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Abstract

:

Concrete-filled double steel tubes (CFDSTs) are a load-bearing structure of composite materials. By combining concrete and steel pipes in a nested structure, the performance of the column will be greatly improved. The performance of CFDSTs is closely related to their design. However, existing codes for CFDST design often focus on how to verify the reliability of a design, but specific design parameters cannot be directly provided. As a machine learning technique that can simultaneously learn multiple related tasks, multi-task learning (MTL) has great potential in the structural design of CFDSTs. Based on 227 uniaxial compression cases of CFDSTs collected from the literature, this paper utilized three multi-task models (multi-task Lasso, VSTG, and MLS-SVR) separately to provide multiple parameters for CFDST design. To evaluate the accuracy of models, four statistical indicators were adopted (R2, RMSE, RRMSE, and ρ). The experimental results indicated that there was a non-linear relationship among the parameters of CFDSTs. Nevertheless, MLS-SVR was still able to provide an accurate set of design parameters. The coefficient matrices of two linear models, multi-task Lasso and VSTG, revealed the potential connection among CFDST parameters. The latent-task matrix V in VSTG divided the prediction tasks of inner tube diameter, thickness, strength, and concrete strength into three groups. In addition, the limitations of this study and future work are also summarized. This paper provides new ideas for the design of CFDSTs and the study of related codes.
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1. Introduction


Incorporating metal components into concrete is a common approach to reinforce concrete columns [1], and concrete-filled double steel tubes (CFDSTs) have gained considerable traction in recent years. CFDSTs are a load-bearing structure produced by filling concrete between two steel tubes placed concentrically. The unique structure enables CFDST to achieve superior load-bearing capacity while being lighter in weight. Thus, CFDST is widely used in large-scale structures such as super high-rise buildings and highway bridges [2].



Load-bearing capacity [3,4], torsional behavior [2,5], bending resistance [6,7], blast resistance [8,9,10], and fire resistance [11,12] were assessed in previous studies, wherein CFDSTs with different designs (material combination or structural design) were subjected to various property trials. The experimental results showed that the design of CFDSTs has a significant impact on its properties.



As the most fundamental property of CFDSTs, the load-bearing capacity always needs to be considered. In terms of CFDST design, emphasizing on load-bearing capacity, although some international design codes already exist, such as Eurocode-4 (EC4) [13], ACI [14], and AISC [15], their reliability still remains questionable [16]. Lama et al. [17] used a non-linear finite element technique to analyze the axial compression capacity of CFDSTs made from a novel material combination. Comparing the above codes with the numerical results, it was found that EC4 and AISC were not suitable for this type of CFDSTs. Hassanein et al. [18] mentioned that the existing design codes of CFDSTs do not take the confinement effect of tubes into account. This is the reason why most models are too conservative in predicting the load-bearing capacity of CFDSTs. To avoid various constraints that make theoretical approaches more complex, machine learning techniques have been adopted, and they have achieved an accuracy far higher than EC4, ACI, and AISC [16]. In other studies, e.g., those of Tran and Kim [19], Wang et al. [4], and Chandramouli et al. [20], the prediction accuracy of the above models (EC4, ACI, and AISC) was also found to be inferior to the recently proposed methods.



However, the core idea of current studies on CFDST design is still to find a mapping from the design parameters to a certain property (e.g., load-bearing capacity) and then to find whether the design is reliable and can be verified via the prediction of this property. In a nutshell, the existing methods are more concerned about “how to verify whether a design is reliable” rather than “how to provide a reliable design directly”. Certainly, this is understandable, as the second issue is a more difficult problem involving multiple outputs.



Figure 1 shows the structure of a conventional CFDST. The main structural parameters include the diameters (D) and thicknesses (t) of the steel tubes, as well as column length (H). Among them, the length of the column is often constant in a specific project. Therefore, the design is usually focused on dimensions and properties of steel tubes, as well as the mechanical properties of concrete. Providing diverse guidance for CFDST design is simultaneously a challenge for the aforementioned methods.



As a branch of machine learning technique, multi-task learning (MTL) has been widely used in fields such as stellar spectra parameterization [21], disease cognitive scores [22], and short-term wind speed prediction [23]. By summarizing the potential correlations of multiple tasks, MTL has shown good performance in solving various multi-output problems. Therefore, using the MTL technique to guide the structural design of CFDSTs is a promising topic. In addition, using the non-linear finite element technique to verify the reliability of CFDST design is often complex. For slender structures and thin-walled structures, the accuracy requirements for modeling and solving vary at different scales [24,25]. The calculation strategy often determines whether the model can quickly converge and accurately predict with limited computational costs on an ordinary computer [26], especially for composite structures [27] like CFDSTs. With the guidance from MTL, the unnecessary trials and errors can be avoided.



From the perspective of load-bearing capacity, this research attempted to utilize three distinct MTL models for the design of CFDSTs. Based on 227 CFDST cases with circular cross-sections collected from previous literature, the MTL models were trained to provide a reliable set of design parameters. These parameters can serve as references to achieve the desired load-bearing performance. Furthermore, several statistical indicators were used to evaluate the reliability of the provided parameters.



The main content of this paper includes the following sections: Section 2 mainly introduces the models used and explains the model development process; Section 3 presents the hyper-parameter settings and experimental results; Section 4 discusses the findings from the results and lists the limitations of the experiment, as well as discussing future work; Section 5 summarizes the content and significance of this study.




2. Materials and Methods


2.1. Multi-Task Learning Models


In the supervised learning technique, a conventional model can only learn one task during the training phase. For complex problems, they are usually decomposed into several simple problems and then solved separately using single task learning (STL) models. Multi-task learning (MTL) is another kind of supervised learning technique that can achieve inductive transfer among multiple tasks. The information-sharing mechanism enables MTL to update the parameters of all tasks in a single data traversal. More importantly, this mechanism can enhance the generalization ability of each task [28].



The design guidance for CFDST requires a model to provide multiple parameters simultaneously. These output parameters are highly correlated, and each of them can correspond to a task in MTL. This characteristic leads to the compatibility between CFDST design and the MTL technique. This section summarizes the three MTL methods used in this study.



2.1.1. Multi-Task Lasso


Lasso regression is a classic linear regression model proposed by Tibshirani [29]. By introducing the L1 norm into the loss function of least squares regression, Lasso regression achieved a better generalization ability than conventional linear regression. The loss function of basic Lasso is given as follows:


    min  W     1  2 n       Y − X W    2 2  + λ    W   1   



(1)




where Y is the n-dimensional output vector; X is the matrix of input features; W is the coefficient vector of the linear model;      ·   1    is the L1 norm of the vector;      ·   2    is the L2 norm of the vector; and λ is the adjustment coefficient.



As the L1 regularization term      W   1    is introduced, sparsity constraint is imposed on the coefficient vector; thereby, the coefficients of unimportant input features will be set to 0. This characteristic also allows Lasso to be widely used in feature selection.



Multi-task Lasso is an extended version of Lasso. It was presented by Obozinski et al. [30] in the problem of multi-task feature selection. Multi-task Lasso assumes that multiple similar tasks have correlated feature selection. Introducing the L2,1 norm to replace the L1 norm in Lasso, this operation leads to information sharing among different tasks during model iteration. The loss function of multi-task Lasso is given as follows:


    min  W     1  2 n       Y − X W     F r o  2  + λ    W    2 , 1    



(2)




where vectors Y, X, and W become matrix form;      ·    F r o     is the Frobenius norm of matrix; and      ·    2 , 1     is the L2,1 norm of matrix. The mechanism of the L2,1 norm in MTL is detailed in the work of Liu et al. [31].




2.1.2. VSTG


Variable selection and task grouping (VSTG) is another MTL model developed based on linear regression [32]. In VSTG, there are two fundamental theories that need to be understood: low-rank hypothesis and structure approach. As prior knowledge, the low rank hypothesis assumes that the information required for multiple similar tasks is always redundant. For example, if two tasks are more related, their selection of input features may be more similar. Therefore, when all tasks iterate simultaneously, the matrix composed of hyper-parameters must be low rank. In MTL, low-rank constraints can encourage models to develop towards low-rank structures. The structure approach means the association between multiple tasks can be represented by a certain structure. Group structure is the most commonly used type, and it is also adopted by VSTG. In VSTG, similar tasks are considered to belong to the same group. Tasks within the same group share more information during the model development phase.



VSTG decomposes the coefficient matrix, W, into two matrices, U and V. Moreover, latent bases are introduced for learning and describing the overlapping structures among different tasks. The matrix decomposition is shown in Figure 2, where the dark cells represent non-zero values, and light cells represent zero values.



The matrix U is called the variable-latent matrix, and it records the principal components of input features after the dimensionality reduction operation. The matrix V is called the latent-task matrix, and it records the group structure of tasks. For example, the column vectors v1 and v2 are similar in Figure 2, indicating that Task 1 and Task 2 are highly correlated. Thus, these two tasks should belong to the same group. In the training phase, two matrices U and V are updated via ADMM (alternating direction method of multipliers). The loss function of VSTG is given as follows:


        min   U , V       ∑  i = 1  T    1  2  N i           y i   →  −  X i  U    v i   →     2 2          s . t      U   1  ≤  φ 1  ,      U    1 ,   ∞   ≤  φ 2  ,           ∑  i = 1  T              v i   →     k  s p      2  ≤ θ        



(3)




where      v i   →    is the i-th column vector in matrix V; φ1, φ2, and θ are the parameters of low-rank constraints;      ·    1 , ∞     is the L1,∞ norm; and      ·   k  s p     represents the k-support norm.



The constraints in Equation (3) can also exist in the form of regularization terms. Thus, the problem can be transformed into a regularized objective function, as follows:


    ∑  i = 1  T    1  2  N i           y i   →  −  X i  U    v i   →     2 2  +  λ 1     U   1  +  λ 2     U    1 , ∞   + μ     ∑  i = 1  T              v i   →     k  s p      2     



(4)




where λ1, λ2, and μ are regularization parameters.




2.1.3. MLS-SVR


SVR (support vector regression) is a concise and high-performance regression model [33,34]. With the maximum margin mechanism, SVR aims to find the best fitting position for linear models in the feature space. The minority vectors that determine the position of margins are called support vectors. Although SVR uses linear models for regression, it can also be applied to some complex nonlinear problems by adopting soft margin and kernel methods [35,36,37,38,39].



MLS-SVR (multi-output least-squares SVR) is an MTL method developed based on SVR [40]. Unlike the idea of matrix decomposition in VSTG, MLS-SVR believes that the coefficient vectors of different tasks can evolve from an initial coefficient vector. Rewriting a coefficient vector      w p   →    into      w o   →  +    u p   →   , the MTL version SVR is dedicated to learning the initial vector      w o   →    and evolved component      u p   →    from the dataset. Figure 3 shows the illustration of MLS-SVR’s intuition.



In MLS-SVR, the traditional SVR optimization problem has been rewritten into a matrix version, as follows:


        min      w →   o  ∈  R p  , Λ ∈  R p  ,  b →  ∈  R m       1 2     w →   o T     w →   o  +  1 2   λ m  t r a c e (  Λ T  Λ ) + β  1 2  t r a c e (  Θ T  Θ )       s . t .   Y =  Ω T  W + r e p m a t (    b →   T  , N , 1 ) + Θ      



(5)




where      w o   →    represents the initial coefficient vector; W is the coefficient matrix, wherein elements are      w p   →   ;  Λ  is a matrix composed of      u p   →   ;  Θ  denotes a matrix composed of slack variables from each task;  Ω  is a matrix used to map input features to higher dimensional space;   b →   is the bias vector; p and m are the dimensions of inputs and outputs, respectively; N is the number of samples in training set; and λ and β are regularization parameters.





2.2. Database


The database used in this study comprises 227 instances of circular cross-section CFDSTs subjected to uniaxial compression [41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60]. These tests were conducted using uniaxial compression testing machines, with sensors installed on the specimens. The data generated from the experiments were automatically collected by the computer.



Table 1 summarizes the 9 parameters required for CFDST design in the database. These parameters are related to the strength of materials (concrete and steel tubes), tube dimensions, and CFDST load-bearing capacity. Additionally, statistical descriptions of the database are given in Table 2. The column length ranging from 230 to 3502 mm included CFDST cases from the laboratory scale to the site scale. In Figure 4, the scatter plot matrix of the database is displayed, and the correlation coefficients between variables are calculated. There, the three parameters, diameter of the outer steel tube, diameter of the inner steel tube, and axial compression capacity of the column were highly correlated. It is worth noting that both Do and Di were positively correlated with Nu. However, this makes sense, because a larger column usually means a higher strength.




2.3. Model Development


Because of various considerations such as materials and economy, the design of CFDSTs is often customized. In practice, a certain type of steel tube or concrete may be prioritized for use, or tubes with a specific dimension may have to be adopted due to special needs (e.g., outer diameter or self-weight of the column). Therefore, the experiments in this study only demonstrated the scenario of providing guidance on inner steel tube and concrete based on the selected outer steel tube.



The inputs and outputs are shown in Table 3. This section demonstrates the development process of the MTL models based on the example scenario. The similar development pattern can be transferred to other situations that have not been demonstrated.



Different magnitudes of variables may lead to inaccuracy for machine learning models. Especially for MTL, multiple tasks cannot be effectively trained if there is a significant difference in the units. Thus, all variables were normalized into [−10, 10]. As the values in the generally used normalization [−1, 1] are too small, [−10, 10] can enable the data-sensitive linear model to learn suitable coefficients successfully.



All samples were allocated to two datasets, namely, the training set (80%) and the testing set (20%) [61]. The training set was used for model development, while the model validation was conducted via a testing set. In supervised learning techniques, there is an assumption that samples and populations follow the same distribution. Therefore, the model development phase requires that the distributions of the training and testing sets are as similar as possible. This partitioning strategy that aims to obtain similar training and testing sets ensures the reliability of model evaluation provided in the testing phase. The distributions of two datasets are shown in Figure 5.



Figure 6 shows the entire model development process. Based on the training set, three kinds of MTL models were iterated separately. Subsequently, the testing set was input into these models, and several statistical indicators were adopted to analyze the accuracy of the results.



To evaluate the reliability of the provided parameters, 4 statistical indicators were introduced. Table 4 provides the definitions and expressions of these indicators. The R2 is generally used to measure the degree of correlation between measurements and predictions [62,63]; RMSE and RRMSE are two indicators used to characterize the error between measurements and predictions [64,65,66,67,68,69]; and ρ is an indicator that comprehensively considers correlation and error [70,71]. The larger the ρ value, the less accurate the model.





3. Results


By adjusting and testing, hyper-parameters of three MTL models were obtained separately. With the hyper-parameter settings given in Table 5, three MTL models completed iterations. For each MTL model, the same development process was repeated five times to mitigate errors caused by randomness. All the experimental results are provided in Appendix A.



However, the performance of the two linear models on the tasks fyi and fco was not satisfactory enough. Table 6 shows a set of results that was relatively good in experiments of multi-task Lasso (experiment 1), while Table 7 shows an acceptable set of results in VSTG experiments (experiment 1). Compared to strength tasks (fyi and fco), multi-task Lasso and VSTG seemed better at the predictions of dimension tasks (Di and ti). As shown in Table 6 and Table 7, the R2 values of strength tasks were at a low level whether on the training set or the testing set. For task fyi, the R2 was always less than 0.4, and that means the provided fyi was weakly correlated with the actual value. For task fco, two linear models seemed ineffective even on the training set.



Unlike the previous two models, MLS-SVR showed quite good performance in all tasks, and the average result of five experiments is displayed in Table 8. From the perspective of task Di, the RMSE and RRMSE values on the testing set were reduced by 40% compared to multi-task Lasso and VSTG. The RMSE and RRMSE of task ti also decreased by 20%. Moreover, all the ρ values were below 0.1.



Figure 7 displays the scatter plots of predictions provided by MLS-SVR (from experiment 4). Even if there were some outliers in the task ti (within [2, 4] and [5, 6]) and fco (within [40, 50]) tasks, the distribution of scattering points still showed the accuracy of MLS-SVR in providing parameters for CFDST design. In Figure 8 and Figure 9, the performances of all MTL models in task fyi and fco are compared. It can be noticed that the predictions of the two linear models were conservative in these two unsatisfactory tasks. In other words, the predicted values of two linear models showed the same trend as the actual values increased or decreased, but the degree was not significant.




4. Discussion


This section mainly clarifies the problems presented in Section 3, and their causes are also elucidated. Moreover, the feature matrices learned by two linear models are analyzed. Additionally, the limitations and future work are listed at the end of this section.



4.1. Nonlinearity


In the tasks of fyi and fco, linear models were unable to effectively learn the task. Overfitting occurred in both multi-task Lasso and VSTG. Based on this fact, there were two possible causes:




	
Cause A: The provided input features did not contain the key information related to the strength tasks. For task fyi and fco, all input features were useless.



	
Cause B: There was a certain non-linear relationship between input features and strength tasks. Thereby, linear models were unable to simulate this nonlinearity well.








Cause A can be ruled out, or rather, it cannot be the main issue. This is because the MLS-SVR (with kernel methods for nonlinearity) was able to achieve very accurate predictions in these two tasks, using the same input features.



To further verify cause B, the scatter plots of strength tasks from multi-task Lasso and VSTG are shown in Figure 10 and Figure 11, respectively. In both task fyi and fco, the direction of scatter distribution (blue lines) tended to be horizontal, and that was evidence of nonlinearity between inputs and tasks. For example, if a linear model was used to fit a concave nonlinear function (as shown in Figure 12a), the distribution of scatter would appear in the pattern shown in Figure 12b. With a constant as the boundary, the predicted values within smaller-scale regions were often overestimated, while the predictions within larger-scale regions were often underestimated. Additionally, the more horizontal scatter distribution also indicated the reason why the predictions of two linear models were more conservative in Figure 8 and Figure 9.




4.2. Model Interpretability


Although the two linear models did not excel in all tasks, they had better interpretability. The coefficient matrices (W) obtained from two linear models, as well as variable-latent matrix (U) and latent-task matrix (V) provided by VSTG, all as interpretable components contained the information that revealed the potential correlations among CFDST parameters.



Two coefficient matrices from multi-task Lasso and VSTG are shown in Figure 13. Firstly, the load-bearing capacity (axial compression capacity, Nu) was highly correlated with each output feature, with the strength of concrete contributing the most. Secondly, the contributions of H and fyo to task Di and task ti were close to 0. That means the influence of CFDST length and outer tube strength on the inner tube dimension was minimal.



For tasks fyi and fco, there was almost no obvious sparsity in the coefficient vectors (except for the coefficient of H in task fyi in multi-task Lasso). This phenomenon indicated that all inputs were indispensable for both tasks. However, these two models were still unable to fit tasks fyi and fco well. Therefore, it is reasonable to infer that there must have been a lack of certain features, or that potential information had not been fully explored. These inferences were mentioned and answered in Section 4.1. Nevertheless, it is noteworthy that the coefficient vector of task fyi indeed had a relatively stronger sparsity (smaller coefficients) than task fco’s. Perhaps this was the reason why the scatter distribution of task fyi in Figure 10 and Figure 11 was more concentrated, as the dimension of input feature space of task fyi was compressed more effectively.



The variable-latent matrix U and latent-task matrix V from VSTG are shown in Figure 14. The matrix U recorded the mapping from the original input space to the lower dimensional feature space. Figure 14a shows that the input features Do and fyo were able to be expressed using only two bases in the new feature space, and the projection of feature H on the third base M3 was also almost 0 (Figure 14a). Excess information from the original five-dimensional input space was still able to be fully expressed after being compressed into three-dimensional space. The matrix V is a coefficient matrix used to map the new feature space to the output space. This matrix also stores the group structure among multiple tasks. Seemingly, these tasks can be divided into three groups:




	
Group 1 (task Di): The coefficient of the second base M2 is significantly higher than the other two;



	
Group 2 (task ti): The coefficient of the second base M2 is significantly lower than the other two;



	
Group 3 (task fyi and fco): The first base is obviously important, while the values of the other two are almost 0.








This indicates that the diameter and thickness of the inner steel tube are two completely different tasks (their feature selections are opposite), while the strength of the inner steel tube and concrete are very similar tasks.




4.3. Limitations and Future Work


Although the correlation of models with experimental results demonstrated the potential applications of MTL techniques in guiding CFDST design, there are still many limitations:




	
The samples collected in the database were all CFDSTs with circular cross-sections, as this shape is the most conventional. CFDSTs of other shapes may have more parameters, so their design must be more complex.



	
MTL is a data-driven approach, and the performance of this technique depends on the quantity and quality of data. Currently, the uniaxial compression cases of CFDSTs are sufficient, while cases of other property trials are still lacking.



	
The interpretability of linear models can reveal the potential connection among CFDST parameters. However, this connection is purely mathematical, and the mechanism behind it still remains a mystery.








This study was conducted in a specific condition, and further validations of “whether MTL techniques would be applicable in other situations of CFDST design” will be necessary. As an auxiliary tool, the linear MTL models own good interpretability, and that allows MTL to play a role in the future development of CFDST design codes. In addition, the mechanistic research on CFDSTs (load bearing, failure, etc.) will continue to be crucial. Experiments and cases on the properties of CFDSTs are still lacking.





5. Conclusions


Due to the fact that previous methods can only verify the reliability of a CFDST design and cannot provide direct parameter guidance, this paper proposed using the MTL technique to guide CFDST design. The main works and findings are as follows:




	
With 227 uniaxial compression cases of CFDSTs collected from previous literature, three kinds of MTL models were trained to provide multiple parameters for CFDST design. Based on a specific application scenario, the development process of the MTL models was demonstrated.



	
During the testing phase, MLS-SVR was able to accurately provide reliable CFDST parameters, while the other two linear models, multi-task Lasso and VSTG, were unable to provide valuable parameters of inner steel tube strength and concrete strength.



	
The distribution of scattered points reflected the potential nonlinearity in the task fyi and fco, and the connotation in scatter distribution was discussed in detail. Furthermore, the coefficient matrices of two linear models and the potential group structure among the CFDST parameters were clarified.



	
At the end of Section 4, the limitations of the study and future work are also summarized.








In conclusion, the MTL technique has great potential in guiding CFDST design. With a set of directly provided parameters, the workload of engineers in CFDST design will be greatly reduced. Due to the interpretability, linear MTL models can also serve as an analytical tool and assist in the study of the property mechanisms and design standards of CFDSTs.
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Table A1. All experimental results from multi-task Lasso.






Table A1. All experimental results from multi-task Lasso.





	
Outputs

	
Dataset

	
R2

	
RMSE

	
RRMSE

	
ρ






	
Di

	
Trn_experiment_1

	
0.925798241

	
30.54154609

	
0.240264793

	
0.12244763




	
Trn_experiment_2

	
0.925798326

	
30.54154601

	
0.240265398

	
0.122447936




	
Trn_experiment_3

	
0.925798412

	
30.54154593

	
0.240266004

	
0.122448242




	
Trn_experiment_4

	
0.925798497

	
30.54154587

	
0.24026661

	
0.122448548




	
Trn_experiment_5

	
0.921823761

	
31.23514035

	
0.24540618

	
0.125199791




	
Trn_mean

	
0.925003447

	
30.68026485

	
0.241293797

	
0.122998429




	
Tst_experiment_1

	
0.903852591

	
34.90496

	
0.274591

	
0.140764




	
Tst_experiment_2

	
0.903852949

	
34.90481

	
0.27459

	
0.140764




	
Tst_experiment_3

	
0.903853308

	
34.90466

	
0.27459

	
0.140764




	
Tst_experiment_4

	
0.903853667

	
34.90451

	
0.27459

	
0.140764




	
Tst_experiment_5

	
0.898420822

	
35.83429

	
0.28154

	
0.144539




	
Tst_mean

	
0.902766668

	
35.09065

	
0.27598

	
0.141519




	
ti

	
Trn_experiment_1

	
0.647650602

	
0.865708461

	
0.312352516

	
0.173070786




	
Trn_experiment_2

	
0.647650541

	
0.86570846

	
0.312353227

	
0.173071183




	
Trn_experiment_3

	
0.647650481

	
0.865708459

	
0.312353938

	
0.173071581




	
Trn_experiment_4

	
0.64765042

	
0.865708458

	
0.312354649

	
0.173071978




	
Trn_experiment_5

	
0.642129795

	
0.87523493

	
0.30854615

	
0.171287964




	
Trn_mean

	
0.646546368

	
0.867613754

	
0.311592096

	
0.172714698




	
Tst_experiment_1

	
0.895809286

	
0.497392

	
0.179462

	
0.092198




	
Tst_experiment_2

	
0.895808763

	
0.497392

	
0.179462

	
0.092199




	
Tst_experiment_3

	
0.89580824

	
0.497392

	
0.179463

	
0.092199




	
Tst_experiment_4

	
0.895807718

	
0.497392

	
0.179463

	
0.092199




	
Tst_experiment_5

	
0.896319131

	
0.522132

	
0.184067

	
0.094551




	
Tst_mean

	
0.895910627

	
0.50234

	
0.180383

	
0.092669




	
fyi

	
Trn_experiment_1

	
0.257824781

	
56.61053299

	
0.166176103

	
0.110213567




	
Trn_experiment_2

	
0.257826623

	
56.61053286

	
0.166176058

	
0.110213404




	
Trn_experiment_3

	
0.257828465

	
56.61053274

	
0.166176012

	
0.110213242




	
Trn_experiment_4

	
0.257830307

	
56.61053264

	
0.166175967

	
0.110213079




	
Trn_experiment_5

	
0.143605727

	
61.05929462

	
0.175032617

	
0.12693149




	
Trn_mean

	
0.234983181

	
57.50028517

	
0.167947351

	
0.113556956




	
Tst_experiment_1

	
0.457067241

	
49.81142

	
0.146218

	
0.087239




	
Tst_experiment_2

	
0.457071203

	
49.81112

	
0.146217

	
0.087238




	
Tst_experiment_3

	
0.457075164

	
49.81082

	
0.146216

	
0.087237




	
Tst_experiment_4

	
0.457079126

	
49.81052

	
0.146215

	
0.087237




	
Tst_experiment_5

	
0.309128976

	
56.65101

	
0.162396

	
0.104368




	
Tst_mean

	
0.427484342

	
51.17898

	
0.149452

	
0.090664




	
fco

	
Trn_experiment_1

	
0.382329222

	
13.91468957

	
0.305536581

	
0.188797713




	
Trn_experiment_2

	
0.382332284

	
13.91468953

	
0.305535146

	
0.188796538




	
Trn_experiment_3

	
0.382335346

	
13.91468949

	
0.305533712

	
0.188795363




	
Trn_experiment_4

	
0.382338409

	
13.91468947

	
0.305532277

	
0.188794187




	
Trn_experiment_5

	
0.349522654

	
14.25304033

	
0.319577939

	
0.20084028




	
Trn_mean

	
0.375771583

	
13.98235968

	
0.308343131

	
0.191204816




	
Tst_experiment_1

	
0.388893448

	
13.62725

	
0.299225

	
0.184296




	
Tst_experiment_2

	
0.388897421

	
13.62727

	
0.299224

	
0.184295




	
Tst_experiment_3

	
0.388901394

	
13.62728

	
0.299223

	
0.184294




	
Tst_experiment_4

	
0.388905367

	
13.62729

	
0.299222

	
0.184293




	
Tst_experiment_5

	
0.383469564

	
13.54646

	
0.303735

	
0.187578




	
Tst_mean

	
0.387813439

	
13.61111

	
0.300126

	
0.184951
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Outputs

	
Dataset

	
R2

	
RMSE

	
RRMSE

	
ρ






	
Di

	
Trn_experiment_1

	
0.922420

	
31.20567

	
0.244677

	
0.124808




	
Trn_experiment_2

	
0.921584

	
31.29855

	
0.245879

	
0.125449




	
Trn_experiment_3

	
0.921693

	
31.27291

	
0.245672

	
0.12534




	
Trn_experiment_4

	
0.921771

	
31.25197

	
0.245519

	
0.125259




	
Trn_experiment_5

	
0.921824

	
31.23514

	
0.245406

	
0.125200




	
Trn_mean

	
0.921858

	
31.25285

	
0.245431

	
0.125211




	
Tst_experiment_1

	
0.899683

	
35.70926

	
0.279989

	
0.143693




	
Tst_experiment_2

	
0.898060

	
35.89606

	
0.281997

	
0.144788




	
Tst_experiment_3

	
0.898216

	
35.87198

	
0.281801

	
0.144681




	
Tst_experiment_4

	
0.898334

	
35.85119

	
0.281651

	
0.144599




	
Tst_experiment_5

	
0.898421

	
35.83429

	
0.28154

	
0.144539




	
Tst_mean

	
0.898543

	
35.83256

	
0.281396

	
0.14446




	
ti

	
Trn_experiment_1

	
0.64555

	
0.870096

	
0.308432

	
0.171022




	
Trn_experiment_2

	
0.642602

	
0.874941

	
0.308653

	
0.171319




	
Trn_experiment_3

	
0.642569

	
0.874921

	
0.308611

	
0.171298




	
Trn_experiment_4

	
0.642411

	
0.875007

	
0.308572

	
0.171286




	
Trn_experiment_5

	
0.642130

	
0.875235

	
0.308546

	
0.171288




	
Trn_mean

	
0.643052

	
0.874040

	
0.308563

	
0.171243




	
Tst_experiment_1

	
0.897740

	
0.513348

	
0.181972

	
0.093439




	
Tst_experiment_2

	
0.897543

	
0.518708

	
0.182985

	
0.093964




	
Tst_experiment_3

	
0.897429

	
0.51924

	
0.183152

	
0.094053




	
Tst_experiment_4

	
0.896939

	
0.520482

	
0.183548

	
0.094269




	
Tst_experiment_5

	
0.896319

	
0.522132

	
0.184067

	
0.094551




	
Tst_mean

	
0.897194

	
0.518782

	
0.183145

	
0.094055




	
fyi

	
Trn_experiment_1

	
0.136017

	
61.32048

	
0.175747

	
0.128395




	
Trn_experiment_2

	
0.142423

	
61.08823

	
0.175156

	
0.127165




	
Trn_experiment_3

	
0.142487

	
61.08705

	
0.175144

	
0.127149




	
Trn_experiment_4

	
0.142957

	
61.07670

	
0.175097

	
0.127057




	
Trn_experiment_5

	
0.143606

	
61.05929

	
0.175033

	
0.126931




	
Trn_mean

	
0.141498

	
61.12635

	
0.175235

	
0.127339




	
Tst_experiment_1

	
0.295738

	
56.90902

	
0.163104

	
0.10565




	
Tst_experiment_2

	
0.305408

	
56.78643

	
0.162821

	
0.104868




	
Tst_experiment_3

	
0.306126

	
56.75469

	
0.162723

	
0.104760




	
Tst_experiment_4

	
0.307393

	
56.71041

	
0.162579

	
0.104591




	
Tst_experiment_5

	
0.309129

	
56.65101

	
0.162396

	
0.104368




	
Tst_mean

	
0.304759

	
56.76231

	
0.162725

	
0.104847




	
fco

	
Trn_experiment_1

	
0.355196

	
14.18623

	
0.317429

	
0.198892




	
Trn_experiment_2

	
0.349209

	
14.26040

	
0.319686

	
0.200941




	
Trn_experiment_3

	
0.349363

	
14.25735

	
0.319629

	
0.200889




	
Trn_experiment_4

	
0.349489

	
14.25495

	
0.319587

	
0.200850




	
Trn_experiment_5

	
0.349523

	
14.25304

	
0.319578

	
0.200840




	
Trn_mean

	
0.350556

	
14.24239

	
0.319182

	
0.200483




	
Tst_experiment_1

	
0.389745

	
13.47301

	
0.301470

	
0.185600




	
Tst_experiment_2

	
0.383357

	
13.55413

	
0.303853

	
0.187661




	
Tst_experiment_3

	
0.383610

	
13.54961

	
0.303762

	
0.187581




	
Tst_experiment_4

	
0.383550

	
13.54818

	
0.303742

	
0.187574




	
Tst_experiment_5

	
0.383470

	
13.54646

	
0.303735

	
0.187578




	
Tst_mean

	
0.384746

	
13.53428

	
0.303312

	
0.187199
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Outputs

	
Dataset

	
R2

	
RMSE

	
RRMSE

	
ρ






	
Di

	
Trn_experiment_1

	
0.997956

	
4.950633

	
0.04127

	
0.020645




	
Trn_experiment_2

	
0.998098

	
4.774466

	
0.039817

	
0.019918




	
Trn_experiment_3

	
0.99828

	
4.541585

	
0.037884

	
0.01895




	
Trn_experiment_4

	
0.99679

	
6.21027

	
0.051617

	
0.025829




	
Trn_experiment_5

	
0.997152

	
5.847266

	
0.04864

	
0.024337




	
Trn_mean

	
0.997655

	
5.264844

	
0.043846

	
0.021936




	
Tst_experiment_1

	
0.966752

	
20.16726

	
0.168119

	
0.08477




	
Tst_experiment_2

	
0.967065

	
20.06718

	
0.167353

	
0.084377




	
Tst_experiment_3

	
0.96684

	
20.11983

	
0.16783

	
0.084623




	
Tst_experiment_4

	
0.965648

	
20.61851

	
0.171372

	
0.086435




	
Tst_experiment_5

	
0.966064

	
20.46098

	
0.170203

	
0.085836




	
Tst_mean

	
0.966474

	
20.28675

	
0.168976

	
0.085208




	
ti

	
Trn_experiment_1

	
0.977555

	
0.221349

	
0.086169

	
0.043329




	
Trn_experiment_2

	
0.977566

	
0.221087

	
0.086098

	
0.043293




	
Trn_experiment_3

	
0.980432

	
0.206541

	
0.080415

	
0.040406




	
Trn_experiment_4

	
0.963974

	
0.280518

	
0.109174

	
0.055088




	
Trn_experiment_5

	
0.967474

	
0.266504

	
0.103741

	
0.0523




	
Trn_mean

	
0.9734

	
0.2392

	
0.093119

	
0.046883




	
Tst_experiment_1

	
0.901291

	
0.402229

	
0.156584

	
0.080326




	
Tst_experiment_2

	
0.901474

	
0.401589

	
0.156391

	
0.080223




	
Tst_experiment_3

	
0.898315

	
0.408791

	
0.159159

	
0.081712




	
Tst_experiment_4

	
0.916494

	
0.368955

	
0.143593

	
0.073361




	
Tst_experiment_5

	
0.912926

	
0.376779

	
0.146668

	
0.075004




	
Tst_mean

	
0.9061

	
0.391669

	
0.152479

	
0.078125




	
fyi

	
Trn_experiment_1

	
0.989376

	
6.803098

	
0.019868

	
0.009961




	
Trn_experiment_2

	
0.989653

	
6.711025

	
0.019602

	
0.009826




	
Trn_experiment_3

	
0.99114

	
6.20726

	
0.018126

	
0.009083




	
Trn_experiment_4

	
0.980407

	
9.245705

	
0.027043

	
0.013588




	
Trn_experiment_5

	
0.982968

	
8.620965

	
0.025204

	
0.012656




	
Trn_mean

	
0.986709

	
7.517611

	
0.021969

	
0.011023




	
Tst_experiment_1

	
0.965078

	
12.61071

	
0.036829

	
0.018578




	
Tst_experiment_2

	
0.965056

	
12.62965

	
0.036889

	
0.018608




	
Tst_experiment_3

	
0.965206

	
12.59698

	
0.036785

	
0.018555




	
Tst_experiment_4

	
0.964875

	
12.67916

	
0.037085

	
0.018708




	
Tst_experiment_5

	
0.964985

	
12.64765

	
0.036977

	
0.018653




	
Tst_mean

	
0.96504

	
12.63283

	
0.036913

	
0.018621




	
fco

	
Trn_experiment_1

	
0.977615

	
2.637616

	
0.060853

	
0.030599




	
Trn_experiment_2

	
0.978519

	
2.583422

	
0.059613

	
0.029968




	
Trn_experiment_3

	
0.980582

	
2.456158

	
0.056692

	
0.028485




	
Trn_experiment_4

	
0.969402

	
3.094903

	
0.071324

	
0.035939




	
Trn_experiment_5

	
0.97116

	
3.000334

	
0.069161

	
0.034833




	
Trn_mean

	
0.975456

	
2.754487

	
0.063529

	
0.031965




	
Tst_experiment_1

	
0.865928

	
6.502839

	
0.15003

	
0.077713




	
Tst_experiment_2

	
0.865614

	
6.515199

	
0.15034

	
0.077881




	
Tst_experiment_3

	
0.86555

	
6.522601

	
0.150551

	
0.077992




	
Tst_experiment_4

	
0.865382

	
6.473133

	
0.149178

	
0.077284




	
Tst_experiment_5

	
0.865663

	
6.478995

	
0.149347

	
0.077365




	
Tst_mean

	
0.865628

	
6.498553

	
0.149889

	
0.077647
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Figure 1. Circular cross-section of a CFDST’s structure. 
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Figure 2. Illustration of matrix decomposition in VSTG. 
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Figure 3. Evolution process of coefficient vectors in MLS-SVR. 
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Figure 4. Scatter plot matrix and correlation coefficients of the database (Dots represent the samples, while lines display the distribution trend of dots). 
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Figure 5. Dataset division and sample distributions in the training and testing sets. (a) division of parameters H, Do, fco, fyo and fyi; (b) division of parameters Nu, to, Di and ti. 
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Figure 6. Flowchart of model development. 
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Figure 7. Scatter plots of the provided parameters by MLS-SVR: (a) Di plot; (b) ti plot; (c) fyi plot; (d) fco plot. 
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Figure 8. Illustrations of the comparison among MTL provided and the actual values on task fyi: (a) training set; (b) testing set. 
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Figure 9. Illustrations of the comparison among MTL provided and actual values on task fco: (a) training set; (b) testing set. 
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Figure 10. Scatter plots of strength parameters provided by multi-task Lasso: (a) fyi plot; (b) fco plot. 
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Figure 11. Scatter plots of strength parameters provided by VSTG: (a) fyi plot; (b) fco plot. 
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Figure 12. The impact of nonlinearity on linear models: (a) a concave nonlinear function; (b) misguided scatter distribution. 
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Figure 13. The coefficient matrices obtained from two linear models: (a) W of multi-task Lasso; (b) W of VSTG. 
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Figure 14. Two matrices provided by VSTG: (a) variable-latent matrix (U); (b) latent-task matrix (V). 
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Table 1. Parameter definitions and descriptions.
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	Variables
	Descriptions
	Note





	H (mm)
	Column length
	External dimensions



	Do (mm)
	Diameter of the outer steel tube
	



	Di (mm)
	Diameter of the inner steel tube
	Internal dimension



	to (mm)
	Thickness of the outer steel tube
	Steel tube thickness



	ti (mm)
	Thickness of the inner steel tube
	



	fco (MPa)
	Peak strength of unconfined cylinder

(d × h = 150 mm × 300 mm)
	Concrete strength



	fyo (MPa)
	Yield strength of the outer steel tube
	Steel tube strengths



	fyi (MPa)
	Yield strength of the inner steel tube
	



	Nu (kN)
	Axial compression capacity
	Load-bearing capacity










 





Table 2. Statistical description of parameters in the database.






Table 2. Statistical description of parameters in the database.





	Parameters
	Mean
	Median
	St. D *
	Min
	Max





	H (mm)
	877.830
	572.000
	149.429
	230.000
	3502.000



	Do (mm)
	220.778
	165.100
	32.152
	74.700
	603.400



	Di (mm)
	129.618
	76.000
	25.742
	33.500
	477.000



	to (mm)
	3.097
	3.000
	0.350
	0.590
	8.000



	ti (mm)
	2.735
	2.850
	0.335
	0.550
	8.000



	fco (MPa)
	40.813
	37.500
	4.094
	18.700
	74.700



	fyo (MPa)
	362.696
	350.000
	20.736
	177.000
	549.000



	fyi (MPa)
	335.807
	324.000
	15.434
	205.000
	512.000



	Nu (kN)
	2095.051
	1574.000
	413.341
	283.000
	8950.000







* Note: St. D—standard deviation.













 





Table 3. The inputs and outputs in the example scenario.
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	Inputs
	Outputs





	H, Do, to, fyo, Nu
	Di, ti, fyi, fco










 





Table 4. Statistical indicators for evaluating the reliability of the provided parameters.
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	Statistical Indicators
	Expressions





	Coefficient of determination (R2)
	           ∑  i = 1  N      M i  −    M i   ¯       P i  −    P i   ¯         2      ∑  i = 1  N        M i  −    M i   ¯     2    ∑  i = 1  N        P i  −    P i   ¯     2          



	Root mean square error (RMSE)
	         ∑  i = 1  N     (  M i  −  P i  )  2     N      



	Relative root mean squared error (RRMSE)
	     R M S E      P i   ¯      



	Performance index (ρ)
	     R R M S E   1 +    R 2        







Note: M—measurement value; P—reference value provided by the model.













 





Table 5. The hyper-parameter settings used for the experiments.
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	MTL Models
	Hyper-Parameters
	Values





	Multi-task Lasso
	Regularization parameter λ
	0.091



	VSTG
	Regularization parameter λ1
	0.15



	
	Regularization parameter λ2
	0.14



	
	Regularization parameter μ
	1.25



	
	k (k-support norm)
	2



	
	Number of latent bases M
	3



	MLS-SVR
	Regularization parameter λ
	2.013



	
	Regularization parameter β
	33.571



	
	Kernel function
	ERBF



	
	Kernel function parameter σ
	4.493










 





Table 6. Statistical evaluation of multi-task Lasso.
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Outputs

	
Dataset

	
R2

	
RMSE

	
RRMSE

	
ρ






	
Di

	
Trn

	
0.926

	
30.542

	
0.240

	
0.122




	
Tst

	
0.904

	
34.905

	
0.275

	
0.141




	
ti

	
Trn

	
0.648

	
0.866

	
0.312

	
0.173




	
Tst

	
0.896

	
0.497

	
0.179

	
0.092




	
fyi

	
Trn

	
0.258

	
56.611

	
0.166

	
0.11




	
Tst

	
0.457

	
49.811

	
0.146

	
0.087




	
fco

	
Trn

	
0.382

	
13.915

	
0.306

	
0.189




	
Tst

	
0.389

	
13.627

	
0.299

	
0.184








Note: Trn—training set; Tst—testing set.













 





Table 7. Statistical evaluation of VSTG.






Table 7. Statistical evaluation of VSTG.





	
Outputs

	
Dataset

	
R2

	
RMSE

	
RRMSE

	
ρ






	
Di

	
Trn

	
0.922

	
31.210

	
0.245

	
0.125




	
Tst

	
0.900

	
35.709

	
0.280

	
0.144




	
ti

	
Trn

	
0.646

	
0.870

	
0.308

	
0.171




	
Tst

	
0.898

	
0.513

	
0.182

	
0.093




	
fyi

	
Trn

	
0.136

	
61.320

	
0.176

	
0.128




	
Tst

	
0.296

	
56.909

	
0.163

	
0.106




	
fco

	
Trn

	
0.355

	
14.190

	
0.317

	
0.199




	
Tst

	
0.390

	
13.473

	
0.301

	
0.186








Note: Trn—training set; Tst—testing set.













 





Table 8. Statistical evaluation of MLS-SVR.
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Outputs

	
Dataset

	
R2

	
RMSE

	
RRMSE

	
ρ






	
Di

	
Trn

	
0.998

	
5.265

	
0.044

	
0.022




	
Tst

	
0.966

	
20.287

	
0.169

	
0.085




	
ti

	
Trn

	
0.973

	
0.239

	
0.093

	
0.047




	
Tst

	
0.906

	
0.392

	
0.152

	
0.078




	
fyi

	
Trn

	
0.987

	
7.518

	
0.022

	
0.011




	
Tst

	
0.965

	
12.633

	
0.037

	
0.019




	
fco

	
Trn

	
0.975

	
2.754

	
0.064

	
0.032




	
Tst

	
0.866

	
6.499

	
0.150

	
0.078








Note: Trn—training set; Tst—testing set.



















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).








Check ACS Ref Order





Check Foot Note Order





Check CrossRef













media/file26.jpg
N

W (Multi-task Lasso)

N s .

-10-05 03 10 20

Wvst6)






media/file8.jpg
N






media/file27.png
Nu

W(Multi—task Lasso)

T

-1.0 =05 03 1.0 2.0

W (vSTG)

Nu






media/file13.png
Parameter settings

Database [ o, ]
( (Nonnahzed) )» Training Set (80%) ‘

‘-llllllIIIIIIIIIIIlllllll..lllllllllll..

[ Test Set (20%) ]

$

Trained models «

¥

Tasks Latent
A ,_M

[ Model outputs ]
Reverse
normalization

Parameter references
of tube and concrete

Inputs
AL

. Uy V

v

L
....Illlll........lllllll......llllll.l“

“-llllllllllll.lllilllIllllllllllllllll..
’0
..IIIIIIIlllIIIIIIIIIIIIIIIIIIIIIIIIIIII'

*






media/file12.jpg
)| Training Set (80 ‘ Parameter sttings

L 2
L 2

oo I

L 2

Reverse
normalization
Parameter references
of tube and concrete






media/file18.jpg
Lasso

[ el £

G
NS
()

3 g
Number of Samples.





media/file9.png
0.00100 -
0.00075 -
0.00050 1 Corr: Corr: Corr: Corr: Corr: Corr: Corr: Corr:
—— 0411 0.352 0.066 0.070 —-0.516 0.084 —0.205 0.287
0.00000 -
600 -
>
400 - Corr: Corr: Corr: Corr: Corr: Corr: Corr: %
200 - 0.952 0.170 0.384 —0.396 —-0.311 —0.293 0.845 5

>

Corr: Corr: Corr: Corr: Corr: Corr: —

0.104 0.399 —0.238 —-0.299 —0.249 0.831 E

an ae2 Corr: Corr: Corr: Corr: Corr: %
0.698 —0.030 0.188 0.041 0.509 é

8 ° ° ° °
i °.. Y '... | ¢ -'. 1 it Corr: Corr: Corr: Corr:
u % e o 2elee o 0.046 —0.101 —0.150 0.689
9, o0 © o (]
# [ ) [ ] ° [ )
% “. & ¥ -t >
50+ PY ) ° 00 ° go oo YY) ° op o0 COI'I" COIT' COI'I“ S\
NS T o St i 0.196 0.519 0174 B
20- @ Y | ? r H =
g PEIE gt >
wo-B s as .' —— Corr: Corr: 2
300 -off s e, . 0.538 —-0.218 —
(O o0 O ° V)
200 € o® b =

Corr:
—0.196

7500 -
5000 -

2500 -
%

1000 2000 3000 200 400 600 100 200 300 400





media/file14.jpg
1 Provided

Dataset
100 oI
oTm
0
0 100 200 300 400 500 L N T

1 Measurement

w0 30 w0 s
fi_Measurement






media/file20.jpg
i 2
™ :
. <.
-
m

00 00 400
fii_Measurement

0 w0 6@
, Measurement

50






media/file23.png
fyi Provided

200

200

L

frt

300 400
fyi Measurement

& o

Dataset

® st
o'Trn

500

feo Provided

20

40 60
fco Measurement

Dataset
® st
oTrn

80





media/file5.png
Latent

Inputs

V; V, Vi

: a V






media/file15.png
500 (a)

400

- 6
=

=300 3
e 24
A~ >
5 200 £

Dataset 2 Dataset
100 @ [st ® Tst
o Trn ©Tin
0 0

100 200

Di Measurement ti Measurement

A ~
