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Abstract: Steel slag is a by-product of the steel industry and usually contains a high amount of
f-CaO and f-MgO, which will result in serious soundness problems once used as a binding material
and/or aggregates. To relieve this negative effect, carbonation treatment was believed to be one
of the available and reliable methods. By carbonation treatment of steel slag, the phases of f-CaO
and f-MgO can be effectively transformed into CaCO3 and MgCO3, respectively. This will not only
reduce the expansive risk of steel slag to improve the utilization of steel slag further but also capture
and store CO2 due to the mineralization process to reduce carbon emissions. In this study, based
on the physical and chemical properties of steel slag, the carbonation mechanism, factors affecting
the carbonation process, and the application of carbonated steel slag were reviewed. Eventually, the
research challenge was also discussed.

Keywords: steel slag; carbonation; soundness; carbonation mechanism; influencing factors

1. Introduction

Steel slag is a by-product generated during the steelmaking process, with a production
rate of approximately 10–15% of the crude steel quantity [1]. Large amounts of steel slag
have been produced annually in many regions [2]. As a major steel producer in the world,
crude steel production in China reached 1.01 billion tons in 2022 while producing more
than 160 million tons of steel slag [3]. However, the comprehensive utilization rate of steel
slag in China is still at a low level, which not only occupies a large amount of land but also
poses great hazards to the environment due to the dust generated during the transportation
and processing of steel slag and the leaching of harmful components in steel slag such as
chromium (Cr) and vanadium (V) [4,5].

To recycle steel slag, many studies have been conducted on the properties and po-
tential application of steel slag in different fields, such as stable layer in the subgrade, a
supplementary cementitious material or an aggregate in cement and concrete, developing
blocks, producing microcrystalline glass, sintering material, soil remediation, and adsorp-
tion of heavy metals in sewage, etc. [6–10]. However, the current effective comprehensive
utilization rate of steel slag in China is only approximately 30% because of its unsoundness
induced by the gradual hydration of f-CaO and f-MgO, and the low hydraulic activity
limits its utilization as well [11–14]. Visible volumetric expansion would occur due to the
hydration of these low reactivity phases, i.e., f-CaO and f-MgO, during the service process.
Therefore, eliminating the negative effect of f-CaO and f-MgO during the service life of
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steel slag-based construction materials became the key problem, and pretreatment of steel
slag before it is used in the practical application has been considered.

As is known, steel slag contains a large amount of silicate minerals, aluminosilicate
minerals, and f-CaO and f-MgO. All these phases can react with CO2, and the reaction
between CO2 and f-CaO (or f-MgO) to form CaCO3 (or MgCO3) during the pretreatment,
reducing the instability risk at long-term service in the practical application [15,16]. Fur-
thermore, it can reduce the emission of CO2 in the atmosphere and protect the ecological
environment, showing a great advantage of CO2 capture [17,18]. As reviewed in 2022, the
global carbon dioxide (CO2) emissions increased by 0.9% or 321 million tons compared
with that of 2021 (Figure 1), and the CO2 concentration is supposed to be 1000 ppm by
2090 [19,20]. Using carbon compensation technology to reduce the carbon footprint has
become a hot topic nowadays, and carbonation treatment is one of the most reliable and
economical approaches [21–24]. It has been reported that the carbon capture, utilizatio-
nand storage (CCUS) by steel slag are thermodynamically favored, showing significant
prospects [25,26].
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Figure 1. Global CO2 emissions from 2015 to 2021 (million tons) [19,20].

Therefore, this article reviews the carbonation of steel slag based on its physicochemical
properties, and factors affecting the thermodynamic and kinetic processes of carbonation
are discussed. Eventually, the potential application of carbonated steel slag is summarized.

2. Physical and Chemical Properties of Steel Slag

According to the production process, steel slag can be divided into converter (BOF)
slag, electric arc furnace (EAF) slag, ladle furnace (LF) refining slag, stainless steel (AOD)
slag, etc. Among them, BOF slag is one of the main types of steel slag [11,27]. In China,
more than 80% of steel slag is derived from the converter process [28].

Due to the high iron content, BOF slag is a dark rock-like substance with an angular
surface and a sponge-like interior, showing an aggregate pattern. The specific gravity of
BOF slag usually ranges from 3.35 to 3.42 g/cm3, and it was reported that the physical prop-
erties of steel slag aggregate were superior to those of crushed limestone aggregate [14,29].
The water absorption of steel slag was between 2.0 and 3.31%, the crushing index was
approximately 21%, and the soundness index evaluated by the mass loss after immersed in
the sodium sulfate solution reached 16% [30]. Steel slag exhibits poor grindability attributed
to the presence of ferrite phase. Xiang et al. [31] reviewed that due to the high content of
iron oxide and MgO-MnO-FeO solid solution (RO) phase and the high absolute density
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with a value of approximately 3.7 g/cm3 on average, the grindability of converter steel slag
was poor.

Steel slag mainly consists of CaO, SiO2, FexOy (Fe2O3/FeO/Fe), Al2O3, and MgO, with
the remaining minor oxides such as MnO, P2O5, Na2O, SO3, etc., which are similar to those
of Portland cement [32,33]. However, due to the diversity of iron ore, additives, steelmaking
methods, and cooling processes, the chemical composition of BOF slag fluctuates greatly,
as shown in Table 1. BOF steel slag can be divided into low-alkalinity, medium-alkalinity,
and high-alkalinity steel slag based on the basicity, a weight ratio of CaO to the sum of
SiO2 and P2O5. Steel slag with a basicity of 0.78–1.8 is generally considered as low basicity
steel slag, a value of 1.8–2.5 is referred to be medium basicity, and a value of 2.5 or higher is
referred to as high basicity steel slag. The content of tricalcium silicate and RO phase in
steel slag varies depending on basicity. With respect to BOF slag, it usually has a relatively
high basicity, with a value of approximately 2.5–5, and the main mineral phases were C3S,
C2S, C4AF, C2F, and RO [34–38]. Therefore, the ground steel slag powder can be used
as a cementitious material, but the hydraulic potential was poor due to the formation of
coarse and dense crystals during the slow cooling process of melted slag [39]. In addition,
the formation of the RO phase and transformation of β-C2S to γ-C2S during cooling also
reduced the reactivity of steel slag. On the other hand, owing to its high content of belite
(C2S) and lime (CaO), BOF slag is prone to react with CO2 to produce carbonation products
at certain temperature ranges [40].

Table 1. Main chemical composition of converter steel slag and cement in China.

Category Origin
Chemical Composition (wt.%)

Reference
CaO SiO2 FexOy Al2O3 MgO

Cement — 64.88 22.08 3.42 4.51 2.28 [41]
BOF1 Beijing 44.21 12 29.74 4.05 4.51 [41]
BOF2 — 40.20 10.76 16.47 4.49 9.48 [42]
BOF3 Panzhihua 42.18 15.02 22.58 6.14 8.94 [43]
BOF4 — 45.34 11.41 30.31 1.31 2.19 [44]
BOF5 — 34.77 26.44 18.40 10.03 6.01 [45]
BOF6 — 40.20 10.76 16.47 4.49 9.48 [46]
BOF7 — 38.48 15.42 26.79 4.45 8.08 [47]

3. Carbonation of Steel Slag
3.1. Carbonation Mechanism of Steel Slag

The carbonation reaction process of steel slag is similar to that of lime carbonation.
Research conducted by Wei [48] has shown that the reaction occurs from the surface of the
particle initially. Once CO2 is in contact with the mineral phase of steel slag, carbonation
products form on the particles immediately. As the reaction proceeds, the carbonation layer
becomes thicker and denser, preventing the diffusion of CO2 into the particles. Finally,
unreacted reaction cores may form, as shown in Figure 2a. The carbonation reaction of
steel slag includes the following steps: (1) diffusion of CO2 gas to the surface of steel slag;
(2) diffusion of CO2 gas via the CaCO3 product layer; (3) CaO reacts with CO2 gas at the
reaction interface, and the reaction interface moves inward [49].

However, because of the uneven distribution of the mineral phase, the carbonation
products also distribute heterogeneously on/in the particles. A surface coverage model
was proposed to describe the carbonation product distribution on the surface of the steel
slag particles, as shown in Figure 2b. It is believed that the reaction only occurs on the
unreacted active surface sites, and as the reaction time increases, the reaction continues
with the products covering the active surface. Due to the similarity of the reactions, this
model is also applicable to the reaction between Ca(OH)2 and CO2. The calcium-containing
phase reacts with CO2 to form calcium carbonate, which adheres to the surface of steel slag,
resulting in the coverage of the active surface [48]:
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The carbonation kinetic process on the steel slag particles is controlled by the reaction
between dissolved Ca2+ and CO2 in the initial stage, and it is then related to the diffusion of
CO2 molecules in the carbonated layer. In general, the carbonation methods of steel slag are
different, including indirect carbonation and direct carbonation, as shown in Figure 3. In
terms of indirect carbonation, the carbonation was conducted after the extraction of alkali
metals that CO2 is immersed into the steel slag slurry. Direct carbonation can be divided
into dry carbonation (Figure 4) and wet carbonation (Figure 5), depending on the water
content in the steel slag, and the reaction occurs in a single process step [50–52].
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Indirect carbonation initially extracts certain metal elements from steel slag using
extraction solvents and then injects carbon dioxide gas into the aqueous solution to form
carbonate precipitates. Taking cement and concrete as an example, acidic media is used
to recover Ca2+ ions, which are released from the hydrolysis of clinker (e.g., (Ca(OH)2)
or from the Ca-O-Si network of hydration products. The leached Ca2+ caGition can react
with the CO3

2− anion, which is derived from the dissolve of CO2 in the liquid to form
calcium carbonate. Due to the low solubility of calcium carbonate, it is prone to precipitate,
and consequently, carbonate production was developed. The precipitation obtained by
this method showed certain economic value, but the process was too complicated, and the
additional chemical solvent undoubtedly increased the cost of treatment [55,56].

Direct dry carbonation is similar to natural weathering, where f-CaO, f-MgO, Ca(OH)2,
Mg(OH)2, C2S, and C3S in steel slag directly react with CO2, as shown in the following
chemical Formulas (1)–(6) [57–59]:

CaO(s) + CO2(g) → CaCO3(s) (1)

MgO(s) + CO2(g) → MgCO3(s) (2)

Ca(OH)2(s) + CO2(g) → CaCO3(s) + H2O(l) (3)

Mg(OH)2(s) + CO2(g) → MgCO3(s) + H2O(l) (4)

1/3(3CaO•SiO2)(s) + CO2(g) → CaCO3(s) + 1/3SiO2(s) (5)

1/2(2CaO•SiO2)(s) + CO2(g) → CaCO3(s) + 1/2SiO2(s) (6)

The Gibbs free energies of the above chemical reactions are negative, indicating that
the reactions can proceed spontaneously [58]. Tu et al. [57] conducted a thermodynamic
simulation on the carbonation process of water-quenched steel slag using the thermody-
namic modelling, which also conformed to the above viewpoint. The results present in
Figure 6 show that the Gibbs free energy of all the above reaction is negative at the temper-
ature lower than approximately 200 ◦C. As the temperature increased, decomposition of
hydroxide or carbonate products would probably occur.
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Compared with direct dry carbonation, direct wet carbonation is a complex three-phase
reaction process, but it can achieve high CO2 sequestration at room temperature under
atmospheric pressure. This reaction process mainly reflects the carbonation of calcium
(magnesium) silicate in solution. The components are involved in the reaction between
CO2 and hydration products of mineral phases in steel slag, including the hydration of
free-CaO, free-MgO, C3S, and β-C2S. Initially, CaO and MgO hydrate to form Ca(OH)2
and Mg(OH)2; C3S and β-C2S hydrate to form C-S-H and Ca(OH)2. These phases further
react with CO2 to produce CaCO3, MgCO3 and silica-rich C-S-H gel [57,59]. On the other
hand, CO2 dissolves in water in the form of H2CO3 to react with C3S, and β-C2S and
γ-C2S. Consequently, CaCO3 and C-S-H gel forms. With respect to the reaction above,
Ca(OH)2, Mg(OH)2, and C-S-H are intermediate products, and if there is sufficient CO2,
decalcification occurs that CO2 reacts with the intermediate hydration products to form
CaCO3, MgCO3, and silica gel eventually. The reaction process of calcium-containing
components in steel slag is summarized in Figure 7.
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3.2. Internal Factors Affecting the Carbonation of Steel Slag

From the above reaction equations (Equations (1)–(6)) and the literature [61–63], it
can be concluded that the carbonation of steel slag can be roughly summarized as three
steps: dissolution of CO2 molecules; ionization of Ca, Mg; and precipitation of carbonation
product. Therefore, it can be concluded that the internal factors affecting the carbonation
process of steel slag are mainly the chemical composition, mineral composition, and particle
size of steel slag.
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3.2.1. Mineral Phases

A study conducted on the carbon sequestration capacity of the main mineral phases
of steel slag and the mechanism of compressive strength growth during carbonation curing
showed that Ca(OH)2 and γ-C2S exhibited the highest capacity to combine CO2, whereas
the carbonation effects of mayenite, lepidocrocite, and kyanite were relatively poor [38].
However, the compressive strength of the carbonated steel slag specimen was not positively
correlated with carbon sequestration. The authors proposed specific strengths of different
minerals in steel slag to characterize the carbonation ability of each mineral phase. Results
showed that the carbonation of β-C2S, when combined per unit weight of CO2, contributed
most to the strength gain, while the carbonation of Ca(OH)2, capturing the same weight
of CO2, showed the lowest strength value. Other studies showed that under the same
carbonation conditions and similar grain size, the higher the content of calcium-containing
components, especially CaO and Ca(OH)2, the faster the carbon sequestration rate and the
better strengthening effect [64,65].

Apart from the carbonation of C3S and C2S to form CaCO3 and C-S-H gel with
different C/S ratios, hydration of steel slag during the pretreatment or storage process
would also produce C-S-H gel with different Ca/Si ratios and C-S-H with a high Ca/Si
ratio had a faster carbonation rate to absorb more CO2 [66,67]. During the carbonation
process, decalcification of C-S-H occurs, resulting in the formation of Q3 and Q4 units of
Si-O tetrahedral with a higher polymerization degree, accompanied by volume shrinkage
and microcracks growth, and consequently the compressive strength of the carbonated
specimen decreased, although a large amount of CO2 was absorbed during the carbonation
process of C-S-H [38,68,69]. It means that excessive carbonation shows a negative effect on
the strength development of the specimen. Methods for monitoring the carbonation degree
are important in preparing carbonated steel slag specimens.

3.2.2. Particle Size

The particle size is another important factor that affects the carbonation degree of
steel slag. For a certain mass of solid particles, a smaller particle size will bring a larger
specific surface area, and the contact surface between the solid and liquid or gas phases is
larger, resulting in a higher degree of carbonation reaction [70]. Tu et al. [57] studied the
carbonation effect of different particle sizes of steel slag under the conditions of CO2 flow
rate of 600 mL/min, liquid/solid ratio (L/S) of 10, and temperature of 60 ◦C. The results
showed that at the average particle size of 204.4 µm, 85.4 µm, and 17.1 µm, the carbon
sequestration amounts of the steel slag were 2.6%, 5%, and 27.9%, respectively. This result
demonstrates that steel slag with finer particle size is more favorable to carbonation. Su
et al. [65] performed an experiment and showed that the carbonation degree was 16.3%,
27.2%, 46.3%, and 71.1% when the steel slag with particle sizes of 2~3.5 mm, 1~2 mm,
0.5~1 mm, and smaller than 0.5 mm, respectively, was subjected to 100 ◦C under a CO2
pressure of 250 kg/cm2 with a water/slag ratio of 5. Huijgen et al. [71] conducted the
carbonation of steel slag with a particle size of smaller than 38 µm at the temperature of
200 ◦C and CO2 partial pressure of 20 bar, and found that the carbonation degree of steel
slag was up to 75%.

3.3. External Factors Affecting the Carbonation of Steel Slag

Apart from the internal factors, the carbonation of steel slag was also affected by
the external factors, including carbonation period, carbonation temperature, CO2 partial
pressure, etc.

3.3.1. Carbonation Period

The carbonation period is a key factor in practical application. Extending the carbon-
ation time can increase the carbonation depth [72], and the carbonation degree increases
as well. He [73] studied the effect of carbonation time on the carbonation degree of steel
slag with different particle sizes by spraying phenolphthalein solution indicator on the
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carbonated samples. There is no doubt that the carbonation depth of steel slag at one hour
was lower than that of carbonation for 4 h. The particles smaller than 0.06 mm showed no
color variation, indicating that these particles were thoroughly carbonated.

Due to the positive correlation between the carbonation rate of steel slag and the
compressive strength of steel slag blocks [74,75], characterizing the change in strength
with increasing carbonation time can, to some extent, represent the effect of carbonation
time on the carbonation of steel slag. In the accelerated carbonation experiment on BOF
steel slag blocks conducted by Li et al. [75], results showed that the strength of the blocks
increased dramatically by 6.2 MPa as the carbonation period increased from 2 h to 4 h. It
was followed by a reduction in strength gain that increased by 2.7 MPa as the carbonation
period increased from 4 h to 6 h (Figure 8). As the reaction proceeded, the growth rate
of carbon sequestration in steel slag gradually decreased. Moreover, after a long period
of time, the influence of carbon dioxide concentration on the carbon sequestration rate of
steel slag almost became less pronounced, and even the carbon sequestration rate of steel
slag at lower concentrations exceeded that at higher concentrations [75]. Zhang et al. [76]
investigated the carbonation of steel slag-based mortar prepared from the mixture of
steel slag powder mixed with mineral materials, including MgO, CaO and cement, and
found that the compressive strength increased by increasing the carbonation time. The
compressive strength of the mortar containing 60% steel slag, 20% Portland cement, 5% lime,
and 15% magnesium oxide (S60C20L5M15 in Figure 9) was 47.4 MPa at 1-day carbonation,
and it increased to 71.6 MPa when carbonated for 14 days.
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In the review above, it can be concluded that prolonging the carbonation period would
improve the strength of the specimen, but on the other hand, the contribution to strength
development was not so obvious at a long time of carbonation curing. With respect to the
carbonation kinetics, the reaction is fast and produces a considerable amount of CaCO3
during the initial period of carbonation. As the reaction proceeded, the structure became
denser due to the fact of reactants consumption, the filling of pores with CaCO3, or the
formation of a CaCO3 shell on the surface of particles to prevent further penetration of CO2
molecules or CO3

2− ions. Finally, the reaction slows down or even stops.

3.3.2. Carbonation Temperature

The increase in temperature will enhance the thermal mobility of molecules. Generally,
increasing temperature can promote the dissolution of active substances in steel slag and
the carbonation reaction rate between them and CO2 molecules [77,78]. More calcium ions
are dissolved from steel slag at higher temperatures, leading to the increasing concentration
of calcium ions in the liquid. Consequently, the precipitation of CaCO3 at the gas-liquid
interface is enhanced. On the other hand, the concentration of dissolved CO2 in the liquid
phase becomes higher at a relatively lower temperature to promote the formation of CaCO3
on the surface of steel slag particles [74].

Luo et al. [79] cured compacted slag steel cylinders in CO2 atmospheres at different
temperatures ranging from 0 ◦C to 90 ◦C and tested the variation of their compressive
strength and CO2 absorption ratio. The results showed that during the early stage of
carbonization, increasing the curing temperature was beneficial to the development of
compressive strength and CO2 absorption ratio of the steel slag compacted body. However,
as the curing time increased, the strength and CO2 absorption of the samples cured at 0 ◦C
and 90 ◦C were far lower than those cured at 30 ◦C and 60 ◦C. According to the kinetic
study on the carbonation by Peng et al. [80], the carbonation reaction was accelerated
by increasing the temperature, and the highest value appeared at range of 600–700 ◦C.
The carbonation product would be decomposed at a higher temperature. In the same
study, it was reported that the carbonation process would be enhanced in the presence of
steam pressure.

3.3.3. Partial Pressure of CO2

The partial pressure of CO2 gas is significant to the carbonation effect of steel slag, as
the carbonation reaction of steel slag is related to the dissolution of CO2 and calcium ions.
According to Henry’s law, the concentration of CO2 in the solution is proportional to the
partial pressure of CO2 above the solution, so when CO2 dissolution is the controlling factor
to the reaction rate, increasing the partial pressure of CO2 can increase the carbonation rate
of steel slag. Baciocchi et al. [81] studied the effects of CO2 gas concentration and liquid-
solid ratio on the carbonation process of steel slag. When 10% CO2 gas was introduced,
the maximum carbonation amount of steel slag reached 8%, and when the concentration
reached 100%, the carbonation amount was 40.3%. Increasing CO2 concentration can
obviously promote the carbonation degree of steel slag. However, when the dissolution
of calcium ions becomes a controlling factor, the influence of CO2 partial pressure is not
pronounced [60]. The research conducted by Ukwattage et al. [82] supported this view that
although the reaction time required for substantial carbonation of steel slag under higher
pressure was shorter, no obvious difference in total storage of CO2 quantity was observed
at the pressures of between 1 MPa and 6 MPa.

In addition, excessively high CO2 partial pressure can lead to rapid precipitation of
carbonated minerals, blocking pores and forming a shell with a carbonation product on
the surface of steel slag particles, preventing further contact between steel slag and CO2.
Li et al. [75] compared the effects of carbonation temperature, CO2 partial pressure, and
carbonation time on the mechanical properties and carbonation efficiency of the compacts
from compression of EAFS powder and BOFS powder. Results showed that the reaction
rate between steel slag and CO2 increased as the CO2 partial pressure increased to 0.55 MPa,
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but the compressive strength of the carbonated blocks decreased with further increasing
partial pressure. Over-carbonation may have a negative effect on the mechanical properties
of the specimen.

Therefore, a suitable partial pressure is required for carbonation curing, but due to the
high variability in the properties of steel slag, it is difficult to determine an accurate value
for the partial pressure of CO2 for carbonation. According to [75], it can be determined that
treating a 20 × 20 × 20 mm3 steel slag block at a temperature of 70 ◦C for 30 min under a
CO2 partial pressure of 0.55 MPa resulted in higher strength of the steel slag block than
treating it under a lower partial pressure of CO2. It also showed that no further reduction
in the strength of the steel slag block occurred with the continuous increase in partial
pressure of CO2. Furthermore, studies also reported that the carbonation can be increased
substantially by increasing the concentration of sodium and potassium bicarbonate solution
when the wet carbonation method was applied [83,84].

3.4. Soundness of Carbonated Steel Slag

Soundness is quite significant for steel slag and its products, and it is supposed that
the soundness of steel slag can be improved by carbonation. The specimen of steel slag
carbonated at 0.2 MPa for 7 days exhibited excellent soundness: no obvious defects or mi-
crocracks were observed when the specimen was subjected to the autoclave with a saturated
steam pressure of 2.0 MPa for 3 h [85]. In the same study, it is shown that the compressive
strength reached 70.6 MPa with a porosity reduced to 16.67% [85]. The improvement in the
soundness of steel slag by carbonation was because the unsound components, including
f-CaO and f-MgO, transformed into CaCO3 and MgCO3, as demonstrated by Sun et al. [86],
who found the reaction between f-CaO/f-MgO and CO2 occurred rapidly when the particle
sizes of steel slag were smaller than 80 µm. In addition, it is also shown that pretreatment
of carbonating steel slag in an autoclave with a CO2 concentration of 99.9% at 0.2 MPa for
6 min would greatly reduce the expansive risk of steel slag. Chen et al. [87] reported that
when carbonation was adopted, up to 58.83% of magnesium oxide in the RO phase could
be converted into magnesium carbonate. The value was much higher than that of MgO
transforming into Mg(OH)2 under autoclaved curing, which was only 20.10%.

3.5. Potential Application of Carbonated Steel Slag

In the review, it has been found that not only the compressive strength of steel slag
specimens can be improved by carbonation, but also the risk of unsoundness will be re-
duced. Therefore, carbonation treatment is an available and reliable method to promote the
utilization of steel slag. In general, the carbonated steel slag can be used to prepare bricks,
supplementary cementitious materials, and aggregates. The preparation process parame-
ters and performance indicators of certain carbonated steel slag products are summarized
in Table 2.

With respect to the utilization of ground steel slag powder, Ye et al. [88,89] prepared
carbonated steel slag bricks using steel slag as the precursors and Na2CO3 solution as an
activator , and analyzed the factors that affect the carbonation effect under alkali-activated
conditions, including the amount of steel slag, particle size, water consumption, and
the type and amount of alkali activator. By comparing the effects of “alkali activation”,
“carbonation”, and “alkali activation + carbonation” on the strength, product composition,
porosity, and microstructure of the samples, the synergistic effect of alkali activation and
carbonation would greatly improve the compressive strength of the bricks. The formation
of porous CaCO3 to improve the compactness of the brick was the main reason for the
increased strength. Hou et al. [90] invented a low-cost method for preparing steel slag
bricks on a pilot scale by compressing the steel slag powder and water mixture at 0.16 MPa,
followed by carbonation curing under pure CO2 with a pressure of 0.2 MPa for different
curing periods. The compressive strength of 47.1 MPa was achieved when the bricks were
carbonated for 7 days. As an aggregate, steel slag can significantly improve the mechanical
properties of concrete, but its utilization is greatly limited due to its presence of expansive
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components. Several research found that the practical application of carbonated steel
slag is possible, once the soundness has been improved. Pang [91] prepared steel slag
aggregate by carbonating the granulated steel slag powder and found the crush value of
the artificial aggregate was 18.30%. And the concrete prepared from this type of aggregate
was approximately 15% to 20%, higher than that produced from natural aggregate.

In addition, carbonated steel slag has also been applied in wastewater
treatment [92–94], producing high value-added CaCO3 [95,96], improving the hydration
reactivity as a supplementary cementitious material [97], thermal insulation material [98],
soft soil foundation consolidation [99], and artificial stone [100], showing great potential in
the realistic application.

Table 2. Carbonation parameters of steel slag products and their performance.

Main Materials Products Particle Size of
Steel Slag

Carbonation
System

Compressive
Strength (MPa)

Carbon
Sequestration

Ratio (%)
References

Steel slag
powder + sand+

aggregate

Carbonation
steel slag brick —

Carbonation was at
the pressure of

0.2 MPa in pure CO2
gas for 7 d

27.7 7.5 [90]

Steel slag
powder

Carbonation
steel slag brick 3–40 µm

the CO2
concentration was
98 ± 1%, relative

humidity was
60 ± 1%, the

temperature was
20 ± 1 ◦C, the CO2
gas pressure was
0.25 MPa, and the

carbonation
duration was 2 h.

22–32.6 13.28–16.82 [101]

Steel slag
powder +

pore-forming
agent

Steel slag block <75 µm

Introducing 99.9%
mass pure CO2 gas
to carbonate steel

slag at 150 ◦C for 3 h
under the CO2

partial pressure of
0.3 MPa

24.8 (1 d) 15.32 [102]

Steel slag
powder

Carbonated
steel slag
cement

Average
particle size of

39.4 µm

99.5% purity CO2
gas, CO2 partial

pressure of 1.5 bar
for 12 h

39.9–91.2
(12 h) 9–15 [103]

Steel slag
powder +
Portland
cement +
reactive

magnesia

binding
materials 0.036–0.039 mm

CO2 with a
concentration of

99.9% was
introduced for

curing at a CO2 gas
pressure of 0.1 MPa.

38.6 (1 d) — [104]

Steel slag
powder + sand

+ cement

Ultra-high
performance

concrete
incorporating

carbonated
steel slag
powder

Steel slag
powder <

150 µm/Steel
slag fine

aggregate

CO2 concentration
of 20%, temperature
25 ◦C, curing time

72 h

>145
(28 d) — [105]
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Table 2. Cont.

Main Materials Products Particle Size of
Steel Slag

Carbonation
System

Compressive
Strength (MPa)

Carbon
Sequestration

Ratio (%)
References

Steel slag
powder +

granite

Carbonation
steel slag
concrete

<50 µm

Introducing tail gas
with a CO2

concentration of
99.9% at a pressure

of 1.4 kPa or
0.5 MPa for 12 h

49.9–54.3
(28 d) 7.3–8.11 [106]

Steel slag
powder

Carbonated
steel slag
aggregate

1–100 µm

Using 99.9% CO2,
the CO2 partial

pressure is 0.2 MPa,
and the carbonation
time is 4, 8 or 24 h

— 7.0–10.5 [107]

Steel slag +
biochar

Carbonated
steel slag
aggregate

—

Curing for 4 h under
the reaction

temperature of
30 ◦C and RH of
60 ± 5%, and the

pressure of kiln tail
gas of 0.2 MPa

3.2–5.7 6.51–8.69 [108]

Steel slag
Carbonated

steel slag
aggregate

—

Curing with CO2
gas with a purity of
99%, RH of 70 ± 5%,
curing temperature
of 20 ± 2 ◦C, curing
time of 7 h at a gas
pressure of 1 bar

20.5 4.49 [109]

4. Conclusions and Challenges
4.1. Main Conclusion

The carbonation method for treating steel slag not only solves the problem of large-
scale application of steel slag but also captures and stores CO2 to reduce the emission
of greenhouse gas. In this review, different carbonation methods were described. The
carbonation mechanism and factors affecting the physicochemical properties of carbonated
steel slag were discussed. Finally, the potential application of carbonated steel slag was
suggested, and the following conclusions were drawn:

(1) In general, dry carbonation and wet carbonation were commonly used in the
treatment of steel slag. Compared with direct dry carbonation, direct wet carbonation is
a complex three-phase reaction process and can achieve high CO2 sequestration at room
temperature. Indirect carbonation would produce pure carbonation products by adding
additives, such as hydrochloric acid, sulfuric acid, magnesium chloride, molten salt, acetic
acid, and sodium hydroxide, which increases the difficulty of the treatment process.

(2) The carbonation process of steel slag is highly dependent on the chemical composi-
tion, mineral composition, and particle size of steel slag. Ca(OH)2 and γ-C2S absorb the
CO2 more easily but have different roles in the mechanical properties. Carbonation of β-C2S
contributes more obviously to the strength development of the specimen, and Ca(OH)2
shows less contribution. Reducing the particle size of steel slag can improve its carbonation
efficiency. When preparing carbonated steel slag bricks, it is recommended to use steel slag
powder with a particle size of less than 38 µm to obtain a high carbonation rate.

(3) Extending the carbonation period can increase the carbonation depth. Increasing
temperatures can promote the dissolution of active substances in steel slag and accelerate
the carbonation process between the mineral phases of steel slag and CO2. However, when
the temperature exceeds 700 ◦C, it will conversely inhibit the dissolution of CO2 due to the
exothermic reactions during the carbonation process. There is controversy over the effect
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of CO2 partial pressure on the carbonation of steel slag, as the carbonation of steel slag is
influenced by both dissolution of CO2 and calcium ions.

(4) Carbonation treatment on steel slag can be used to prepare bricks, supplementary
cementitious materials, and aggregates in cement and concrete. It can also be applied in
wastewater treatment, soft soil foundation curing, fertilizer preparation, artificial stone
preparation, GRC board manufacturing, etc.

4.2. Future Challenges

However, most of the present research is about the carbonation treatment of steel slag
in the laboratory. For the practical application, the following investigation is suggested:

(1) The variability of steel slag components can seriously affect the results of experi-
ments, leading to differences in product performance. Investigation into the relationship
between carbonation regimes and the composition of steel slag is necessary.

(2) The carbonation of steel slag is affected by many factors, and there is controversy
over the impact of carbonation on the properties of the product, making this treatment
uncontrollable. It is necessary to further investigate the carbonation kinetics and ther-
modynamics, based on modeling and experiments, to establish the relationship between
carbonation efficiency and factors, achieving an acceptable treatment cost with relatively
high carbonation efficiency.

(3) Apart from consuming f-CaO and f-MgO, the carbonation process also consumes
C3S, C2S, and other minerals with hydraulic potential, thereby reducing the hydration
activity of steel slag. Therefore, in order to improve the utilization rate of steel slag, the
balance between the soundness and hydration activity of steel slag still needs to be explored.
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