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Abstract: Reconfigurable intelligent surfaces (RISs) have the potential to improve wireless commu-
nication links by dynamically redirecting signals to dead spots. Although a reconfigurable surface
is best suited for environments in which the reflected signal must be dynamically steered, there are
cases where a static, non-reconfigurable anomalous reflective metasurface can suffice. In this work,
spray-coated liquid metal is used to rapidly prototype an anomalous reflective metasurface. Using a
pressurized air gun and a plastic thin-film mask, a metasurface consisting of a 6 × 4 array of Galinstan
liquid–metal elements is sprayed within minutes. The metasurface produces a reflected wave at
an angle of 28◦ from normal in response to a normal incident 3.5-GHz electromagnetic plane wave.
The spray-coated liquid–metal metasurface shows comparable results to an anomalous reflective
metasurface with copper elements of the same dimensions, demonstrating that this liquid–metal
fabrication process is a viable solution for the rapid prototyping of anomalous reflective metasurfaces.

Keywords: liquid metal; metasurface; anomalous reflection; Galinstan

1. Introduction

Reconfigurable intelligent surfaces (RISs) promise to improve coverage for signals
negatively impacted by obstructions present in the line-of-sight (LOS) path, making them
an attractive technology for 5G and beyond mobile communications [1]. A typical RIS
combines passive reflective elements with active devices such as varactors [2–5] or PIN
diodes [6–9], while others use phase-tunable materials such as liquid crystals [10–12], 2D
materials [13–17], or phase-change materials [18,19]. Creating a tunable reflection phase
gradient across a surface enables the RIS to dynamically redirect an incoming signal to an
anomalous direction not predicted by Snell’s Law.

In some use cases, however, an RIS may require little to no reconfiguration of the
reflected signal [20]. For example, in the aftermath of a natural disaster, a rapid-response
network can be set up, as shown in Figure 1. Here, a mobile base station is deployed to an
emergency worksite, but obstacles block a LOS link from being established to emergency
workers aiding survivors. Under such conditions, where the emergency workers are
relatively stationary for hours at a time, a static anomalous reflective surface with little to
no reconfigurability is sufficient. The reflective metasurface can be rapidly prototyped and
positioned to provide an anomalous-angle non-line-of-sight (NLOS) link to the emergency
workers. If the emergency workers subsequently move to a different site, say to the top
left of Figure 1, another rapidly prototyped metasurface can be quickly fabricated using a
different template that provides the appropriate anomalous reflection angle.

Although a static anomalous reflective metasurface is limited to a fixed reflection angle,
it is simpler and less expensive than an RIS with active elements. Metasurface geometries
have previously been created with copper elements using etching, milling, or placing cop-
per tape on an unclad substrate [21]. Other metasurfaces have been explored using sputter
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deposition [22], inkjet printing [23], screen printing [24,25], and 3D printing to create reflec-
tive elements [26]. Although these fabrication methods are effective, spray-coated liquid
metal for rapid prototyping has numerous advantages compared to traditional fabrication
methods. The main components that differentiate our proposed method are portability,
simplicity, and scalability. Compared to methods such as copper milling/etching, 3D
printing, and inkjet printing, spray-coating provides a faster fabrication time with less
expensive equipment. The proposed method also has a simple fabrication process, only
requiring the creation of a mask and spray-coating the liquid metal onto a substrate. Once
the mask is created, spray-coating of liquid metal has a faster scalability implementation,
where the mask can be moved to new locations for the addition of reflective elements.
Therefore, an alternative rapid prototyping method utilizing spray printing of liquid–metal
metasurface elements is investigated.
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Figure 1. A rapidly prototyped anomalous reflective metasurface provides an NLOS link between a
mobile base station and an emergency site that otherwise has a blocked LOS path.

The liquid metal used here is Galinstan (Rotometals Incorporated, San Leandro, CA,
USA), a near eutectic gallium-based alloy consisting of Ga 68.5 wt%, In 21.5 wt%, Sn
10 wt%. Galinstan, with this composition, has a melting temperature of 11 ◦C [27]. Due
to the adhesiveness of Galinstan occurring from the oxide skin produced by the spray
deposition, electrolytes such as sodium hydroxide (NaOH) can be used to remove Galinstan
after use and preserve the substrate material for reusability [28,29]. Galinstan also has a
high electrical conductivity of 3.46 × 106 S/m [30], making it an attractive metal for the
aerosol spray deposition of conductive films [31,32].

Although spray deposition using conductive paint has been previously demonstrated
for transmissive metasurfaces [33], this paper reports the first rapidly prototyped aerosol
spray deposited liquid–metal anomalous reflective metasurface. Using a pressurized air
gun and a plastic thin-film mask, liquid metal is patterned on a substrate, with an array
of liquid–metal elements capable of being sprayed within minutes. Successful tests were
conducted, demonstrating the viability of anomalous reflective metasurfaces fabricated
using the rapid prototyping method.

2. Materials and Methods

One of the defining features of an anomalous reflective metasurface is its ability to
induce reflections at an angle that is not predicted by the conventional Snell’s Law. This is
made possible by engineering a phase gradient on the surface between two media, which,
in turn, is generated by periodically arranging unit cells with varying geometries across
the surface [34]. To quickly apply these geometries to a surface, spray deposition of liquid
metal is utilized.
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2.1. Unit Cell Design

Figure 2 shows the metasurface unit cell, which consisted of a rectangular Galinstan
element (length lp, width wp, height hp) on a Rogers RT/duroid 5880 substrate (hs = 3.175 mm,
εr = 2.2, tan δ = 0.0009) (Rogers Corporation, Chandler, AZ, USA). This substrate was specif-
ically selected because of its low-loss characteristics to enhance the reflective metasurface
efficiency. A 35.6-µm-thick copper backplane was positioned beneath the substrate. The
unit cell dimensions (length ls, width ws) largely set the operating frequency of 3.5 GHz.
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Figure 2. A 3.5-GHz unit cell with ha = 21.4 mm, hs = 3.175 mm, ws = 36.3 mm, ls = 36.3 mm, and
wp = 10.3 mm. The patch length lp was set to one of the following values: 26.5, 23.5, 29.5, or 27.5 mm,
depending on the desired phase of the reflected signal. The patch height hp was 35 µm, but this
dimension is not visible in this figure. A Floquet-port simulation mimics an infinite array of this unit
cell geometry.

The unit cell was designed in Ansys HFSS, using a Floquet-port simulation to mimic a
normally incident uniform electromagnetic plane wave source on an infinite array of these
unit cells. The air-box height ha was set to λ0/4, although de-embedding was enabled to
simulate the reflection coefficient S11 at the surface. The key to designing an anomalous
reflective metasurface is to vary the geometry within a given unit cell—thereby resulting
in a distinct S11 state—and then positioning different unit cell states in a quasi-periodic
pattern that yields a phase gradient for the desired anomalous reflection.

For example, if lp is set to 26.5 mm, a Floquet-port simulation that mimics an infinite
array of identical unit cells results in the blue curve of the reflection phase versus frequency
response shown in Figure 3a. Repeating the Floquet-port simulation for lp = 23.5, 29.5, and
27.5 mm resulted in three additional curves (yellow, red, green).
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Figure 3. (a) Reflection phase versus frequency response and (b) polar plot of four states (States 0 to
3) with a ~90◦ phase shift in S11 between adjacent states at 3.5 GHz.

In short, varying the patch length lp results in four distinct S11 states that are ap-
proximately 90◦ apart at 3.5 GHz (Figure 3b), hereafter referred to as State 0, 1, 2, and
3. An array consisting of an alternating State 0-1-2-3 periodic pattern of these unit cells
then yields a 360◦ phase gradient in ~90◦ increments. This phase gradient, in turn, results
in anomalous reflection as predicted by the Generalized Snell’s Law of Reflection [35].
Based on a 3.5-GHz operating frequency with a State 0-1-2-3 phase progression pattern, the
anomalous reflection angle for normal incidence given by the Generalized Snell’s Law is:

θr = sin−1
(

λ0
360◦

dϕ
dx

)
= sin−1

(
3×108m/s
3.5×109Hz

360◦
83.9◦+83.3◦+97.4◦+95.4◦

4×0.0363m

)
≈ 36◦

(1)

An anomalous reflective metasurface with four unit-cell states ~90◦ apart is known
as 2-bit coding [36], where arranging the unit cells in the State 0-1-2-3 pattern results in a
single-beam reflection. Similarly, a metasurface with just two unit-cell states ~180◦ apart is
known as 1-bit coding. A 1-bit metasurface with a State 0-0-2-2 pattern would result in the
same reflection angle θr as the State 0-1-2-3 pattern but would also produce a symmetric
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beam at −θr [37]. Eliminating the symmetric beam to realize a single-beam reflection would
require a large oblique angle of incidence [38].

2.2. Array Design

The unit cell results presented above were based on an HFSS Floquet-port simulation,
which assumes an infinite array. An HFSS bistatic radar cross-section (RCS) simulation was
performed next, again using a periodic State 0-1-2-3 pattern to simulate a finite array.

Figure 4 shows the bistatic RCS of a 16 × 16 element array with a simulated reflected
beam at ~36◦, in agreement with the Generalized Snell’s Law calculation. Figure 4 also
shows that a 6 × 4 element array results in a lower directivity as expected for a smaller
array, but the ~28◦ reflection is still close to that predicted by Generalized Snell’s Law and
has the additional advantage of requiring ~10 times fewer elements than a 16 × 16 array.
The sections that follow thus focus on the smaller 6 × 4 array.
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Although Galinstan has a lower conductivity (3.46× 106 S/m) than copper (5.8× 107 S/m),
Figure 5 shows that the reduced conductivity does not appreciably affect the bistatic RCS.
This point is discussed in more detail in Section 4.
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2.3. Fabrication

A 0.1-mm thick mylar/transparency film was used as a mask for the spray-coating
process. The mask was placed on a 229 mm × 152 mm Rogers RT/duroid 5880 substrate,
and a Master G233 commercial airbrush (TCP Global Corporation, Las Vegas, NV, USA)
was used to spray-coat Galinstan liquid metal, with the airbrush nozzle positioned per-
pendicular to the substrate surface. To reduce oxidation of the spray-coated liquid metal,
the air pressure was set to the lowest setting of 20 psi, and the airbrush nozzle was placed
5 c, from the substrate surface [39]. Each patch was sprayed for less than one second in
an up-and-down S-pattern, one element at a time until all patches had an even coating of
liquid metal (Figure 6).
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Figure 6. (a) Fabricated 6 × 4 element spray-coated liquid–metal metasurface. (b) Dashed line
showing the approximate airbrush trajectory during the spray-coating process.

After fabrication, small variations in the lengths of several patches were observed
(Figure 7). To investigate further, the dimensions of each of the 24 patches were measured
(Figure 8). The average variation in patch length lp was 1.74%, where most of the patches
exhibited shorter lengths due to under-spraying. The average variation in the patch width
wp was 0.22%, which is negligible (Table S1). A simulation using the as-fabricated lengths
of each patch is shown in Figure 9. A detailed explanation comparing these two curves
follows in Section 4.
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the as-designed length are indicated with a gradient heat map ranging from red (under-sprayed;
as-fabricated patch was shorter than design) to blue (over-sprayed; as-fabricated patch was longer
than design).
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Figure 9. Bistatic RCS simulations of the 6 × 4 spray-coated liquid–metal metasurface using the
as-designed versus as-fabricated lengths of each patch.

3. Results
3.1. Bistatic RCS Measurements

Figure 10 shows the experimental setup for measuring the metasurface’s bistatic RCS.
A 9-dBi-gain transmitter antenna was positioned for normal incidence at the boresight
of the Device Under Test (DUT), while a 9-dBi-gain receiver antenna was mounted to a
Newport MM3000 1-axis motion controller (Newport Corporation, Irvine, CA, USA) and
rotated azimuthally about the metasurface DUT in 2◦ increments. A Keysight FieldFox
N9951B network analyzer (Keysight, Santa Rosa, CA, USA) was connected to both antennas.
To accurately measure the performance and avoid multipath interference, the experiment
was conducted in a large open area outdoors with the metasurface DUT positioned in the
far field of both the Rx and Tx antennas.
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Figure 10. Top view of the experimental setup consisting of an anomalous reflective metasurface
DUT, a transmitting horn antenna (Tx) normal to the metasurface, a receiving horn antenna (Rx) on a
rotating arm, and a network analyzer.

Figure 11 compares the bistatic RCS of the as-fabricated simulated versus measured
spray-coated liquid–metal metasurface. There is good agreement, particularly at the
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~28◦ anomalous reflection angle. This agreement is closely maintained for most of the
single-beam lobe between 24 and 30◦.
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Figure 11. Normalized bistatic RCS of simulation vs. measurement of the as-fabricated spray-coated
liquid–metal metasurface.

Figure 12 compares the measured bistatic RCS of the spray-coated liquid metal to that
of a copper sheet of the same size, replacing the metasurface DUT in Figure 10. At the 28◦

anomalous reflection angle, the copper sheet reflected ~9 dB less power than the spray-
coated liquid–metal reflective metasurface. On average, the spray-coated liquid–metal
reflective metasurface performed ~10 dB better than the copper sheet within the 20◦–40◦

anomalous reflection beamwidth.
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Figure 12. Measured bistatic RCS pattern of spray-coated liquid–metal metasurface vs. 229 mm
× 152 mm copper sheet.

3.2. Directivity Analysis

Adopting the methodology employed by [40], we compared (1) the maximum direc-
tivity of a uniform aperture of the same area as the 6 × 4 metasurface, (2) the simulated
maximum directivity of the as-designed and as-fabricated 6 × 4 liquid–metal metasurface
from HFSS, and (3) the measured maximum directivity of the fabricated 6 × 4 liquid–metal
metasurface. Table 1 summarizes this comparison.
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Table 1. Maximum directivity of liquid–metal metasurface compared to [40].

Device
Maximum Directivity [dBi]

Uniform Aperture [41] Analytical Model Measured

Pin-diode-based Copper RIS
10λ × 10λ, 27.5–29.5 GHz [40] 30.5 27.9 22.5

Passive Galinstan Metasurface
2.67λ × 1.77λ, 3.5 GHz [This paper] 17.7 16.4 (As-designed)

13.9 (As-fabricated) 13.2

For a perfectly conducting uniform aperture of the same area as the 6 × 4 metasurface
(A = 229 mm × 152 mm), the maximum directivity is 4A

λ2 = 17.7 dBi [41]. For a liquid–metal
metasurface occupying the same area, the maximum directivity was 16.4 dBi (as designed)
and 13.9 dBi (as-fabricated), according to HFSS simulations (Figure 13).
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Figure 13. Directivity simulations of a 229 mm × 152 mm copper sheet and the as-fabricated and
as-designed spray-coated liquid–metal metasurface.

The measured maximum directivity can be estimated from [41]

D0 ≃ 32400
Θ1dΘ2d

(2)

where Θ1d, Θ2d are the half-power beam widths in orthogonal planes. Based on the
measured data for the 6 × 4 liquid–metal metasurface in Figure 12, the maximum directivity
was estimated to be 13.2 dBi after subtracting 3 dB due to the sizable minor lobe [41].

As seen in Table 1, the measured maximum directivity was 4.5 dB less than that of
a comparison perfectly conducting uniform aperture. By comparison, [40] had an 8 dB
difference, understandably larger given the significantly higher frequency and design
complexity compared to this paper’s passive design.

4. Discussion

Ensuring high array reflectivity (large |S11|) requires adequate conductivity of the
liquid–metal patches, which in turn requires minimizing liquid–metal oxidation during
the spray-coating process. This section discusses the effect of process variations intro-
duced during the fabrication process—specifically, the effect of liquid–metal patch length
variations due to spray-time durations and liquid–metal bulk conductivity variations due
to oxidation.
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4.1. Effect of Variations in Patch Length

A short spraying duration is desired to reduce liquid–metal oxide formation, which
reduces electrical conductivity [39]. However, a shorter spraying duration also increases
the chance of under-spraying. Liquid metal may not coat the target surface evenly, resulting
in incomplete coverage of some areas and, therefore, uneven patch lengths lp, as previously
shown in Figures 7 and 8.

Floquet-port and finite-array simulations were performed in HFSS to study the effect
of variations in patch length lp, which affect unit-cell resonances due to inductance and
capacitance effects [42], thereby affecting array performance. Figure 14 illustrates the
change in S11 if the patch lengths varied ±0.5 mm from their nominal values in Figure 3. It
was observed that the effects of lp variations in all four states were not uniform, with State
0 (lp = 26.5 mm) and State 3 (lp = 27.5 mm) having the most potential to introduce error
because of the wide phase variability. Figure 15 illustrates the effect of varying the lengths
of all State 3 unit cells in a 6 × 4 array by ±0.5 mm from its nominal value of 27.5 mm. It is
interesting to note the similarity of Figure 15 to Figure 9, where two lobes appeared instead
of the well-defined lobe at 28◦. While Figure 9 is a simulation of the array incorporating the
as-fabricated shortened patch lengths, which predicts both the anomalous reflecting lobe at
28◦ as well as an emerging broadside lobe at 0◦, Figure 14 provides the insight leading to
this behavior: that the shortening of certain states in particular lead to a phase-gradient
imbalance.
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4.2. Effect of Variations in Liquid–Metal Bulk Conductivity

Figure 5 shows that there was a negligible difference in the bistatic RCS simulation
of a Galinstan versus copper 6 × 4 array, despite the order-of-magnitude difference in
conductivity (3.46 × 106 S/m vs. 5.8 × 107 S/m).

Experimentally, however, we did observe a difference away from the anomalous reflec-
tion angle. For comparison purposes, a 6 × 4 copper array (Figure 16) was fabricated with
a Silhouette Portrait 3 craft cutter using 0.15-mm-thick copper tape cut to the dimensions
indicated in the caption of Figure 2 for the State 0-1-2-3 pattern. The detailed fabrication
process is described in [43].
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Figure 16. Fabricated 6 × 4 element copper metasurface to compare to the spray-coated liquid–metal
metasurface in Figure 6.

Figure 17 compares the measured bistatic RCS patterns of the copper vs. spray-coated
liquid–metal metasurface. Although there was good agreement at the ~28◦ anomalous
reflection angle, the agreement at boresight was not as good, with the spray-coated liquid–
metal metasurface mimicking a copper sheet, reflecting ~10 dB more power than the
copper array.
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Section 4.1 discussed how patch length variations induced by pressure spraying
explain some of the undesired boresight reflection effects. In addition, the radiation
pattern of the metasurface can also be affected by the bulk conductivity of the reflective
elements. Individual element conductivity varied depending on the amount of oxide
formed due to the employed spraying parameters. In this section, we discuss liquid–metal
bulk conductivity as another factor.

Liquid–metal pressure-spraying with an airbrush is characterized by three main pa-
rameters: spraying time, spraying distance, and air pump pressure [39]. In our application,
air-pump pressure was constant, but due to the manual spraying procedure, spraying
time and distance were variable. The liquid–metal thickness applied during the process
was proportional to the spraying time and inversely proportional to the spraying distance.
In addition, as the patch thickness increased, its bulk conductivity decreased due to an
increased presence of oxide [39]. During longer spraying periods, the oxide layer on the
liquid–metal surface was constantly broken, allowing more metal to become exposed to air.
Thus, precautions must be taken to reduce the amount of air exposure to the liquid–metal
patches, mainly in the form of low pressure and decreased spraying times.

Figure 18 illustrates the change in S11 at 3.5 GHz if the conductivity was reduced
from 3.46 × 106 S/m to 1.4 × 104 S/m. The bulk conductivity upper-bound value was
taken from [31], while the lower-bound value was from the work presented in [39], in
which 1.4 × 104 S/m was the smallest conductivity value measured using similar airbrush
spraying parameters as our tests.
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Figure 18. S11 of four unit-cell states at 3.5 GHz for liquid–metal conductivities of (a) 3.46 × 106 S/m
and (b) 1.4 × 104 S/m. Figure 18a is identical to Figure 3b but is replicated here to facilitate comparison
to Figure 18b.

The most obvious effect in comparing Figure 18a,b was the |S11| reduction for States
0, 2, and 3, but interestingly, there was not too much of an effect on ∠S11, compared to
the effect of patch length on ∠S11 as shown in Figure 14. This is supported by the bistatic
RCS pattern of a homogeneously low-conductivity metasurface illustrated in Figure 19, in
which the anomalous reflection lobe at 28◦ was maintained. However, due to the decreased
phase gradient between adjacent unit cells, the metasurface approached that of a uniform
metal sheet, with more boresight reflection and a reduced side lobe due to the reduced
phase gradient along the surface.

Other factors, such as the resulting droplet size of the liquid metal due to the employed
spraying parameters and the temperature of the liquid metal, could contribute to the
change in bulk conductivity that results in the slight deformation of the radiation pattern
in Figure 19. In combination with the effects of the variation on patch length and the
amount of oxide due to the spraying parameters, the resulting mismatch between the
simulated and fabricated spray-coated liquid–metal anomalous reflective metasurface seen
in Figure 11 occurred.
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Figure 19. Bistatic RCS simulations of a 6 × 4 spray-coated liquid–metal metasurface using Galinstan
with varying bulk conductivity. This simulation used the as-designed patch-length dimensions
specified in the caption of Figure 2, so the effects of varying conductivity can be observed independent
of variations in the as-fabricated patch lengths.

5. Conclusions

This paper presented what is believed to be the first rapidly prototyped anomalous
reflective metasurface based on spray-coating of Galinstan liquid metal. As a demonstration,
a 6 × 4 element spray-coated liquid–metal metasurface operating at 3.5 GHz demonstrated
an anomalous reflection at 28◦, similar to a metasurface with copper reflective elements
of the same dimensions. Differences between the measured and simulated results of the
spray-coated liquid–metal metasurface were attributed to variances in the fabricated patch
lengths and the bulk conductivity of the liquid–metal films. Therefore, future works could
be geared toward fabrication process improvements.

Manual spray-coating was used to fabricate the liquid–metal reflective metasurface,
making it susceptible to variations in patch dimensions and conductivity. Computer-
controlled spray-coating would help achieve constant spraying parameters, removing
unwanted variations and improving both the fabrication process and RF performance.

The liquid–metal spray-coating prototyping technique has the potential for reusability,
scalability, and reconfigurability. Other prototyping methods, such as sputter deposition,
inkjet printing, screen printing, and 3D printing, suffer from equipment limitations that
affect the scalability and cost of the metasurface. With pre-existing masks, our proposed
approach for rapid prototyping of anomalous reflective metasurfaces allows for faster fab-
rication with inexpensive deposition equipment. Our proposed approach also offers lower
recurring costs as the masks, the substrates, and the Galinstan are potentially reusable, as
Galinstan can be removed and recycled using an electrolyte solution like sodium hydrox-
ide [44].

The performance of a metasurface is highly dependent on the scalability of the array,
which is only limited by the size of the substrate and the material of the mask. To overcome
the size limitation of the substrate, a tiling method could be used where multiple substrates
are placed together, and the liquid metal elements are then spray-coated using a mask. The
material of the mask determines its reusability, which means that a sturdier material that is
compatible with liquid metal would allow a mask to be reused indefinitely, allowing for
easier scalability.

With pre-existing masks and removable reflective elements, our proposed liquid–
metal spray-coating technique offers potential reconfigurability of the metasurface. The
reflective metasurface demonstrated in this paper was able to redirect a normal beam
toward one anomalous angle. Other angles are possible by using a different template with
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a different coding sequence, e.g., State 0-0-2-2. Some sequences even resulted in multiple
anomalous angles so that multiple response teams in Figure 1 can be linked to the mobile
base station simultaneously.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ma17092003/s1, Table S1. As-fabricated measurements of 6 × 4 spray-coated
liquid–metal anomalous reflective metasurface patch dimensions.
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