traditional magnetic headphones, this headset could capture subtle sounds in ultrasonic
bandwidth, which could be applied in the field of human and animal communication.

Headphone performance is closely related to the vibration behavior of diaphragms.
The vibration of graphene sheets via a 2D nanomechanic plate model was studied [7–10].
They concluded that the deflection in the vibration of graphene sheets was nonlinear and
the amplitude was large. Mirakhory et al. [11] investigated the vibration behavior of pristine
and defective triangular graphene sheets. They found that by increasing the resonance
range of sensors based on 2D graphene sheets, the triangular structure was better than
the square structure. The vibration and damping characteristics of graphene nanoplatelet
(GNP)-modified epoxy composites were studied [12–14]. The results showed that the
damped natural frequencies in GNPs/epoxy composites decreased with the addition of
GNPs nanofillers due to the decrease in the toughness of nanocomposites. With the addition
of 0.4 wt% GNPs, an increase of 26% in the damping ratio of p-GNPs/epoxy composite
was observed.

Based on the literature review, graphene papers are excellent diaphragm candidates
for acoustic devices due to their high stiffness and low mass. The aim of this paper is to
fabricate graphene oxide paper (GOP) from well-dispersed graphene oxide (GO) nanosheet
water suspension using the vacuum filtration method. In addition, graphene oxide pa-
per/epoxy nanocomposites (GOPC) are fabricated by the vacuum bag molding method.
Then, graphene oxide paper (GOP), and GOP/epoxy nanocomposites (GOPC) with a GO
weight fraction of 26% are adopted as diaphragms in the electromagnetic headphones. In
addition, lined-pattern (GOPC-L) and curved-pattern (GOPC-C) indentations are molded
onto both surfaces of the diaphragm by hot-press molding. Therefore, there are four impor-
tant parameters affecting the acoustic performance of the diaphragm, including the material
type (GOP versus GOPC), pattern type on nanocomposites (line or curve), sonication time
(T1~3), and graphene weight fraction in suspension (WF1~3) for GOP. Sound pressure level
(SPL) curves of GOP and GOPC diaphragm headphones are analyzed by the Soundcheck
measurement system. Compliances of the diaphragms are measured by the Klippel LPM
laser measurement system.

2. Materials and Methods

Graphene oxide (GO) nanosheets were fabricated by the modified Hummers method.
First, 12 g expanded graphite powders were added to 460-mL H2SO4 and the suspension
was stirred in an ice bath. Later, 60 g of KMnO4 were slowly added to the suspension,
heated to 35 ◦C, and stirred for 2 h. Then, 920 mL of deionized water was slowly added
in the suspension and the temperature had to be kept under 50 ◦C. The suspension was
further diluted in 2800 mL deionized water, and then 50 mL of 30% concentration H2O2
was added. The suspension stood still for 24 h. After that, the suspension was initially set
in a centrifuge by a revolution of 6000 rpm for 1 h to separate the solute and solvent. The
solute was further purified to be GO by the addition of the mixture of water and methanol.
The centrifuge and purification processes were repeated for several cycles.

GO papers (GOP) were fabricated by the vacuum filtration method. GO suspension
was poured into the upper container of a vacuum filtration apparatus. The lower bottle had
an outlet that connects to a vacuum pump. There was a filtration assembly consisting of
porous glass and cellulose filter paper between the upper and lower parts of the apparatus.
When the vacuum pump was turned on, the solvent of the GO suspension was sucked
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out and GO nanosheets were combined to be GOP above the filtration assembly. After the
drying process, a free-stand circular GOP with diameter of 35 mm can be achieved.

To fabricate GOP/epoxy nanocomposites (GOPC), a vacuum bag molding method
was adopted. First, a GOP was soaked into epoxy resin at 60 ◦C for 30 min. Then, the
soaked GOP covered by release fabrics was placed inside a vacuum bag, and a vacuum
pump was connected to the outlet of the bag and started up. At the same time, the vacuum
bag and epoxy resin-soaked GOP were placed inside an oven at 120 ◦C for 2 h to cure the
epoxy. After the curing process, the GOPC diaphragm was achieved.

To fabricate patterned GOPCs, the initial steps for epoxy soaking and vacuum pump-
ing for GOP were similar to those of GOPCs. Then, uncured GOP/epoxy was sandwiched
between two patterned molds, either lined or curved patterns, and sprayed with the release
agent. The molds were further set up between hot pressing platens with suitable pressure
at 120 ◦C for 2 h. Thereafter, GOPC-L and GOPC-C diaphragms were achieved.

In order to clarify the effect of processing parameters on the acoustic performance of
various GOP and GOPC diaphragms, Table 1 shows the terminology for various fabricated
diaphragms. Sonication times on suspension for T1, T2, and T3 are 1, 5, and 10 min,
respectively; GO weight fractions in suspension for WF1, WF2, and WF3, are 0.5, 1.0,
and 1.5 wt%, respectively; pattern types on nanocomposites are lined (L) and curved (C)
indentations, respectively.

Table 1. Terminology for various graphene diaphragms.

Diaphragm Type Sonication Time on
Suspension (min)

GO Weight Fraction
in Suspension (wt%)

Pattern Type on
Nanocomposite

GOP T1 (1) WF1 (0.5) Lined (GOPC-L)
(Graphene oxide paper) T2 (5) WF2 (1.0) Curved (GOPC-C)

GOPC T3 (10) WF3 (1.5)(GOP/epoxy nanocomposite)

To manufacture an electromagnetic GOP diaphragm headphone, a plastic ring frame
was initially adhered on the edge of the GOP to be a front cover, as shown in Figure 1a,b.
Then, a dynamic voice coil was adhered on the opposite surface of the GOP, and centers
of both voice coil and GOP must be aligned by a specific fixture (Figure 1c). Further, this
diaphragm was assembled with a headphone unit consisting of a yoke, a magnet, and a
PCB (Figure 1d). Positive and negative electrodes of the dynamic voice coil were connected
to the corresponding electrodes of the PCB, and the headphone was ready for testing. The
preparation procedure for the other three diaphragm headphones was similar.

The SPL of the headphone was tested inside an anechoic chamber. A B&K 2716C
amplifier was connected to the headphone and sound waves in the frequency range from
100 to 20 kHz were created. The sound waves were detected by a B&K 4191 microphone.
The GOP and GOPC headphones were mounted on a baffle board based on an IEC 60268-5
regulation [15]. The distance between the headphones and the microphone was 2 cm. The
input voltage of the speaker was 1.73 mV. The amplifier and microphone were connected to
a computer with Soundcheck software (Version 15.03), and the SPL curve of the graphene
diaphragm headphones was measured. To measure the compliance of the diaphragms,
as shown in Figure 2, the set-up of the measurement system was similar to that for SPL,
except the microphone was replaced by a Klippel LPM laser measurement system. Both
GOP and GOPC diaphragms are first cut as suitable samples by diamond knife, and then
coated with gold. Later they are put inside the chamber for scanning electron microscope
(SEM) observation. SEM is used to carefully observe the microstructure of four types of
diaphragms and correlated with their SPLs.
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Figure 2. Setup of the Klippel LPM laser measurement system for compliance of the GOP diaphragm.

3. Results
3.1. Effect of Material Type

Figure 3 shows SPL (sound pressure level) curves for diaphragm headphones fabri-
cated by GO papers (GOP) as well as GOP/epoxy nanocomposites without patterns (GOPC)
and with the curve (GOPC-C) and line (GOPC-L)-indented patterns. All diaphragms were
fabricated with GO weight fraction of 1.5 wt% (WF3) in suspension and with a sonication
time of 10 min (T3). At frequencies lower than 3000 Hz, The GOP-T3-WF3 diaphragm has
a smoother SPL curve than the other three nanocomposite diaphragms, GOPC-T3-WF3,
GOPC-C-T3-WF3, and GOPC-L-T3-WF3. In addition, GOP possesses the largest-frequency
bandwidth for SPL value above 90 dB, which is between 350 and 3.5 kHz, and the highest
initial SPL value of 64 dB at a sweeping frequency of 100 Hz, which indicates that its
sensitivity is good. This 90 dB threshold value of the GOP is equivalent to that required for
the commercial diaphragm; in addition, the approximate flat curve between 2 k to 3.5 kHz
could provide good sensitivity for human hearing. The smoother SPL curve of GOP is due
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to its higher mechanical compliance, Cms of 7.25 m/N, as shown in Table 2. The highest
SPL value for GOP is 98 dB at the first resonant frequency of 430 Hz, which is better than
50 dB in reference [2]. For the nanocomposite GOPC with the lower mechanical compliance
of 0.3 m/N (higher stiffness), the first resonant frequency shifts to a higher frequency of
1800 Hz as compared with GOP, and its bandwidth is smallest.
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WF3 by GO papers (GOP), GOP/epoxy nanocomposite without a pattern (GOPC), and with lined
(GOPC-L) and curved patterns (GOPC-C).

Table 2. Compliance of various diaphragm headphones.

T3-WF3 Compliance Cms of Various Diaphragm Headphones

GOP GOPC GOPC-L GOPC-C

Cms (m/N) 7.25 0.30 1.14 0.88

Table 3 shows the maximum SPL values of four kinds of diaphragm headphones.
The GOP headphone has the maximum SPL value of 99 dB and the other three kinds of
nanocomposite diaphragm headphones possess maximum SPL values higher than 100 dB.
All these results indicate that adopting GOP as diaphragm headphones is a viable route. In
addition, as comparing the SPLs in Table 3 with the compliances in Table 2, the maximum
SPL value seems to be inversely proportional to the compliance value. This could be
attributed to the better specific modulus (E/ρ) of the GOP driver compared with that of the
commercial beryllium copper (BeCu) thin-film driver [16–18]. The moduli E of the GOP
and BeCu films were 3.41 GPa and 102 GPa, respectively, while the densities ρ of GOP and
BeCu films were 0.15 and 8.25 g/cm3, respectively. Therefore, their specific moduli could
be calculated as 22.73 (3.41/0.15) and 12.36 (102/8.25), respectively, which show that GOP
has a significantly higher specific modulus than that of BeCu films. Actually, the specific
modulus is proportional to sound speed (

√
E/ρ), and better specific modulus of GOP could

result in good SPL performance.

Table 3. Maximum SPL values of various diaphragm headphones.

Maximum SPL (dB)

GOP GOPC GOPC-L GOPC-C
99 104 101 103
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Figure 4 depicts micrographs for the cross-sectional views of four kinds of diaphragms
fabricated at the same processing parameters of T3 and WF3, and Figure 4a,b show those
for GOP and GOPC, respectively. As shown in Figure 4a, thick and almost uniform stacked
GO nanosheets were found and could be due to the highest GO weight fraction WF3. Only
few interlaminar pores are found at the right hand side of the micrograph. On the other
hand, more interlaminar holes exist for GOPC, as shown in Figure 4b, and this indicates
that there is very little epoxy infiltration. Since the GOPC is fabricated by vacuum-bag
molding, epoxy is very difficult to infiltrate in the through-thickness direction via tortuous
pores inside the stacking 2D nanosheets of the GOP. More pores in the GOPC lead to
its lower dB value at the initial sweeping frequency, as shown in Figure 3. Figure 4c,d
show micrographs for the patterned GOPC-C and GOPC-L diaphragms, respectively. Two
features are found in these two micrographs: first, both GOPCs depict a curve shape and
the GOPC-C seems to possess the shape with a smaller radius of curvature at the left hand
side of Figure 4c; second, both GOPCs show few intralaminar pores, indicating that epoxy
infiltration is improved by the help of indentation process. Therefore, both features lead to
medium compliance values and a more uniform microstructure. Their correlated SPLs are
shown in Figure 3, and the corresponding discussion is proposed in Section 3.2.
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Figure 4. Micrographs of diaphragms (a) GOP-T3-WF3, (b) GOPC-T3-WF3, (c) GOPC-C-T3-WF3 and
(d) GOPC-L-T3-W3.

3.2. Effect of Pattern on the Nanocomposite

Figure 5a,b depicts, respectively, the fabricated nanocomposite diaphragm drivers
with lined (GOPC-L) and curved (GOPC-C) patterns. Both patterns are uniform short line
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or arc indentations in the radial direction fabricated, respectively, by the molds shown in
Figure 5c,d. Figure 5e–g depict, respectively, the well-fabricated headphones, GOPC-T1-
WF3, GOPC-T2-WF3, and GOPC-T3-WF3. Figure 3 also shows the effect of the two pattern
types of nanocomposites on the SPL curves of diaphragm headphones. Due to higher
compliances, both GOPC-L and GOPC-C headphones show higher SPL values at the initial
100 Hz compared with GOPC, and also indicate smoother SPL curves for frequencies higher
than 10 kHz resulted from more uniform microstructure. With patterns on nanocomposite
diaphragms, the first resonant frequencies of both GOPC-C and GOPC-L shift back to
lower values due to the increase in mechanical compliance to medium values, as compared
with that of GOPC. In addition, it is found that both patterned GOPCs could significantly
improve the SPL performance of the GOPC diaphragm headphone in the lower-frequency
range because the compliances of the former are higher than that of the latter. As shown in
Table 2, the compliances Cms of GOPC-L, GOPC-C, GOPC, and GOP were, respectively,
1.14, 0.88, 0.30, and 7.25 m/N. In the high-frequency range of larger than 3000 Hz, as shown
in Figure 3, all four diaphragms depict unstable SPL curves; however, GOPC-L shows a
relatively smoother SPL curve. Furthermore, the SPL performance of GOPC-L with higher
compliance is better than that of GOPC-C in the low-frequency range, because the larger
lateral vibration amplitude of the former contributes better to acoustic performance.
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Figure 5. Photographs for fabricated nanocomposite diaphragm drivers and headphones: (a) driver
GOPC-L, (b) driver GOPC-C, (c) line-patterned molds, (d) curve-patterned molds, and (e) headphone
GOPC-T1-WF3, (f) headphone GOPC-T2-WF3, (g) headphone GOPC-T3-WF3.
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3.3. Effect of Sonication Time

Figure 6 shows the SPL curves for GOP-WF3 diaphragm headphones fabricated by
various sonication times T1~T3 (1~10 min) applied in suspension. For lower sonication
time T1, the first resonant frequency of diaphragm GOP-T1 seemed to shift to a lower
frequency of 300 Hz; in addition, in the frequency range from 300 to 1050 Hz, GOP-T1 also
indicates a comparatively smoother curve. By the lower sonication time T1 applied in GO
suspension, the pristine 2D GO nanosheets were broken and their size was larger compared
with that by T3, and when these GO nanosheets combined as GOP they tended to have a
loose and interlocked stacking. On the other hand, for GOP-T3 with higher T3, there is a
tight packing of smaller GO nanosheets in the GOP with intrinsic small pores, indicated in
Figure 4a. Upon frequency sweeping by SPL measurement in the high-frequency range
around 10 kHz, those pores might lead to the oscillation of the SPL curve. However, this
common oscillation phenomenon is called mode splitting, occurring even in the commercial
diaphragm, which can be improved by an increased modulus of the diaphragm.
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Figure 6. SPL curves for GO paper diaphragm headphones fabricated by various sonication times
on suspension.

Figure 7 depicts the SPL curves for GOPC-WF3 diaphragm headphones fabricated
by various sonication times. The trend of the effect of sonication time on SPL for GOPC
is in reverse as compared with that for GOP. GOPC-T3 has a wider bandwidth at lower
frequencies and a smoother curve at higher frequencies than GOPC-T1. Fabricated by T3,
GOP is stacked by smaller-sized 2D GO nanosheets, and pores inside GOP are less tortuous
in the through-thickness direction. Upon fabricating from GOP to be GOPC, epoxy resin is
better at infiltrating GOP. This results in better interlayer bonding of GOPC-T3 as well as
better SPL performance. Figure 8 shows the four SPL curves for diaphragm headphones
fabricated at the lowest sonication time of T1 and WF3 by GOP, GOPC, and patterned
GOPC-L and GOPC-C. This figure can be compared with Figure 3 for the four headphones
fabricated by T3. For diaphragms fabricated by T1, GOP-T1-WF3 had a higher initial SPL
value of 71 dB at 100 Hz than that of GOP-T3-WF3. Either T1 or T3 may lead to different
diaphragms having the highest SPL higher than 100 dB, for GOPC-C-T1-WF3 occurring at
5500 Hz, while for GOPC-T3-WF3 occurring at 1500 Hz. In the high-frequency range, more
than 2 kHz, by T1 the oscillation extent of SPL curves of the diaphragms ranged between
70 to 100 dB, as shown in Figure 8, which was less significant than that by T3 in the range
of 65 to 100 dB, as shown in Figure 3.
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(GOPC-L) and curved patterns (GOPC-C).

3.4. Effect of Graphene Weight Fraction

Figure 9 illustrates the SPL curves for GOP diaphragm headphones fabricated by
various GO weight fractions in suspension. According to our studies, a higher weight
fraction of WF3 can lead to thicker GOP with higher compliance which results in the GOP-
T3-WF3 headphone, with a larger bandwidth around 500 Hz, a smoother curve around
10 kHz, and a higher maximum SPL value of 98 dB at 500 Hz, as compared with that by
WF2. In contrast, Figure 10 depicts a different trend of the effect of GO weight fraction in
suspension on SPL curves for GOPC diaphragm headphones as compared with Figure 9.
Among these three headphones, the lowest weight fraction of WF1 leads to GOPC-T3-WF1
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with the highest SPL value of 104 dB, and the best bandwidth at 1500 Hz. This is because a
lower weight fraction of WF1 can lead to thin GOP where epoxy resin is easier to infiltrate,
and this further results in better interlayer bonding of GOPC.

Materials 2024, 17, x FOR PEER REVIEW 10 of 12 
 

 

T3-WF3 headphone, with a larger bandwidth around 500 Hz, a smoother curve around 10 
kHz, and a higher maximum SPL value of 98 dB at 500 Hz, as compared with that by WF2. 
In contrast, Figure 10 depicts a different trend of the effect of GO weight fraction in sus-
pension on SPL curves for GOPC diaphragm headphones as compared with Figure 9. 
Among these three headphones, the lowest weight fraction of WF1 leads to GOPC-T3-
WF1 with the highest SPL value of 104 dB, and the best bandwidth at 1500 Hz. This is 
because a lower weight fraction of WF1 can lead to thin GOP where epoxy resin is easier 
to infiltrate, and this further results in better interlayer bonding of GOPC. 

100 1000 10000
20

30

40

50

60

70

80

90

100

110

GOP-T3-WF2

GOP-T3-WF3

So
un

d 
pr

es
su

re
 le

ve
l (

dB
)

Frequency (Hz)

 GOP-T3-WF2
 GOP-T3-WF3

 
Figure 9. SPL curves for GO paper diaphragm headphones fabricated by various GO weight frac-
tions in suspension. 

 
Figure 10. SPL curves for GOP/epoxy diaphragm headphones fabricated by various GO weight frac-
tions in suspension. 

Figure 9. SPL curves for GO paper diaphragm headphones fabricated by various GO weight fractions
in suspension.

Materials 2024, 17, x FOR PEER REVIEW 10 of 12 
 

 

T3-WF3 headphone, with a larger bandwidth around 500 Hz, a smoother curve around 10 
kHz, and a higher maximum SPL value of 98 dB at 500 Hz, as compared with that by WF2. 
In contrast, Figure 10 depicts a different trend of the effect of GO weight fraction in sus-
pension on SPL curves for GOPC diaphragm headphones as compared with Figure 9. 
Among these three headphones, the lowest weight fraction of WF1 leads to GOPC-T3-
WF1 with the highest SPL value of 104 dB, and the best bandwidth at 1500 Hz. This is 
because a lower weight fraction of WF1 can lead to thin GOP where epoxy resin is easier 
to infiltrate, and this further results in better interlayer bonding of GOPC. 

100 1000 10000
20

30

40

50

60

70

80

90

100

110

GOP-T3-WF2

GOP-T3-WF3

So
un

d 
pr

es
su

re
 le

ve
l (

dB
)

Frequency (Hz)

 GOP-T3-WF2
 GOP-T3-WF3

 
Figure 9. SPL curves for GO paper diaphragm headphones fabricated by various GO weight frac-
tions in suspension. 

 
Figure 10. SPL curves for GOP/epoxy diaphragm headphones fabricated by various GO weight frac-
tions in suspension. 

Figure 10. SPL curves for GOP/epoxy diaphragm headphones fabricated by various GO weight
fractions in suspension.

Based on the results in reference [12], the addition of graphene in the epoxy resin
would reduce its toughness. Therefore, it can be inferred that the toughness of GOPC is
higher than that of GOP, and the resonant frequency of GOPC is also higher than that
of GOP because the frequency is proportional to the toughness value. This is verified in
Figures 9 and 10, in which the first resonant frequencies of GOP-T3-WF3 and GOPC-T3-
WF3 were 450 Hz and 1500 Hz, respectively. Another result [12] showed that the damping
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ratio of GNPs-reinforced composites was higher than neat epoxy and proportional to the
weight fraction of GNP addition. According to the rule of mixtures, it is inferred that a
single graphene nanosheet has a higher damping ratio than the epoxy. However, due to
non-uniformity and pores inside the laminate GOP, it could be assumed that the damping
ratio of GOPC is higher than that of GOP in our work. A higher damping ratio could be
beneficial to reduce transient distortion; in other words, the headphone could perform a
smoother SPL curve at middle to higher-frequency range because upon frequency sweeping
the vibration of the diaphragm could quickly reduce to its original position. This can be
proved in Figure 3 that at around 4–5 kHz the SPL curves for GOP-T3 have a significant
drop; while the drop for GOPC-T3 is flatter. This drop probably can be better adjusted by
using a different designing headphone unit (case) as shown in Figure 1d.

4. Conclusions

In this paper, four kinds of diaphragm headphones are fabricated including GOP
(graphene oxide paper), GOPC (GOP/epoxy nanocomposites), GOPC-L (Line indented
GOPC), and GOPC-C (Curve indented GOPC) headphones, and the influencing factors on
their SPL performance are investigated. Several interesting findings are summarized as
follows. Results show that the GOP diaphragm headphone possessed a wider bandwidth
and a smoother SPL curve in a lower frequency range, a high initial SPL value of 71 dB at a
sweeping frequency of 100 Hz, and a good SPL value of 99 dB at the first resonant frequency
of 430 Hz. On the other hand, the GOPC diaphragm headphone has a comparative smoother
SPL curve in a higher frequency range, a lower initial SPL value of 30 dB at 100 Hz, and
the highest SPL value of 104 dB. The higher initial SPL value of GOP is caused by its high
compliance value. In addition, even without the addition of epoxy, a pure GOP diaphragm
can achieve a maximum SPL of 99 dB due to its high specific modulus. A higher damping
ratio and lower compliance of 0.3 m/N result in the GOP diaphragm with flatter SPL
curve at higher frequency. Both indented patterns on GOPC seem to improve initial SPL
values at the lowest frequency of 100 Hz due to the increase in compliance. In addition, the
patterns lead to smoother SPL curves for frequencies higher than 10 kHz because of the
more uniform microstructure.

Owing to the different fabrication features of GOP and GOPC, the effects of sonication
time and graphene weight fraction on their SPLs are in reverse. Both T1 and WF3 lead to
the GOP with better SPL because they all provide better interlocked 2D nanosheets for a
good diaphragm. On the other hand, both T3 and WF1 result in the GOPC with better
SPL because they provide a more uniform microstructure for the composite. To sum up,
GOP and GOPC diaphragms could be high potential candidates for headphones applied in
lower- and higher-frequency ranges, respectively. Therefore, GOP and GOPC diaphragms
may be synergistically combined into a high-performance two-way headphone.
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