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Abstract: Cryogenic cooling has gathered significant attention in the manufacturing industry. There
are inherent difficulties in machining materials that are difficult to machine because of high levels of
hardness, abrasiveness, and heat conductivity. Increased tool wear, diminished surface finish, and
reduced machining efficiency are the results of these problems, and traditional cooling solutions
are insufficient to resolve them. The application of cryogenic cooling involves the use of extremely
low temperatures, typically achieved by employing liquid nitrogen or other cryogenic fluids. This
study reviews the current state of cryogenic cooling technology and its use in machining difficult-to-
machine materials. In addition, this review encompasses a thorough examination of cryogenic cooling
techniques, including their principles, mechanisms, and effects on machining performance. The
recent literature was used to discuss difficult-to-machine materials and their machining properties.
The role of cryogenic cooling in machining difficult materials was then discussed. Finally, the latest
technologies and methods involved in cryogenic cooling condition were discussed in detail. The
outcome demonstrated that the exploration of cryogenic cooling methods has gained prominence in
the manufacturing industry due to their potential to address challenges associated with the machining
of exotic alloys.
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1. Introduction

A significant part of every economy is the manufacturing sector, which uses a wide
variety of production techniques [1]. One of the methods used in the production of
any workpiece is the machining method [2]. The machining method is based on the
principle of cutting the excess parts by removing the chip in order to obtain the desired
shape on the raw workpiece in the desired size, tolerance, and quality [3,4]. The superior
features of the machining method, such as its ability to be easily applied to different
materials [5], its ability to produce tolerances close to exact measurement [6], and its
ability to easily process different geometries with diversified machine-tool equipment,
have provided it with advantages over other manufacturing methods [7]. Performing the
machining method with high efficiency is of great importance in terms of product costs
and performance [8]. It is desired that the cost of items, such as energy consumed during
operation and cutting tool life, are at low levels, and product features such as surface
quality and dimensional accuracy are at high levels [9,10]. To achieve optimum efficiency
in machining, it is crucial to accurately estimate the machining and cutting tool parameters
based on the workpiece material, and to decide on the suitable machining parameters
accordingly [11]. It is a common practice to use cooling applications to increase efficiency
and solve problems encountered in machining methods [12,13]. Cooling applications
within the scope of machining have been used since the mid-19th century [14]. The high
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heat released during machining negatively affects operational safety, especially cutting
tool performance [15,16]. Effective removal of this high heat generated during cutting
from the cutting area is also possible with an effective cooling application [17]. Effective
cooling removes the heat generated in the cutting area, accelerates chip evacuation, creates
a film layer between the tool and chip, lubricates and reduces friction [18]. With all
these contributions, cooling application increases tool life and operational efficiency [19].
However, the use of chemical-based cooling fluids causes harm to human health and
environmental pollution problems [20]. If waste management of chemical-based coolants
is not done effectively, it causes great harm to the environment [21]. This situation makes
environmentally friendly approaches in cooling applications and research on achieving
high efficiency with low amount of refrigerant usage important [22]. These approaches
and the needs of machining methods have led to the formation of different types of
cooling applications [23,24]. Based on operational needs, conventional cooling, MQL, and
cryogenic cooling have been developed [25]. High efficiency in machining is possible by
reducing costs without compromising product quality. Therefore, tooling costs [26], energy
consumption [27], and cooling costs [28] must be kept low. Determining appropriate cutting
parameters besides cooling conditions in terms of operational costs is among the objectives
of the mentioned studies [29–32]. Figure 1 shows the problems and research directions for
difficult-to-machine materials.
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Therefore, this review article focuses on the most recent topic in these lines, which is
known as new innovations and changes in cryogenic cooling. These modifications include
the incorporation of nanoparticle-added nanofluids and/or minimum quantity lubrication.

2. Difficult-to-Machine Materials

Materials that are difficult-to-machine include alloys based on steel, nickel, and ti-
tanium [33–36]. In general, “Difficult-to-machine materials” are named as such due to
their high strength, high ductility, low thermal conductivity, high susceptibility to strain,
high strain rates, and hardening [37]. The low thermal conductivity of difficult-to-machine
materials leads to heat concentration in the cutting zone [38]. As a result, machining these
types of materials negatively affects properties such as high residual stresses [39], high
cutting forces [20], high cutting temperature [39], rapid tool wear [40], accumulation of
chip (BUE) formation in the cutting tool [41], surface quality [42], fatigue life [43], and
corrosion resistance caused by chip-breaking difficulties [44]. It is vital to consider the
heat generated by the cutting tool and the workpiece, as it relates to machining mechan-
ics and tool life. Almost all of the energy spent during machining turns into heat in the
cutting zone, which is important in terms of tool life, cutting forces, chip form, and work-
piece surface quality [45–47]. Despite the trend toward dry cutting, cutting fluids are
preferable for machining these materials because dry cutting reduces product quality and
tool life [48]. The dimensional accuracy of materials that cause rapid tool wear and are
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difficult-to-machine is primarily due to tool wear [49]. Additionally, if the wear on the
rake surface of the cutting tool exceeds a critical point, chip breakability may also pose
a problem in terms of machinability [50]. Cooling and lubricating strategies have been
used to improve machinability in difficult-to-machine materials due to abrasive tool wear,
surface quality degradation, and high cutting temperatures [51,52]. Application of cooling
in the cutting process can increase tool life [53] and dimensional accuracy [54], reduce
cutting temperature [55], improve productivity by reducing surface roughness [56] and
the amount of power consumed for the process [57]. However, cutting fluids are not only
harmful to the environment, but are also dangerous to health [58]. These issues have led to
several attempts to reduce or eliminate cutting fluid [59,60].

2.1. Machining Characteristics of Difficult-to-Machine Materials
2.1.1. Tool Wear

According to machining research, friction, pressures, and high temperatures at the
tool-chip and work-piece-tool interface cause elastic and plastic deformation and tool
wear [61–63]. Shape changes and wear that occur in the tool during machining negatively
affect the machining process [64]. The negative effects caused by wear on the tool are
the decrease in tool life [65] and, accordingly, the increase in production costs and the
decrease in process quality [66]. In order to accurately determine tool life, it is necessary
to know the tool failure mechanisms that negatively affect tool life and the reasons for
these mechanisms [67]. Cutting tools end their life through wear, plastic deformation, or
breakage. An ideal cutting tool should have the following features listed below [68–70]:

• High temperature hardness for operation at high temperatures.
• High elastic and plastic deformation resistance against high tension.
• High fracture toughness against impacts occurring during machining.
• Chemical stability, especially at high temperatures, for resistance to diffusion and

chemical and oxidation corrosion.
• High thermal conductivity to prevent heat accumulation on the tool cutting edge,
• High fatigue resistance in intermittent machining.
• High thermal shock resistance against heating and cooling that occurs during cutting.
• High rigidity for dimensional stability.
• Suitable friction properties to prevent the formation of chip accumulation (Built-up

Edge-BUE), especially in the machining of soft, ductile materials.

The effective wear mechanism in free surface wear is the abrasion mechanism as
shown in Figure 2. For these reasons, the heat generated in the contact area has a great
effect on tool wear, and therefore the importance of cryogenic cooling is increased [71].
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2.1.2. Surface Roughness

Due to physical, chemical, thermal, and mechanical movements between the cutting
tool and the workpiece, undesirable machining marks appear on machined surfaces de-
pending on the machining method, cutting tool, and conditions [72–74]. Surface roughness
is the situation that creates irregular deviations above and below the nominal surface
line [75,76]. It is inevitable for surface roughness to occur on machined surfaces, regardless
of the work material and machining method used [77]. A key quality consequence in
machining is part surface integrity [78]. Figure 3 shows the surface quality under dry and
cryogenic machined surfaces.
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2.1.3. Cutting Temperature

The plastic deformation on the workpiece and chip flow from the cutting tool surface
generate heat during machining processes. The heat generated on the surface of the cutting
tool when the cutting tool contacts the workpiece is called the cutting tool temperature [80].
The distribution of the resulting temperature is related to heat loss due to thermal conduc-
tivity, heat capacity, radiation, and convection of the workpiece and cutting tool. Since
most of the power spent in machining processes turns into heat, cutting forces, tool wear,
residual stresses, and many other features are seriously affected [81]. There are three basic
heat generating sources during the machining process [82].

• Primary shear zone (PSZ): The area where the majority of the material is removed
or deformed during cutting is called the primary shear zone in machining. In this
region, the cutting tool exerts the forces that ultimately lead to the shearing of the
workpiece [83].

• Secondary shear zone (SSZ): As the chip undergoes plastic deformation for the second
time, heat is generated, and less heat, but a higher temperature than PSZ, is absorbed
by the workpiece [84].

• Tertiary shear zone (TSZ): The friction of the cutting tool’s side surface on the work-
piece’s machined surface generates heat in this region, and wear on the side surface
enhances it. The minimum heat generated is absorbed by the cutting tool [85].

In other words, as long as the cutting process continues, heat production continues
and is distributed among the cutting tool, workpiece, chip, and cooling/lubricating fluid.
In Figure 4, heat production and distribution in the machining process are expressed in
detail on the two-dimensional model.

Cutting temperature varies by tool, chip, and workpiece. In Figure 5, the highest
temperature is on a line away from the cutting edge. By optimizing tool geometry, machin-
ing parameters, and coolant, machining temperature can be reduced. Figure 6 shows that
cooling fluids are the best way to lower cutting temperatures.
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as the workpiece layers cross the tool-workpiece interface, showing heating and cooling phases
separated by a high-temperature deformation region [82].
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2.1.4. Cutting Forces and Power Consumption

In machining, cutting forces directly impact heat generation, tool wear, surface quality
after machining, and dimensions of the workpiece. Main cutting force (Fc), feed force (Ff),
passive radial force (Fp), and resultant force (Fr) are the four forms of cutting forces used in
machining processes (Figure 7).
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Machining difficult-to-machine materials reportedly results in high cutting forces,
which in turn leads to increased tool wear [88]. There is a strong relationship between
the power required for metal removal and cutting forces [89,90]. The power consumed in
the cutting process is the factor that determines energy consumption, which is one of the
most important cost factors in production. Combining the cutting speed (V) with the main
cutting force (Fc) yields the necessary power (Pc) for machining. Cutting depth (ap), feed
rate (f), and the material’s particular cutting resistance (kc) component all contribute to
the main cutting force’s magnitude [91]. The main cutting force (Fc) is the most important
parameter that determines the power spent on machining and therefore the energy cost [92].
Cutting forces are an important parameter in understanding cutting performance well.

3. Machining Difficult Materials Using Cryogenic Cooling

In order for cutting fluids to exhibit the desired performance, they must be applied
correctly and effectively [93]. Cutting fluid properties, operation characteristics and re-
quirements, and cutting tool characteristics have led to different cooling methods [94].
In order to apply cooling methods efficiently, cooling systems (tank, pump, cooling line,
filter, valves, etc.) have been added to the benches as hardware. Since adding all cooling
methods to the counter will increase the costs significantly, the most used cooling methods
are preferred by manufacturers [95]. Cooling methods can be used directly on the machine
tool or applied to the cutting area from outside. In cooling applications, care should be
taken to cool the tool and workpiece, not the chip [96]. This makes the positioning of the
cooling system important, as seen in Figure 8. The application pressure of the cutting fluid
is effective in chip breaking, chip removal, and fluid penetration.
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In addition, the cryogenic coolants are supplied in the gas form. In general, the gases
are a fluid that is continuous in the air shear zone [98]. The limited lubrication and cooling
effects of air are effective even in dry cutting conditions. Sending compressed air to the
cutting area with the help of a compressor facilitates chip evacuation, does not require any
cost, has high penetration, and can enter areas where liquids cannot enter [99]. It may not
be desirable for liquid residues to remain on some special materials. In such cases, the
cooling effects of gases such as helium, carbon dioxide, argon, and nitrogen are used [100].
Carbon dioxide, which is compressed and sent to the cutting area, evaporates and provides
cooling. In addition to systems in which air or gases are used directly, there are also
applications in which they are sent to the cutting zone accompanied by other coolants
and lubricants [101]. Another method of air-enhanced cooling is achieved by sending
liquid nitrogen (LN2) along with air to the cutting area. The ability of liquid nitrogen to
remain at very low temperatures (−196 ◦C) enabled the effective cooling of the cutting
zone [102]. This effective cooling reduces tool wear by reducing the high temperatures
that occur during cutting. The increase in tool life and cutting performance makes this
method stand out [103]. In addition to nitrogen costs, storing nitrogen in special tanks
and transporting it through special lines causes additional costs [104]. All these have led
to the use of cryogenic cooling in limited areas. Królczyk et al. examined the tool life
in machining of duplex stainless steel. The authors reported that as the cutting speed
increased, the wear on the cutting tool edge became more intense [105]. Krolczyk et al.
evaluated workpiece surface roughness, cutting force, and cutting tool life when turning
duplex stainless steel under dry and cooling/lubrication conditions using three carbide
cutting tools. The test results showed that dry machining and finished cutting tool quality
increased cutting tool life by almost three times above cooling/lubrication conditions. They
also noted that low feed rates and high cutting speeds save energy usage and improve
machining efficiency [20]. Sivaiah and Chakradhar investigated the effects of cryogenic
cooling conditions on cutting temperature, cutting tool flank wear, chip removal rate,
surface roughness, surface topography, and micro hardness in turning 17-4 PH stainless
steel. They applied cooling to the cutting zone in two different ways, as seen in Figure 9. In
Mode 1, they sent LN2 through the cutting tool from the upper and lower points closer to the
cutting tool, and in Mode 2, they used LN2 between the tool and the chip through an external
nozzle. They stated that the Mode 1 nozzle significantly improved machining efficiency at all
levels compared to the external Mode 2 nozzle in turning 17-4 PH stainless steel [106].
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Bagherzadeh et al. examined cutting tool wear, workpiece surface roughness, cut-
ting forces, and chip formation in the cryogenic-assisted turning of Ti6Al4V and Inconel
718 alloys. They concluded that cryogenic experiments yielded longer tool life and better
workpiece surface quality than dry experiments [107]. In turning Inconel 718 super alloy,
Kaynak examined the effects of dry, MQL, and cryogenic cutting conditions on cutting
force, tool wear, cutting temperature, chip shape, and surface roughness. Cryogenic cool-
ing reduced cutting zone temperature, cutting tool wear, and workpiece surface quality,
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according to the experiment [108]. In turning the Hastelloy C-276 super alloy material with
multilayer TiAlN-coated cutting tools using PVD, Dhananchezian examined the effects of
dry and cryogenic cooling on cutting temperature, cutting force, surface roughness, tool
wear, and tool morphology. LN2 reduced cutting zone temperature by 61–68%, and cutting
force and surface roughness by 8–33%. Cryogenic machining turned the Hastelloy C-276
material with better tool wear than dry machining, as seen in Figure 10 [109]. Park et al.
evaluated tool wear and cutting forces in milling the Ti-6Al-4V titanium alloy with external,
internal, and NanoMQL + internal cryogenic cooling/lubrication. The experimental results
showed that NanoMQL + internal Cryo cooling conditions improve cutting forces by 51%
compared to internal cryogenic cooling conditions, and significantly decrease other cutting
forces (Figure 11) [110].

The impact of various cutting settings on tool wear, surface roughness, and cutting
tool life in milling Ti6Al4V material under cryogenic and MQL conditions was investi-
gated by Shokrani et al. According to their findings, cutting tool life is extended, and
performance is 50% better under the cryogenic + MQL cooling/lubrication condition than
under the standard cooling system [111]. Using MQL, and cryogenic conditions, Sun
et al. investigated cutting force, workpiece surface roughness, and cutting tool wear in
turning the Ti-5553 alloy. The experimental study found that compared to normal and
MQL cooling conditions, cryogenic chilling reduced cutting force by up to 30%, improved
surface roughness, and extended cutting tool life [112]. Jamil et al. examined changes in
surface roughness, cutting force, and cutting temperature when turning Ti-6Al-4V under
cryogenic (CO2) and hybrid NanoMQL (Al2O3 and MWCNT). Hybrid NanoMQL cooling
reduced surface roughness by 8.72%, cutting force by 11.8%, and cutting tool life by 23%
compared to cryogenic cooling. Compared to the hybrid Nano + MQL cooling condition,
cryogenic cooling reduced cutting zone temperatures by 11.2% [113]. Table 1 shows the
work conducted by different researchers.
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Table 1. Studies on cryogenic cooling in the machining of difficult-to-machine materials.

Authors Workpiece

Machining Outputs

Cooling MethodCutting
Temperature

Cutting
Force

Surface
Roughness

Tool
Wear

Dhananchezian
et al. [114] Ti6Al4V

√ √ √ √ Cryogenic
cooling

Iturbe et al. [115] Inconel718
√ √ Conventional cooling and

cryogenic cooling

Sartori et al. [116] Ti6Al4V
√ √ Cryogenic

cooling

Moritz et al. [117] Ti6Al4V
√ √ Cryogenic

cooling

Zhao et al. [118] Ti6Al4V
√ √ Cryogenic

cooling
Chaabani
et al. [119] Inconel718

√ √ √ Cryogenic
cooling

Zurecki et al. [120] 52100 steel
√ Conventional cooling and

cryogenic cooling
Aramcharoen

et al. [121] Ti6Al4V
√ Cryogenic

cooling

Patel et al. [122] Nimonic 90
√ √ √ Cryogenic

cooling

Shah et al. [123] Inconel718
√ √ Cryogenic

cooling

Sivaiah et al. [124] 17-4 PH stainless
steel

√ √ √ √ Conventional cooling and
cryogenic cooling

Jebaraj et al. [125] 55NiCrMoV7 die
steel

√ √ √ Cryogenic
cooling

Gong et al. [126] 35CrMnSiA steel
√ √ Cryogenic

cooling

4. Recent Developments and Modifications in Cryogenic Cooling

Lubrication and cooling applied simultaneously while machining significantly im-
proves operational efficiency [127,128]. Cutting fluids are used to increase chip evacuation
speed, reducing chip sizes, preventing chip adhesion, preventing corrosion, and increasing
tool life [129]. In order for cutting fluids to have the desired effect, they must be applied cor-
rectly to the cutting area [130]. For good cooling performance, the heat conduction ability
and specific heat of the cutting fluid must be high [131]. For good lubrication, the cutting
fluid must have high adhesion or wetting properties [132]. Adhesion or wetting means that
the fluid sticks to a surface at a certain thickness [133]. Oils, especially vegetables ones, are
liquids with high adhesion ability. Properties of main cutting fluids [134]:

• High cooling ability.
• High lubrication ability.
• High corrosion protection.
• Long storage and usage life.
• Non-flammable and non-flammable properties.
• No harmful effects on health.
• Low viscosity.
• Does not adversely affect operating conditions.
• Environmentally friendly and not polluting the air and water.
• Highly recyclable.
• Does not increase costs too much.

There is no ideal cutting fluid that has all of these features [135]. Cooling and lu-
brication properties are the determining features for cutting fluids. Water has high heat
conduction ability and specific heat. The specific heat of water is approximately twice
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that of oils [136]. However, the adhesion properties of water are very low [137]. Addition-
ally, water causes corrosion, resulting in a decrease in product quality [138]. For an ideal
cutting fluid, oil mixtures that have both high cooling ability and high water adhesion
ability and additional substances that will contribute to this mixture are added. Cutting
fluids are generally evaluated under two headings with their different properties and
uses. Cutting fluids are classified as emulsion cutting fluids, chemical cutting fluids, and
cutting oils [139,140]. There are conditions where gases are also used for similar purposes
during cutting to increase operational efficiency. Cutting oils are used in processes where
lubrication rather than cooling is important [141]. Cutting oils provide high corrosion
protection and surface quality [142]. However, the risk of burning limits their use at high
cutting speeds. Chemical cutting fluids consist of a mixture of water and chemicals. These
liquids have superior cooling capabilities and corrosion prevention properties. Its high
cooling properties provide great benefits at high cutting speeds where heat generation is
high. These fluids are clear and do not obscure the operating conditions. However, its
lubricating properties are very poor. Some mineral oils are added to these chemical fluids to
increase their lubricating properties. These cutting fluids are called semi-chemical cutting
fluids. Emulsion cutting fluids are the mixtures of water and oil [143]. The mixing ratio of
water and petroleum-based mineral oil is between 5 and 10%. The mixture usually takes
on a milky color. These fluids are preferred due to their high cooling, clean working envi-
ronment, high corrosion prevention, low cost, low combustion, and lubrication properties.
They are frequently used in all operations and cutting speeds, except very heavy metal
removal operations [144].

4.1. Hybrid Method-1 (Cryogenic + MQL)

Studies in the literature on machining of difficult-to-machine materials generally show
that, due to their frequent use in industries, machining of stainless steels [145], nickel
alloys [146] and titanium alloys [147] under different cutting conditions and cutting pa-
rameters results in outputs such as surface and subsurface integrity properties, cutting
forces and tool life. When a general literature research on the subject is conducted and the
results obtained are compared, it can be seen that cooling applications using cryogenic
liquid nitrogen (LN2) and cryogenic carbon dioxide gas (CO2) in the machining of such
materials cause excessive cooling of the material at low cutting speeds and when the cutting
temperature is relatively low [125]. When the studies using MQL derivatives were exam-
ined, it was observed that this method could be efficient in terms of surface roughness and
cutting forces at medium cutting speeds [148], but was insufficient in cooling at high cutting
speeds and increased tool wear along with the increase in force. In general, it does not
seem possible to reduce the cutting forces occurring during machining in an efficient and
sustainable way by using different cooling/lubrication conditions alone [149]. While there
have been several studies on various strategies for lowering cutting forces in machining
operations, one of the most popular is the hybrid cooling/lubrication approach, which
includes cryogenic cooling [150]. In cases where cryogenic methods and MQL method
derivatives are individually insufficient, it can be seen that hybrid cooling/lubrication
methods, especially in machining of difficult-to-machine materials, can be quite effective
in cases where the cutting speed is high [151]. Based on the findings, cryogenic methods’
cooling capabilities can lead to material hardening issues, such as increased cutting forces
and surface roughness, as well as tool wear and difficulty in machining materials with low
cutting speeds [152], which also occur when the MQL method and its derivatives are used
at high speeds [153]. It is necessary to reduce the negative effects arising from the character-
istics of the cooling/lubrication methods. To support the high cooling capacity of cryogenic
methods with sufficient lubrication capacity, the good lubrication properties of the MQL
method and its derivatives can be used. Therefore, in addition to the cooling/lubrication
methods used, the cutting parameters and machining method must be selected together
and in the most appropriate way. More research is needed in this field in order to diversify
the approaches to examine cutting forces in the machining of difficult-to-machine materials
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to develop hybrid cooling/lubrication methods and to further clarify the combinations
of cooling/lubrication, material type, parameter group, and manufacturing methods re-
quired to reduce cutting forces [154]. Table 2 listed the work on hybrid methods, especially
focusing on the difficult-to-machine materials.

Table 2. Studies on Hybrid method-1 (Cryogenic + MQL).

Authors Workpiece

Machining Outputs

Cutting Force Surface
Roughness Tool Wear/Life Microhardness/Microstructure

Pereira et al. [155] AISI 304 Steel
√ √

Pusavec et al. [156] Inconel718
√ √ √

Pereira et al. [157] Inconel718
√ √

Wika et al. [158] AISI 304 Steel
√ √

Pereira et al. [159] Inconel718
√

Schoop et al. [160] Ti6Al4V
√ √ √

Pusavec et al. [161] Inconel718
√

Shokrani et al. [111] Ti6Al4V
√ √

Pereira et al. [162] Inconel718
√

Gajrani et al. [153] Ti6Al4V
√ √ √

4.2. Hybrid Method-2 (Cryogenic + Nanoparticles + MQL)

Nanoparticles are particles obtained by breaking down metal or non-metal materials
by physical or chemical means and reducing them to nanometer size. Different nanopar-
ticle production methods, including chemical, electrolysis, or atomization, can be used
depending on the type of material and the shape and size of the desired nanoparticle.
Metal oxide nanoparticles, which have good heat conduction rates and low costs, are
frequently preferred as nanofluids [163]. Figure 12 shows the Fe2O3 nanoparticle with
different concentrations.
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Apart from Fe2O3, various metal oxide particles are also used to create nanofluids.
There are various metal oxide nanoparticles used for different processing processes. These
are aluminum oxide (Al2O3), titanium dioxide (TiO2), silicon dioxide (SiO2), iron trioxide
(Fe2O3), magnetite (Fe3O4), copper oxide (CuO), zinc oxide (ZnO), and zirconium dioxide
(ZrO2), as shown in Figure 13.
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The thermal conductivity and density of nanoparticles in the base fluid determine
nanofluid performance [165]. Table 3 shows metal oxide nanoparticle thermal conductivity
and density.

Table 3. Thermal conductivity and density properties of metal oxide nanoparticles [165].

Metal Oxide Nanoparticles Thermal Conductivity (W/m·K) Density (g/cm3)

Al2O3 40 3.97
TiO2 11.7 4.23
SiO2 7.6 2.4

Fe2O3 7 5.34
Fe3O4 17.65 5.18
CuO 29.8 6.5
ZnO 50 5.61
ZrO2 2 5.89

Apart from metal oxides, there are various nanoparticles used for nanofluids. These
are multi-walled carbon nanotubes (MWCNT), graphene, teflon (PTFE), hexagonal boron
nitride (hBN), molybdenum sulfide (MoS2), silver (Ag), calcium fluoride (CaF2), and
tungsten disulfide (WS2), which can be counted as diamonds. Some of these nanoparticles
(calcium fluoride, tungsten disulfide, etc.) can be used in micro size due to their material
properties. Colloid mixtures made by mixing metallic or non-metallic nanoparticles with
base fluid are called nanofluids. Figure 14 shows the nanofluid preparation stages.
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While preparing a nanofluid, the nanoparticle is added to the cutting fluid on a volume-
based or mass-based basis, and the mixing ratio is determined. After adding the specified
amount of nanoparticles to the appropriate cutting fluid, it is first subjected to magnetic
stirring. Mechanical mixing is then done to obtain a homogeneous mixture. In the final
stage, the mixture is also subjected to ultrasonic mixing to prevent the nanoparticles from
precipitating [167]. In this way, a homogeneous and delayed collapse nanofluid is obtained.
Machining performance is improved by using nanofluids in MQL systems. Nanoparticles
enhance the cooling effect of cutting fluid due to their high thermal conductivity. Fur-
thermore, cutting fluids containing nanoparticles have an improved lubricating effect due
to their increased viscosity [168,169]. Furthermore, the cutting fluid’s particles have a
polishing action, which further enhances surface quality [170]. Research on nanofluids’
impact on heat transfer performance has shown that the thermal conductivity of the fluid
is greatly affected by the type, size, and volume of reinforced nanoparticles [171]. Table 4
shows the studies on Hybrid method-2 (Cryogenic + nanoParticles + MQL)

Table 4. Studies on Hybrid method-2 (Cryogenic + nanoParticles + MQL).

Authors Workpiece
Machining Outputs

Cutting
Temperature

Cutting
Force

Surface
Roughness Tool Wear Chip

Morphology
Microhardness/
Microstructure

Korkmaz et al. [149] Inconel601
√ √ √ √

Sen et al. [172] Hastelloy C276
√ √ √ √ √ √

5. Conclusions and Future Scope

Ultimately, this extensive investigation into cryogenic cooling and its uses in cutting
difficult-to-machine metals has exposed a new technical frontier with enormous promise for
the industrial sector. The advancements discussed underscore the transformative impact of
cryogenic cooling in overcoming longstanding challenges associated with the machining of
difficult-to-machine alloys. This state-of-the-art review led to the following conclusions:

• Cryogenic cooling is a machining alternative. Superalloys, ferrous metal, and viscoelas-
tic polymers/elastomers are cryogenically machined. Titanium, Inconel, and tantalum
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superalloys performed better with cryogenic cooling during turning, including surface
roughness, tool life, tool wear, cutting forces, etc.

• Cryogenic cooling solves the main issue in machining superalloys—heat accumulated
in the cutting zone due to poor thermal conductivities. If configured properly, cryo-
genic machining also improves ferrous metal machining. Correct cryogen application
can delay/reduce ferrous steel high-speed machining tool wear and change component
surface behavior. Cryogenic cooling changed hardness, adhesion, and machinability.

• Cryogenic cooling improves tool life, surface finish, and machining efficiency. The
extreme temperatures of cryogenic fluids can reduce heat generation during machining.
This discovery increases tool lifespan and allows for the precision cutting of previously
difficult materials.

• The future of cryogenic cooling in alloy machining is bright. Further research and
development can optimize cryogenic processes, explore novel cryogenic fluids, and
improve system designs for efficiency and applicability. Academic-industry synergies
can also advance knowledge and application.

• The adoption of cryogenic cooling is poised to expand across diverse sectors, influenc-
ing not only traditional manufacturing, but also emerging industries such as aerospace,
medical devices, and electronics. The environmental sustainability of cryogenic cool-
ing, coupled with its economic advantages, positions it as a key player in the pursuit
of greener and more efficient machining practices.

• Additionally, cryogenic cooling has environmental and economic impacts. Tool wear
and energy consumption reduction support sustainable manufacturing, making in-
dustry greener and more efficient. As industries seek to increase productivity and
precision, cryogenic cooling shows their commitment to innovation.

• Finally, cryogenic cooling technology lays the groundwork for a dynamic precision
machining age. As researchers and industry professionals explore cryogenic cool-
ing’s possibilities, alloy machining will change, pushing innovation and excellence in
manufacturing for years to come.
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149. Korkmaz, M.E.; Gupta, M.K.; Günay, M.; Boy, M.; Yaşar, N.; Demirsöz, R.; Ross, K.N.S.; Abbas, Y. Comprehensive analysis of tool
wear, surface roughness and chip morphology in sustainable turning of Inconel-601 alloy. J. Manuf. Process. 2023, 103, 156–167.
[CrossRef]

150. Demirsöz, R.; Korkmaz, M.E.; Gupta, M.K. A novel use of hybrid Cryo-MQL system in improving the tribological characteristics
of additively manufactured 316 stainless steel against 100 Cr6 alloy. Tribol. Int. 2022, 173, 107613. [CrossRef]
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