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Abstract: X80 pipeline steel has played a vital role in oil and gas transportation in recent years.
However, hydrogen-related issues frequently lead to pipeline failures during service, resulting in
significant losses of properties and lives. Three heat treatment processes (furnace cooling (FC),
air cooling (AC), and water cooling (WC)) were carried out to investigate the effect of different
microstructures on hydrogen-induced cracking (HIC) susceptibility of X80 pipeline steel. The WC
sample demonstrated the highest hydrogen embrittlement index, registering at 21.9%, while the AC
and FC samples exhibited progressively lower values of 15.45% and 10.98%, respectively. Under
equivalent hydrogen charging durations, crack dimensions with a maximum length exceeding
30 µm in the WC sample generally exceed those in the FC sample and AC sample. The variation
is attributed to the difference in microstructures of the samples, predominantly lath bainite (LB)
in water-cooled samples, granular bainite (GB) in air-cooled samples, and ferrite/pearlite (F/P)
in FC samples. The research results demonstrate that the sensitivity of lath bainite (LB) to HIC is
significantly higher than that of pearlite, ferrite, and granular bainite (GB). The presence of a large
amount of martensite/austenite (M/A) constituents within bainite results in a multitude of hydrogen
trap sites. HIC cracks in bainite generally propagate along the profiles of M/A constituents, showing
both intergranular and transgranular cracking modes.

Keywords: X80 pipeline steel; heat treatment; slow strain rate tensile; hydrogen-induced cracking;
hydrogen permeation; hydrogen microprint technology

1. Introduction

Pipeline steel, being the paramount conduit for energy transportation, constitutes
70% to 80% of global energy transit [1–3]. Driven by the popularization of the concept
of a low-carbon economy, global use is expected to exceed 4.1 × 1012 m3 by 2022. Conse-
quently, heightened demands have been imposed on the performance standards of pipeline
steels [4].

As oil and gas pipelines are extensively installed, their operational contexts have
progressively intensified. The gradual augmentation in the hydrogen content of petroleum
and natural gas has precipitated a heightened susceptibility to corrosion in pipelines [5,6].
Hydrogen has the most significant impact as it significantly decreases the ductility and
fracture strength of the pipelines [7–9]. Hydrogen sources may exist both internally and
externally in the pipelines. Internal hydrogen may enter pipeline steel during smelting
or electroplating processes, while external hydrogen originates from hydrogen sulfide
(e.g., H2S) in natural gas and petroleum. Moreover, pipelines may also undergo corrosion
from moist environments such as air and soil, leading to hydrogen penetration into the
pipeline steel. Typically, these hydrogen species exist in the form of H+, H, H−, or as
solid solution clusters combined with dislocations within the pipelines [10–12]. Under the
combined action of stress and cathodic reactions inside the pipelines, atomic hydrogen
enters the interior of the metal and accumulates in defects such as dislocations and lattice
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imperfections. This leads to the generation of significant internal pressure at the defect
sites, causing the continuous merging and expansion of microcracks. Ultimately, this
results in the occurrence of hydrogen-induced cracking (HIC) and pipeline rupture [13–15].
Accidents caused by HIC have occurred both domestically and internationally. According
to statistics from the UK, approximately 90% of failures in 132 decommissioned pressure
vessels in 1965 were attributed to HIC. Despite decades of research by scholars worldwide,
there is still ongoing controversy in the academic community regarding the mechanisms
and influencing factors of HIC.

The HIC performance of pipeline steels is affected by various factors. Generally, these
factors can be categorized into environmental factors (such as temperature, pH value,
and hydrogen partial pressure) and material factors (including chemical composition,
microstructure, and inclusions) [16]. Due to different service conditions and the interactions
among these factors, the mechanisms of HIC in pipeline steel become more complex.
Conversely, certain scholars posit that the localized mechanical properties of the material
can impact its comprehensive physicochemical characteristics [17]. Zhan [18] observed that
the longitudinal rolling banding induces extensive crack deflection within the material,
particularly noticeable during the initial stages of crack initiation. Currently, material
factors, especially microstructure, are one of the key research focuses by scholars both
domestically and internationally, as they have a significant impact on hydrogen diffusion
behavior and HIC behavior in pipeline steel. Amin [19] and Beidokhti [20] found that in
welded X65 and X70 pipeline steels, acicular ferrite (AF) exhibits robust resistance against
HIC. This is attributed to its effectiveness as a reversible H-capturing site, contributing
to reducing the occurrence of HIC in the pipeline steels. On the other hand, Arafin and
colleagues [21] studied X80 and X100 pipeline steels in a high +pH carbonate-bicarbonate
environment and discovered that under high cathodic potentials, the LB structure is more
prone to HIC compared to ferrite/GB structures. Furthermore, Li [22] demonstrated
through research that pipeline steels with AF as their microstructure exhibit superior
resistance to HIC, whereas those with LB and GB structures demonstrate lower resistance
to HIC. Compared to ferrite, the bainitic structure demonstrates higher structural strength
but lower resistance to HIC. Finally, research conducted by Anijdan and others suggests [23]
that an increase in pearlite content and a decrease in ferrite content significantly enhance
the sensitivity of X65 pipeline steel to HIC.

X80 pipeline steel continues to be the predominant choice for oil and gas pipelines [24–26].
However, during the transport of oil and natural gas, X80 pipeline steel is exposed to a
humid H2S environment, facilitating the occurrence of HIC in the pipeline steel. Therefore,
understanding the mechanism and influencing factors of HIC is paramount. It is necessary
to study the mechanism of HIC occurrence and its influencing factors. To explore the HIC
performance of different microstructures in pipeline steel, it is possible to achieve various
X80 microstructures. Zhang [27] obtained X80 pipeline steel with excellent ferrite/bainite
duplex microstructure by accelerated cooling between critical intervals. Aydin [28] used
friction stir welding for heat treatment of X80 pipeline steels and found that the refinement
of the bainite microstructure would increase the strength. Although these studies have
obtained relatively high-performance pipeline steel microstructures through processing
methods, they have not provided detailed explanations regarding hydrogen diffusion and
HIC behavior in different microstructures.

To achieve diverse microstructures, heat treatment is frequently deemed the most eco-
nomically viable method in industrial production owing to its straightforward processing
approach. Consequently, employing X80 pipeline steel as the experimental material, this
paper calculated appropriate heat treatment parameters to yield various microstructure
types through three distinct heat treatment procedures. Using SSRT, HP, hydrogen-charging
cracking, and other test means, the hydrogen contents of different microstructures were
characterized through the HMT to study the effect of different microstructures on the
sensitivity to HIC in the pipeline steel so as to provide theoretical bases for the corrosion
protection of X80 pipeline steels at the present stage of application. The aforementioned
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research will enhance our understanding of the varied microstructural configurations of
pipeline steel under the influence of hydrogen, disparities in mechanical properties, and the
investigation of HIC susceptibility. In practical heat treatment applications, the utilization
of heat treatment techniques can enhance the mechanical properties of X80 pipeline steel.
For the current stage of X80 pipeline steel anti-corrosion provides a theoretical basis and
implementation direction.

2. Materials and Methods
2.1. Materials

The commercial X80 pipeline steel produced by Shanghai Baosteel Group was used
in this study. X80 pipeline steels with a plate thickness of 18.4 mm were tested in this
investigation. According to the production standards of Shanghai Baosteel, the composition
of this material is detailed in Table 1.

Table 1. The chemical composition of the tested materials (wt. %).

C S Mn Si Cu Nb Cr Ni P Ti Fe

0.048 0.003 1.559 0.208 0.182 0.041 0.044 0.250 0.025 0.017 Balance

2.2. Test Methods
2.2.1. Heat Treatment

To ensure that each test sampling for succedent SSRT tests and microstructure analysis
is centered, six equally-sized samples were cut from the same X80 pipeline steel. Two
samples were prepared for each heat treatment group, and the sample dimensions were
50 mm × 20 mm × 10 mm. Before conducting the heat treatment experiment, the thermal
processing parameters were initially established. The Continuous Cooling Transformation
(CCT) curve for X80 pipeline steel was calculated by JMatPro 7.0 As depicted in Figure 1,
under this composition, the Ac3 (critical transformation temperature) for X80 pipeline steel
is 883.7 ◦C. To ensure the quenching temperature falls within the single-phase austenite
region and to achieve uniform austenite with appropriately sized grains, the quenching
heating temperature is typically set above Ac3. Additionally, based on practical experience,
the quenching temperature is appropriately elevated to 970 ◦C. The holding time also has a
certain influence on the grain structure. The holding time is generally determined using
empirical Formula (1):

t = a × K × D, (1)

where t represents the holding time in minutes, a denotes the heating coefficient in minutes
per millimeter, taken as 1.3, K represents the furnace loading correction factor, set at 2.2,
and D signifies the effective thickness or diameter, which is 20 mm. The calculation yields
t = 57.20 min; hence, the chosen holding time is 1 h.
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The precut samples were uniformly heated in a resistance furnace to 970 ◦C and
held for 60 min. Subsequently, the samples underwent cooling via three different cooling
methods: furnace cooling (FC), air cooling (AC), and water cooling (WC), as illustrated in
the thermal processing diagram in Figure 2.
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Figure 2. Heat treatment process.

2.2.2. Microstructure Observation and Hardness Test

Subsequent to heat treatment, further analysis was conducted on the three sam-
ple groups. The metallographic specimens underwent polishing using silicon carbide
emery papers (180–2000 grit). Subsequently, they were etched with 4% nital for 6 s, fol-
lowed by rinsing the sample surface with anhydrous ethanol and drying using a hairdryer.
Microstructural observations were conducted utilizing the Zeiss Gemini SEM 300 (Jena,
Germany) with 15 kV. Simultaneously, three photomicrographs were captured from each
specimen group, and the grain size was quantified with Image Pro. Hardness distributions
were assessed employing the HV-1000 micro-Vickers hardness tester (Laizhou Huayin,
Laizhou, China), with measurements taken at 0.2 mm intervals between each test point,
applying a test load of 1.96 N for 15 s.

2.2.3. Slow Strain Rate Tensile Test with Pre-Charged Hydrogen

The central portions of the three groups of heat-treated samples were cut using wire
cutting to fabricate SSRT samples. The SSRT test was conducted using specimen sizes
conforming to the GB/T 228.1-2010 standard and under the developed actual test condi-
tions, as depicted in Figure 3, with a thickness of 2 mm. Initially, the hydrogen pre-charged
areas of the tension samples (indicated in blue in Figure 3) were polished smoothly using
abrasive paper. Subsequently, the non-hydrogen-charged areas were sealed with silicone
gel and left to dry. The pre-charge of the samples was conducted using the Corrtest CS2350
(Wuhan, China) electrochemical workstation, applying a hydrogen charging current density
of 50 mA/cm2 for 4 h. The hydrogen charging solution comprised of 0.5 mol/L H2SO4 and
0.5 g/L thiourea. After hydrogen charging, the silicone gel and conducting wires on the
sample surface were immediately removed, followed by a thorough cleaning process. SSRT
tests were conducted with an elongation rate of 0.0066 mm/min using the LETRY 50 kN
microcomputer-controlled slow strain rate corrosion testing machine L100-09 (Xi’an Letry,
Xi’an China). Additionally, each test group included an uncharged sample for contrast in
the SSRT test.
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Following the completion of the experiments, observation and analysis were con-
ducted on the tensile curves and the fracture surfaces. The fracture surface of the SSRT
tensile samples was observed using the Zeiss Gemini SEM 300 field emission scanning
electron microscope with 15 kV. Utilizing the obtained tensile curves, the hydrogen em-
brittlement index was computed, serving as an indicator of HIC sensitivity. The hydrogen
embrittlement index IZ can be calculated using the following formula:

IZ =
Z0 − ZB

Z0
, (2)

where IZ is the hydrogen embrittlement index, Z0 is the fracture shrinkage of the air-drawn
sample, and ZB is the post-breakage shrinkage of the sample in the pre-charged hydrogen.

2.2.4. Hydrogen Permeation Test

Firstly, three sets of square-shaped samples measuring 20 mm × 20 mm × 1 mm were
prepared using wire cutting. Both sides of the samples were polished using abrasive paper
and subsequently buffed. They were then cleaned thoroughly with anhydrous ethanol and
dried with compressed air. The samples underwent unilateral nickel plating using constant
current polarization. The solution of nickel plating consisted of 240 g/L NiSO4, 45 g/L
NiCl2, and 40 g/L H3BO3. For the hydrogen permeation test, a Devanathan–Stachurski
double electrolytic cell setup (as depicted in Figure 4) was employed. The saturated calomel
electrode served as the reference electrode (RE), while the platinum electrode functioned
as the counter electrode (CE). The Devanathan–Stachurski test was conducted using the
Wuhan Corrtest CS2350 electrochemical workstation for dual constant measurements.
The cathodic hydrogen charging side’s solution comprised 0.5 mol/L H2SO4 and 0.5 g/L
thiourea, whereas the anodic hydrogen evolution (nickel-plated side) solution consisted
of 0.2 mol/L NaOH. Both electrolytic cells shared a single sample. On one side of the
electrolytic cell, hydrogen atoms were generated through the reaction H+ + e− → H, while
on the other side, the oxidation of hydrogen diffused into the sample occurred through
the reaction H → H+ + e−, generating an oxidation current. This process produced a
curve of oxidation current over time, known as the hydrogen permeation curve. At the
beginning of the experiment, NaOH solution was injected into the anodic side to facilitate
hydrogen evolution. Once the background current density decreased to a specific value
(<3 × 10−6 A/cm2), H2SO4 solution was introduced into the cathodic side. As the reaction
progressed, the diffusion of hydrogen atoms in the sample reached a steady state, and the
oxidation current remained stable for a period before the power supply was turned off.
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Through two cycles of experimentation, various hydrogen permeation parameters for the
sample were determined based on the oxidation current.

Materials 2024, 17, x FOR PEER REVIEW 6 of 18 
 

 

Stachurski double electrolytic cell setup (as depicted in Figure 4) was employed. The sat-
urated calomel electrode served as the reference electrode (RE), while the platinum elec-
trode functioned as the counter electrode (CE). The Devanathan–Stachurski test was con-
ducted using the Wuhan Corrtest CS2350 electrochemical workstation for dual constant 
measurements. The cathodic hydrogen charging side’s solution comprised 0.5 mol/L 
H2SO4 and 0.5 g/L thiourea, whereas the anodic hydrogen evolution (nickel-plated side) 
solution consisted of 0.2 mol/L NaOH. Both electrolytic cells shared a single sample. On 
one side of the electrolytic cell, hydrogen atoms were generated through the reaction H+ + 
e− → H, while on the other side, the oxidation of hydrogen diffused into the sample oc-
curred through the reaction H → H+ + e−, generating an oxidation current. This process 
produced a curve of oxidation current over time, known as the hydrogen permeation 
curve. At the beginning of the experiment, NaOH solution was injected into the anodic 
side to facilitate hydrogen evolution. Once the background current density decreased to 
a specific value (<3 × 10−6 A/cm2), H2SO4 solution was introduced into the cathodic side. As 
the reaction progressed, the diffusion of hydrogen atoms in the sample reached a steady 
state, and the oxidation current remained stable for a period before the power supply was 
turned off. Through two cycles of experimentation, various hydrogen permeation param-
eters for the sample were determined based on the oxidation current. 

 
Figure 4. Hydrogen permeation test setup diagram. 

Based on the obtained curves, the parameters such as hydrogen diffusion flux (J∞), 
effective hydrogen diffusion coefficient (Deff), apparent hydrogen concentration (C0), and 
hydrogen trap density (NT) can be obtained by following Formulas (3)–(6): 

The relationship between the saturated anode currents I∞ and the hydrogen diffusion 
flux J∞ [29] is as follows: 

IJ  
FA

∞
∞ = , (3) 

where I∞ is the saturated anode current, A is the hydrogen-filled area of the sample, and F 
is Faraday’s constant. 

The effective diffusion coefficient Deff for hydrogen can be calculated by the following 
Formula [30]: 

2

eff
L6

dD
t

= , (4) 

where d is the sample thickness; tL is the time corresponding to the lag time It = 0.63 I∞. 

Figure 4. Hydrogen permeation test setup diagram.

Based on the obtained curves, the parameters such as hydrogen diffusion flux (J∞),
effective hydrogen diffusion coefficient (Deff), apparent hydrogen concentration (C0), and
hydrogen trap density (NT) can be obtained by following Formulas (3)–(6):

The relationship between the saturated anode currents I∞ and the hydrogen diffusion
flux J∞ [29] is as follows:

J∞ =
I∞

FA
, (3)

where I∞ is the saturated anode current, A is the hydrogen-filled area of the sample, and F
is Faraday’s constant.

The effective diffusion coefficient Deff for hydrogen can be calculated by the following
formula [30]:

Deff =
d2

6tL
, (4)

where d is the sample thickness; tL is the time corresponding to the lag time It = 0.63 I∞.
The hydrogen concentration C0 at the cathode side can be estimated by the following

formula [31]:

C0 =
J∞ × d

Deff
, (5)

The hydrogen trap density NT can be estimated by the following formula:

NT =
C0

3
(

DL

Deff
− 1) (6)

where NT is the number of hydrogen traps per unit volume; DL is the diffusion coefficient
of the lattice, which is usually chosen as an alternative to the diffusion coefficient of α-Fe,
DL = 1.28 × 10−4 cm2/s [32].

2.2.5. Hydrogenation Cracking Test

The samples used for electrochemical hydrogen charging cracking tests were similarly
prepared by wire cutting into three sets, each with surface dimensions of 20 mm × 20 mm
and a thickness of 1 mm. Prior to hydrogen charging, the sample surfaces were polished
and buffed, exposing one side to the solution while the remaining sides were sealed with
silicone gel. The hydrogen charging setup is depicted in Figure 5. A solution of 0.5 mol/L
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H2SO4 was employed for hydrogen charging, supplemented with 0.5 g/L of thiourea
as a poison suppressor. The hydrogen charging was conducted at a current density of
100 mA/cm2 for a duration of 12 h. Following hydrogen charging, the samples were rinsed
with distilled water and alcohol and subsequently subjected to corrosion using a 4 pct nital
solution to observe their surface morphology.
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2.2.6. Hydrogen Microprint Technology

The HMT is a method to visualize the diffusion path of hydrogen within a material.
The samples used in this experiment match the size of the hydrogen-charged fracture
samples. Before the experiment, the samples were polished, hydrogenated on one side,
and the other side was corroded by a 4 pct nital to reveal the microstructure morphology.
Half of the Devanathan–Stachurski double electrolytic cell setup was employed as the
hydrogenation device. The experimental devices and procedures are depicted in Figure 6.
The Figure 6 shows the fixation of the sample and hydrogenation on the uncorroded side.
The solution for hydrogen charging was a 0.5 mol/L H2SO4 solution with the addition of
0.5 g/L thiourea as a poison suppressor. To ensure sufficient hydrogen in the samples, the
hydrogen charging current density was set at 100 mA/cm2 for a duration time of 30 min.
After hydrogenation, the samples were quickly rinsed with distilled water and alcohol,
dried, and transferred to a darkroom for the HMT. The corroded side was coated with a
nuclear emulsion (250 g/L AgBr powder, 100 g/L NaNO2), heated to 70 ◦C in a water bath
for 30 min, placed in a cleaning solution (100 g/L NaNO2, 100 g/L Na2S2O3) for 5 min
to dissolve the remaining unreacted Ag+, then subjected to ultrasonic cleaning in alcohol,
dried, and observed under a scanning electron microscope for the distribution of white
Ag particles. Throughout the experiment, the reaction Ag+ + H = Ag+ H+ occurred. It can
be observed under the SEM that the white particles are silver particles generated by the
reduction action of Ag+ and H+. In other words, the white particles correspond exactly
to the positions where hydrogen is captured in the microstructure. Additionally, AgBr is
sparingly soluble and requires a suitable amount of gelatin to fix it.
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obtained after air cooling is ferrite and GB. The microstructure with water cooling is 
mostly LB with a small amount of GB, respectively. 

Figure 6. Schematic diagram and setup of the hydrogen microprint technology test. ((i) hydrogen
charging; (ii) heating; (iii) display hydrogen).

3. Results and Discussion
3.1. Microstructures and Hardness

The microstructures of X80 pipeline steel samples under three different cooling proce-
dures (FC, AC, and WC) are shown in Figure 7. The microstructure obtained after furnace
cooling is mainly ferrite and a small amount of pearlite, while the microstructure obtained
after air cooling is ferrite and GB. The microstructure with water cooling is mostly LB with
a small amount of GB, respectively.
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Figure 7. Microstructures of samples under different heat treatments. (a) furnace cooling; (b) air
cooling; (c) water cooling.

The grain sizes in all three metallographic photographs taken from each specimen
group were summarized and quantified, revealing approximately 90 grains in each group,
as depicted in Figure 8. It was observed that after undergoing the same holding temperature
and holding time, the grain sizes were in the range of 5~11 µm for the FC samples, 5~10 µm
for the AC samples, and 4~9 µm for the WC samples. The average grain sizes were 9.2 µm
for the FC samples, 8.7 µm for the AC samples, and 8.6 µm for the WC samples. Although
the equivalent grain sizes were approximately close, there were still variations in the
microstructure types.
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Figure 8. Statistical grain size for different microstructures. (a) furnace cooling; (b) air cooling;
(c) water cooling.

The average hardness values of the samples obtained through different cooling meth-
ods are depicted in Figure 9. It can be observed that the hardness value of the samples
after FC is the lowest, while after WC, it reaches the highest value of 287.52 HV. This
hardness variation is primarily attributed to the differences in microstructures. Generally,
in alloy steel, the hardness levels of various microstructures follow the sequence of ferrite <
pearlite < GB < LB [10]. Hence, the hardness ranking of the samples after heat treatment is
FC < AC < WC. Generally, materials with high hardness exhibit great sensitivity to HIC.
This is attributed to the high dislocation density and complex structure present in these
materials [13].
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Figure 10. (a) Stress–strain curves of heat-treated samples before and after pre-charged hydrogen; 
(b) tensile property data and IZ of heat-treated samples. 

Figure 11 shows the macroscopic morphology of the tensile fracture surfaces of heat-
treated SSRT samples after pre-charged hydrogen. The fracture surface of the tensile sam-
ple can be divided into three regions: the central core, the transitional subsurface, and the 
outermost surface layer. It can also be observed that the area of the central region of the 
fracture surface gradually increases, resulting in a less noticeable necking phenomenon in 
the sample. This also indicates that the WC sample becomes more brittle after hydrogen 
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3.2. SSRT with Pre-Charged Hydrogen

According to the SSRT results of the three heat-treated samples shown in Figure 10
a, both the tensile strength and elongation of the materials decreased to varying degrees
after hydrogen pre-charging for all three heat-treated samples. Although the loss in tensile
strength is not significant, the reduction in elongation is relatively more severe. After
hydrogen charging, compared to the conditions without pre-charged hydrogen, The tensile
strength loss rates (Rmloss) of the samples cooled in a furnace, air, and water are 0.86%,
2.70%, and 3.30%, respectively, while the elongation loss rates (Aloss) are 3.23%, 5.24%, and
12.70%, respectively. The hydrogen embrittlement indexes IZ under different heat treatment
conditions were calculated using Formula (2), as shown in Figure 10b. It was observed that
the hydrogen embrittlement index of the FC sample was the smallest at 10.98%, while the
IZ of the WC sample was the largest, reaching 21.19%. This indicates that under the three
different cooling conditions, the material’s sensitivity to HIC follows the sequence of FC,
AC, and WC in increasing order.
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Figure 10. (a) Stress–strain curves of heat-treated samples before and after pre-charged hydrogen; 
(b) tensile property data and IZ of heat-treated samples. 

Figure 11 shows the macroscopic morphology of the tensile fracture surfaces of heat-
treated SSRT samples after pre-charged hydrogen. The fracture surface of the tensile sam-
ple can be divided into three regions: the central core, the transitional subsurface, and the 
outermost surface layer. It can also be observed that the area of the central region of the 
fracture surface gradually increases, resulting in a less noticeable necking phenomenon in 
the sample. This also indicates that the WC sample becomes more brittle after hydrogen 

Figure 10. (a) Stress–strain curves of heat-treated samples before and after pre-charged hydrogen;
(b) tensile property data and IZ of heat-treated samples.

Figure 11 shows the macroscopic morphology of the tensile fracture surfaces of heat-
treated SSRT samples after pre-charged hydrogen. The fracture surface of the tensile sample
can be divided into three regions: the central core, the transitional subsurface, and the
outermost surface layer. It can also be observed that the area of the central region of the
fracture surface gradually increases, resulting in a less noticeable necking phenomenon in
the sample. This also indicates that the WC sample becomes more brittle after hydrogen
charging. Figures 12 and 13 are magnified images of the subsurface and central area. The
observations reveal that in the FC sample, there are numerous large and deep dimples,
whereas in the AC sample, the number of dimples decreases, and their size and depth
become smaller, accompanied by a small amount of microcracks. In the WC sample, apart
from a few dimples, there are more microcracks, and quasi-cleavage (QC) patterns can also
be observed. By combining it with Figure 10, we can conclude that the plasticity of the
material is gradually deteriorating. As the heat-treated sample transitions from FC to WC,
the fracture mode of the tensile fracture surface gradually changes from mainly ductile
fracture with microvoid coalescence (MVC) to QC fracture mode. Based on this, we can
conclude that HIC is more likely to occur in materials of LB.
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Figure 13. Fracture morphology of the central area of the hydrogen-charged SSRT samples. (a) furnace
cooling; (b) air cooling; (c) water cooling.

3.3. Hydrogen Permeation

HP in the material consists of two stages: the hydrogen charging phase and the
hydrogen discharging phase. During the hydrogen charging phase, polarization reactions
occur at the cathode side, generating hydrogen atoms on the material surface, which then
diffuse into the material’s interior part. Some of these hydrogen atoms are captured by
hydrogen traps within the material and retained inside, while others remain free within the
internal structure. During the hydrogen discharging phase, hydrogen within the material
diffuses to the anode side surface. The free hydrogen will escape from the material’s
interior, but not all hydrogen within the material can completely diffuse out. Hydrogen
traps can be classified into reversible and irreversible types, where hydrogen trapped
within irreversible traps cannot diffuse out from the material during the escaping phase
and accumulates in defects such as dislocations and lattice imperfections. This leads to
the generation of significant internal pressure at the defect sites, ultimately resulting in the
continuous merging and propagation of microcracks, causing HIC in the material.

The X80 pipeline steel, after heat treatment, underwent cyclic hydrogen charging and
discharging tests involving two rounds of hydrogen permeation experiments. The resulting
cyclic hydrogen charging and discharging curves at the anode side are shown in Figure 14,
and relevant hydrogen permeation kinetic data were calculated using Formulas (3) to (6),
detailed in Table 2. It is observed that regardless of the cooling method used, the first
cycle’s hydrogen diffusion flux J∞ and current density peak were higher than those in the
second cycle. The hydrogen diffusion flux J∞ was highest in the WC sample and lowest
in the AC one. The hydrogen diffusion coefficients Deff from largest to smallest were in
the order of FC, AC, and WC, while the sequence for the hydrogen concentration C0 at the
cathode side was opposite. In the first cycle, hydrogen atoms can be captured by reversible
and irreversible hydrogen traps; hence, in the second cycle, hydrogen atoms can only be
captured by reversible hydrogen traps. The calculation results from Table 2 reveal that the
density of irreversible hydrogen traps (Nir) within the material (Table 3) is significantly
higher than that of reversible hydrogen traps. All three materials contain a significant
amount of hydrogen traps; the WC sample dominated by LB has the highest density, while
the one dominated by ferrite/pearlite has the lowest.
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Figure 14. Twice current density curves of heat-treated samples. 
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Table 2. Hydrogen permeation kinetic parameters of X80 heat-treated samples.

HP Parameters
Primary Hydrogen Permeation Secondary Hydrogen Permeation

FC AC WC FC AC WC

J∞/mol·cm−2·s−1 5.617 × 10−10 3.441 × 10−10 7.244 × 10−10 4.487 × 10−10 2.954 × 10−10 5.804 × 10−10

Deff/cm-2·s−1 2.863 × 10−6 7.466 × 10−7 5.790 × 10−7 4.615 × 10−6 1.483 × 10−6 1.053 × 10−6

C0/mol·cm−3 1.570 × 10−5 3.687 × 10−5 1.001 × 10−4 7.779 × 10−6 1.594 × 10−5 4.411 × 10−5

NT/mol·cm−3 2.287 × 10−4 2.095 × 10−3 7.342 × 10−3 6.932 × 10−5 4.533 × 10−4 1.773 × 10−3

Table 3. Number of hydrogen trapping sites of X80 pipeline steel after heat treatment.

Parameters FC AC WC

NT/mol·cm−3 2.287 × 10−4 2.095 × 10−3 7.342 × 10−3

Nr/mol·cm−3 6.932 × 10−5 4.533 × 10−4 1.773 × 10−3

Nir/mol·cm−3 1.594 × 10−4 1.642 × 10−3 5.569 × 10−3

The experimental solutions selected for this experiment were consistent and conducted
at normal temperature and pressure, excluding the influence of environmental factors on
hydrogen permeation tests. Since all the heat-treated samples were cut from the same base
metal plate, the types, chemical compositions, and distribution of non-metallic inclusions
and precipitates in all the samples are approximately the same. Therefore, the microstruc-
ture is the main factor considered affecting the test results in research. According to the
above results, the WC samples have the highest hydrogen diffusion flux J∞, with values of
7.244 × 10−10 mol·cm−2·s−1 and 5.804 × 10−10 mol·cm−2·s−1, while the AC samples have
the lowest J∞, with values of 5.617 × 10−10 mol·cm−2·s−1 and 4.487 × 10−10 mol·cm−2·s−1.
This means that the WC samples have the highest diffusion of hydrogen atoms, while the
AC samples have the least diffusion. However, these experimental results do not align with
the actual sensitivity to HIC, and relevant literature also suggests that the diffusion hydro-
gen content is not the main factor affecting the HIC resistance [33]. Generally, the lower
the hydrogen diffusion coefficient Deff, the higher the cathodic hydrogen concentration C0,
indicating a greater HIC sensitivity in the materials [34]. Among the three sets of samples,
the WC sample had the lowest Deff, highest C0, and NT, and both the reversible hydrogen
trap density Nr and irreversible hydrogen trap density Nir were higher than those in the
FC and AC samples. This indicates that the WC sample had the highest hydrogen capture
efficiency. Conversely, the FC sample had the highest Deff, lowest C0 and NT, and the lowest
hydrogen capture efficiency. Despite the larger grain size of microstructures with fewer
grain boundaries in the FC sample compared to the AC and WC samples, a high diffusion
efficiency is observed. Since grain boundaries either serve as reversible hydrogen traps
or behave as an efficient hydrogen diffusion path, fewer grain boundaries provide fewer
diffusion paths; thus, it is inferred that a combined microstructure of ferrite and pearlite
exhibits relatively low hydrogen trapping efficiency and excellent resistance to HIC with
lowest C0 and NT. Despite the larger grain size and fewer grain boundaries in the FC
samples compared to the AC and WC samples, indicating fewer diffusion channels, they
still exhibit the highest diffusion coefficient. This suggests that the ferrite and pearlite have
a low susceptibility to HIC. However, the WC sample consisted of LB and a small amount
of GB, containing a large number of bainite lath boundaries, which are efficient hydrogen
traps, effectively preventing hydrogen diffusion, consistent with its highest hydrogen trap
density results. The AC sample consisted of ferrite and GB, where the M/A constituents
within GB acted as strong hydrogen capture traps. However, due to the presence of ferrite
and the relatively few M/A constituents, distributed quite evenly, its HIC sensitivity was
slightly lower than that of the WC sample. The FC sample consisted of ferrite and a small
amount of pearlite. The hydrogen capture efficiency of these two types of structures is
inferior to bainite [22], hence its lowest HIC sensitivity.
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3.4. Hydrogenation Cracking and Hydrogen Microprint Technology

After a 12-hour hydrogen charging test, the FC sample showed no apparent cracks,
while the AC sample exhibited only a small number of minute cracks (Figure 15). However,
a sizable crack was observed on the WC sample. Figure 16 displays a magnified view
focused on the crack within the corresponding 1–4 sub-region depicted in Figure 15. In the
FC sample, the crack initiated at the ferrite/pearlite grain boundaries; some microcracks
were also found on the cementite lamellae inside the pearlite. For the AC sample, cracks
started to propagate within the microstructure through the M/A constituents. Meanwhile,
in the WC sample, crack propagation was most severe, extending along bainitic lath
boundaries and even showing transgranular and intergranular cracks. A notable disparity
exists in the size of cracks among the three specimens. Within the FC sample, cracks are
internal to the grains and exhibit a diminutive size, approximately 5 µm. The AC sample
displays cracks that are distinctly observable within the grains, maintaining an internal
presence, measuring approximately 15 µm. Conversely, in the WC sample, cracks are
notably larger, propagating either entirely through or along the grain boundaries, with
dimensions exceeding 30 µm.
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Figure 17 presents the images and energy spectrum analysis results of the three
samples using SEM after hydrogen charging for 30 min. It can be observed that the white
particles contain a significant amount of silver, which corresponds to the hydrogen-trapped
position. The energy spectrum analysis also indicates a small amount of Na and S, likely
due to residues in the experimental cleaning solution. In the FC sample, silver particles
mainly aggregated at the ferrite/pearlite grain boundaries and the interior of pearlite.
Conversely, in the AC sample, white Ag particles were primarily distributed around the
M/A constituents and grain boundaries. In the WC sample, silver particles predominantly
adhered to the laths of LB. The images indicate a progressive increase in the quantity of
silver particles among the three sample types.
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Ferrite, pearlite, and bainite serve as hydrogen traps in steel, with their efficiency
in capturing hydrogen increasing sequentially [19]. Pearlite consists of both ferrite and
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carbide phases, having higher strength than ferrite but also higher hardness and brittleness,
inducing its HIC sensitivity to be more pronounced. GB comprises the ferrite matrix and
M/A constituents, playing a crucial role in the nucleation and propagation of HIC cracks.
M/A constituents with high carbon content, high hardness, and a high density of disloca-
tions act as strong hydrogen capture traps, exhibiting robust hydrogen capture capabilities.
When the hydrogen concentration reaches a critical value, hydrogen accumulation leads
to stress concentration in areas with higher hardness, causing crack initiation and prop-
agation, typically along the interface of M/A constituents and ferrite matrix. For LB, its
lath boundaries demonstrate relatively high hydrogen capture efficiency. If the captured
hydrogen concentration surpasses the critical value, bainitic ferrite lath boundaries undergo
separation, resulting in HIC occurrences. The microstructure of the FC sample mainly
consists of ferrite and a small amount of pearlite, hence exhibiting better resistance to HIC.
The AC sample comprises ferrite and GB, where the presence of GB reduces the material’s
resistance to HIC. The microstructure of the WC sample includes LB and a small amount of
GB. As LB experiences a faster cooling rate and a heating temperature higher than AC1, lead-
ing to lesser carbide formation, increasing the difference in carbon concentration between
austenite and ferrite, raising internal stress, and subsequently enhancing the capability to
capture hydrogen atoms, thereby increasing the HIC sensitivity of the WC sample.

4. Conclusions

From the hardness values of samples and the results of SSRT tests, the performance of
heat-treated X80 pipeline steel samples in terms of HIC sensitivity follows the sequence:
FC < AC < WC. The FC sample exhibits a structure primarily composed of ferrite with a
small amount of pearlite, demonstrating better resistance to HIC sensitivity. In contrast,
the AC sample comprises ferrite and GB; the presence of GB marginally diminishes the ma-
terial’s resistance to HIC. Meanwhile, the WC sample consists of LB and a small amount of
GB, characterized by numerous bainitic lath boundaries, significantly enhancing hydrogen
atom capture but reducing its HIC resistance.

The kinetic parameters of hydrogen diffusion hold significant reference values in eval-
uating the HIC sensitivity of the samples. The WC sample exhibits the lowest Deff, highest
C0, and NT, while both reversible hydrogen trap density Nr and irreversible hydrogen trap
density Nir are higher compared to the FC and AC samples. This indicates that the WC
sample demonstrates the highest hydrogen capture efficiency.

HMT reveals that LB possesses more complex lath boundary structures, endowing
it with a stronger hydrogen capture capability. Observing the crack morphology, it is
evident that cracks tend to form at the lath boundaries where the dislocation density is
higher, favoring hydrogen atom capture and providing favorable sites for crack initiation
and propagation. The WC sample, with a higher dislocation density and more intricate
boundaries in its structure, exhibits the lowest resistance to HIC sensitivity.

This study solely characterized the total hydrogen content in three distinct microstruc-
tures using the HMT test. Subsequently, it is envisaged that the distribution of hydrogen
within the same microstructure under various states can be elucidated by HMT, enabling
the investigation of hydrogen diffusion paths and behaviors across diverse microstructures.
Moreover, the findings of this study are intended to be disseminated to the public.
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