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Abstract: Martensitic low-alloy steels are widely used in machine construction. Due to their declared
weldability, arc welding is most often used to join elements made of this type of steel. However,
the high temperature associated with welding causes unfavourable changes in the microstructure,
resulting in reduced abrasion resistance. Therefore, it is important to know the tribological properties
of the welded joint. This article presents the results of a study on the abrasion wear resistance of a
welded joint of an abrasion-resistant steel. This study tested a welded joint of an abrasive-resistant
steel produced by the arc welding method. Wear testing of the welded joint was carried out under
laboratory conditions by the ball-cratering method in the presence of abrasive slurry on the cross-
section of the welded joint. Based on the test results, the change in the abrasive wear rate of the
material as a function of the distance from the welded joint axis was determined. It was also found
that the thermal processes accompanying welding caused structural changes that increased the wear
rate index value. Adverse changes in the tribological properties of a welded material persist up to a
distance of approx. 20 mm from the weld centre.

Keywords: wear testing; welded joint; abrasive wear; ball-cratering method

1. Introduction

Low-alloy martensitic steels, thanks to their workability and weldability as declared
by their manufacturers and their resistance to abrasive wear, are widely used in the mining,
agricultural, and transport industries for operating parts exposed to abrasive wear [1,2].
Due to the aforementioned functional properties of this steel type, machinery users often use
these materials to shape machine operating parts from them, according to their needs, while
usually using welding techniques. However, despite the declared weldability of these steel,
adverse changes in the microstructure, caused by welding, are observed in the welding
area [3–7], resulting in a reduction in the abrasion resistance commonly associated with
hardness [8–11]. A change in the hardness of high-strength materials under the influence
of welding is a widely analysed issue in the literature [3,12–16]. Previous studies [14,15,17]
demonstrated that welding processes adversely affected resistance to abrasive wear within
the weld metal material zone and the heat-affected zone through structural changes in these
areas. The analysis of changes in the microstructure of materials under the influence of
welding processes was carried out in detail [5,12–14,16,17] and concerns individual areas of
the joint, from the base material (BM), through the heat-affected zone (HAZ) to various joint
zones. Despite the accurate testing of the microstructure of individual zones of a welded
joint, their tribological properties are no longer studied in such detail. Under laboratory
conditions, methods of the type “rubber wheel-dry abrasive”, based on standards ASTM
G65 [18] and GOST 23.208-79 [19], are commonly used to assess the wear resistance of
welded joints [15–17]. Since the size of the test area using these methods can amount
to several cm2, the testing covers multiple zones of the welded joint at the same time.
Therefore, the abrasive wear resistance determined by these methods is a result of the
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wear resistance of individual areas of the joint. If an accurate assessment of the tribological
properties of individual zones of a welded joint is required, methods should be used in
which the area covered by a single test falls within one tested joint zone. A method for
testing the abrasive wear rate, which satisfies this requirement, is the ball-cratering method.

The ball-cratering method is an abrasive wear test method which is widely used
for the assessment of the abrasive wear rate of a wide range of construction materials,
e.g., metals [20], ceramics [21], polymers [22,23], and thin coatings [24]. A characteristic
property of the ball-cratering method is the formation of small wear marks, which are
used to determine the abrasive wear rate for a material. This property of the ball-cratering
method can be used to analyse the abrasive wear resistance of individual zones in the
cross-section of a welded joint [25].

The aim of this work is to assess the suitability of the ball-cratering method for the
analysis of wear resistance of a welded joint in its cross-section. This study aimed to
determine changes in abrasive wear resistance of the cross-section of a welded joint of
low-alloy martensitic steel, depending on the distance from the weld centre.

2. Materials and Methods
2.1. Welding Process

The joint was prepared using one of the commercially available low-alloy martensitic
steels (ESTI s.r.l., Idro, Italy). The chemical composition, as declared by the manufacturer,
and the strength properties of the test steel are provided in Table 1.

Table 1. Declared chemical composition and strength properties of test steel.

Chemical Element C Si Mn P S Cr Ni Mo B

Content [%] 0.28 0.35 1.40 Max. 0.30 Max. 0.03 0.50 0.30 0.25 Max.
0.004

Declared hardness HB 470–530 (over the entire profile thickness after heat treatment)
Tensile strength Rm 1770 MPa

Yield point Re 1330 MPa

The 400 mm long sections were cut off from a ready-made ploughshare heat-treated
by the manufacturer, with dimensions of 0.11 m × 0.08 m and a thickness of 12 mm, made
from a low-alloy martensitic steel. The sections were then welded along the long side
using the butt weld. The process of solid wire welding in active gas shielding (MAG 135)
in the downhand position (PA) was used. A semi-automatic welding machine (KEMPPI
Fastmig KMS 400 A); 1.2 mm diameter Lincoln Electric SupraMig HD wire [26] (EN ISO
14341:2020) designed for welding in the manufacture of earthmoving, agricultural, and
mining machinery (typical chemical composition 0.08% C, 1.70% Mn, 0.85% Si); and C1
shielding gas (100% CO2) were used.

The following welding parameters were used:

• Welding current I = 230 A;
• Welding voltage U = 30 V;
• Welding speed for manual process about v = 0.35 m/min.

The heat introduced into the joint was calculated from the following formula [27]:

Q =
k·U·I·60
v·1000

[
kJ

mm

]
(1)

where Q is the line energy [kJ/mm]; U is the voltage (U = 30 V); I is the current (I = 230 A);
k is the thermal efficiency coefficient of the welding process (k = 0.8); and v is the welding
speed (v = 350 mm/min).

The calculated heat input was equal to 0.946 kJ/mm. The manufacturer of the sheet to
be welded allows sheet thicknesses up to 12 mm to be welded without preheating. Due to
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possible fluctuations in the welding speed, the heat input may exceed 1 kJ/mm. According
to the sheet metal manufacturer’s recommendations, if the heat input is between 1.0 and
1.69 kJ/mm, it is recommended to increase the preheating temperature by 25 ◦C above
the recommended preheating temperature. It was therefore decided to preheat the joined
sheets to 50 ◦C. The preheating process was carried out in a muffle furnace for 60 min.

The sealing run (1) was made first, followed by fill-up passes (2, 3) and one capping (4),
forming the face of the joint, made in subsequent stages of the welding process. The
application of interpass cooling to 225 ◦C was carried out in air. The temperature was
controlled using a pyrometer. The produced joint was not heat-treated.

2.2. Sample Preparation

The produced welded joint was cut transversely into 10 mm wide sections from which
specimens were prepared for metallographic testing as well as hardness and wear rate
testing. The testing of the hardness and wear rate of the produced joint was carried out at a
depth of 3 mm from the top edge of the sample (L1 line—Figure 1).
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Figure 1. Diagram of the welded joint under test: 1—sealing run, 2, 3—fill-up passes, 4—capping,
L1—hardness and wear rate test line.

The transverse surfaces were ground and polished using the Struers LaboPol-5 (Struers
S.A.S., Champigny-sur-Marne, France) polisher, and the specimens for metallographic
testing were additionally etched with nital (a 5% HNO3 alcoholic solution).

The assessment of the joint microstructure was carried out by light microscopy meth-
ods using a Keyence VHX 700 (Mechelen, Belgium) digital optical microscope.

The hardness of the welded joint was determined by the Vickers method in accordance
with standard ISO 6507-1:2018 [28] using a Wilson VH1150 (London, UK) with a load of
98.1 N and a load application time of 10 s. Hardness measurements were taken every 1 mm
along the L1 line (Figure 1). The hardness assessment was carried out for five specimens.

Abrasive wear rate testing was carried out by the ball-cratering method using a
tribometer with a fixed ball system (Łukasiewicz Institute for Sustainable Technologies,
Radom, Poland) (Figure 2).
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A 25.4 mm (1′′) diameter ball made of 100Cr6 steel, with a hardness of 58.6 HRC, was
used as the counter-specimen. The abrasive wear testing was carried out according to
standard EN-1071-6:2008 [27,29], using the following parameters:

• Friction assembly load: 0.4 N;
• Counter-specimen rotational speed: 150 rpm;
• Experimental run duration: 15 min;
• Sliding distance: 179.5 m.

The abrasive wear testing was carried out using an abrasive slurry prepared from
aluminium oxide (Al2O3) with a grain size of 3 µm (P.P.U.H. “KOS” Stanisław Kos, Koło,
Poland) and distilled water. The slurry volume concentration was approx. 2%. The slurry
was fed onto the friction assembly in an amount of 1 cm3/min. The ball and the test surface
were washed and degreased with ethyl alcohol each time.

Due to the limitations of the tribometer’s working area, the tribological test specimens
covered the welded joint from the weld axis to the base material. Test runs were made
every 2 mm along the line perpendicular to the joint axis, located 3 mm from the top edge
of the sheet being joined (L1 line in Figure 1), with a test area length of 30 mm. The testing
was carried out in six replications using six specimens.

The wear volume was determined based on the diameter of the obtained craters,
measured perpendicular and parallel to the direction of movement of the abrasive particles.
The crater diameters were measured using a digital optical microscope.

The wear volume was calculated using the following formula:

V =
π·b4

64·R

[
mm3

]
(2)

where R is the ball radius [mm] and b is mean crater diameter [mm].
The wear rate index was calculated using the Archard formula [29] (EN-1071-6:2008):

Wr =
V

S·N =
πb4

64·R·S·N

[
mm3·N−1·m−1

]
(3)

where Wr is the wear rate index [mm3 N−1 m−1], R is the ball radius [mm], b is the mean
crater diameter [mm], S is the friction distance [m], and N is the friction assembly normal
load [N].

3. Results and Discussion
3.1. Joint Microstructure

Several impacts with a concentrated heat source in the welding process resulted in
noticeable changes in the microstructure in both the base material and the welded joint. In
the test area, five zones with different microstructure morphologies were distinguished.
These zones are marked in Figure 3.
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Figure 3. A view of the welded joint section under study: BM—base material; ICH—intercritical
zone; HAZ—heat-affected zone; WZ-1 and WZ-2—weld zones; FL—fusion line; L1—testing line.

The base material (BM) (Figure 4a) exhibited a tempered martensite © microstructure
typical of low-alloy boron steels.
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Figure 4. The microstructure of distinguished areas of the welded joint: (a) base material, (b) partially
heat-affected zone (PHAZ), (c) heat-affected zone (HAZ), (d) weld zone within the fusion penetration
zone (WZ-2), (e) weld filling (WZ-1), (f) visible differences in the microstructure orientation in
zones WZ-1 and WZ-2; (TM—tempered martensite; LB—lower bainite; P—perlite; M—martensite;
F—ferrite).

Occasionally, individual grains of lower bainite (LB) can also be discerned. The
heating process during welding and the rapid heat removal resulted in the transformations
of the martensite microstructure (Figure 4b) in the ICH area. The intercritical heat-affected
zone (ICHAZ) experiences a peak temperature between Ac1 and Ac3 and has a mixed
structure of fine re-austenitized grains and tempered martensite retained from the base
metal [30–32]. In the intercritical zone (ICH), the welded joint is characterised by the
presence of tempering martensite and troostite. The observed type of structure of the
intercritical zone of the welded joint is similar to that found in low-carbon low-alloy steels
subjected to underhardening quenching [33]. In the HAZ microstructure, areas of tempered
martensite and ferrite along with small areas of perlite were observed (Figure 4c).

The joint area, including the fill-up passes, is ferrite of varying morphology and
dispersion. Within the weld zone WZ-1, structures typical of varying temperatures and
cooling rates can be observed. The microstructure of this area is formed by acicular
ferrite with perlite areas (Figure 4d). In the WZ-2 zone (Figure 4e), which includes the
recrystallised area of the weld, acicular ferrite (F) is mainly found. In the WZ-2 area, as
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a result of thermal effects caused by successive transitions of the welding process, a split
of the columnar microstructure into a (nearly) equiaxial (fragmented) microstructure was
observed, which is typical of the annealing that occurs during multi-run welding [34].
The fragmentation of the ferritic structure results from multiple recrystallisation of the
phase components of the joint and rapid heat removal. It should be noted that the clear
orientation of the microstructure towards rapid heat removal is noticeable in the WZ-1
zone (Figure 4f).

3.2. Joint Hardness

The obtained results (Figure 5) indicate a change in the mechanical properties of the
welded material, depending on the distance from the weld centre.
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Within the weld area, the lowest hardness values (230 HV10) were noted in relation to
the material not subjected to heat impact. The lowest hardness values were noted in WZ-1
and WZ-2 zones, which have values approx. 2.5 times lower than the hardness of the base
material (approx. 600 HV 10). This should be associated with the fact that the WZ-1 and
WZ-2 zones consist mainly of ferrite phases with different morphologies and small areas of
perlite. The local increase in hardness near the fusion line and its subsequent decrease in
the HAZ are linked to the changes in the material microstructure in this area of the joint,
resulting from the welding process [34].

An increase in hardness near the fusion line results from the supercritical temperature
of this area reached in the welding process and the rapid heat removal. In the heat-affected
zone, pearlite and tempered martensite appear, resulting in an increase in hardness. The
decrease in the hardness of the material located further away from the fusion line is due
to the lower heating temperature of this area resulting in the further tempering of the
martensite. This phenomenon occurs in welded joints of low-alloy steel not subjected to
subsequent heat treatment [3,12,14,35].

3.3. Abrasive Wear Resistance

Figure 6 shows examples of craters obtained within different zones of the test welded joint.
Figure 7 shows the obtained results for the abrasive wear rate index for the welded

joint, depending on the distance from the weld axis.
It can be noted that different values of the abrasive wear rate index were noted for the

distinguished areas of the test welded joint. The highest abrasive wear rate occurs in the
WZ-1 area located immediately near the weld axis, which is due to the low hardness of
this area, resulting from the greatest proportion of welding material in the weld material
as well as the greatest changes in the microstructure [34]. The WZ-2 zone, characterised
by a microstructural structure similar to that of the WZ-1 zone but with grains oriented
to a lesser extent, exhibits an abrasive wear rate lower than that for WZ-1. A decrease in
the wear rate can be seen approx. 5 mm from the weld axis. This area is the beginning of
the heat-affected zone where there is no impact of the additional material, and the wear
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resistance is determined by the microstructure. Due to the presence of martensite in the
microstructure, the zone exhibits the greatest hardness and, thus, a lower wear rate than
that in the weld area [25,36]. An increase in the abrasive wear rate is then observed at
a distance of 7–9 mm from the weld centre, followed by its systematic decrease as the
distance from the joint axis increases.
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When comparing the course of changes in the wear rate index and the hardness in the
cross-section of the welded joint as a function of distance from the weld centre, it can be
noted that there is a correlation between these quantities (Figure 8).

The increase in hardness corresponds to the reduction in wear rate, which is in line
with the common view in the literature, resulting from the Archard equation that links
abrasive wear resistance to the hardness of the material, which is widely presented in the
literature [30–32,37–39]. The variations in the wear rate are due to the different heating
temperatures of the base material during the welding process. The closer to the joint
axis, the higher the tempering temperature of the martensite, which is consistent with the
literature [36,40]. The authors [40] report that there is a relation between the microstructural
transformation as well as the mechanical properties and the tribological response of low-
alloy wear-resistant martensitic steel during sliding wear.



Materials 2024, 17, 2101 8 of 13Materials 2024, 17, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 8. A comparison of the distribution of hardness and wear rate depending on the distance 
from the weld centre. Error bars—standard deviation. 

The increase in hardness corresponds to the reduction in wear rate, which is in line 
with the common view in the literature, resulting from the Archard equation that links 
abrasive wear resistance to the hardness of the material, which is widely presented in the 
literature [30–32,37–39]. The variations in the wear rate are due to the different heating 
temperatures of the base material during the welding process. The closer to the joint axis, 
the higher the tempering temperature of the martensite, which is consistent with the liter-
ature [36,40]. The authors [40] report that there is a relation between the microstructural 
transformation as well as the mechanical properties and the tribological response of low-
alloy wear-resistant martensitic steel during sliding wear. 

It is worth noting that the observed changes in the microstructure in the test area 
extend to approx. 10 mm (heat-affected zone boundary), while the abrasive wear rate be-
ing more than twice as high as that for the base material was noted at a distance of 17 mm 
from the weld centre. This indicates that the change in the tribological properties is al-
ready noticeable despite the lack of observed changes in the microstructure. 

Large fluctuations in the obtained values of the wear rate and hardness index were 
also observed. This can be related to the accuracy of the positioning of the samples in the 
tribometer and the manual welding process. The accuracy of the specimen positioning 
overlapped with the variable weld width. Wear tests were carried out on untreated sur-
faces and specimen alignment was based only on the distance from the weld joint axis. 
The test specimens had a thickness of 10 mm, and such a distance separates the different 
tested joint surfaces. Due to the manual welding process, the width of the weld being 
produced can vary, and consequently, the boundaries of individual zones in the cross-
section can be located at different distances from the weld centre. This has resulted in the 
fact that some test runs (despite efforts) may have been conducted in different sub-zones 
of the joint under test. 

Three different modes of abrasive wear can be distinguished, i.e., cutting, ploughing, 
and wedge formation [41]. In all these modes, grooves are formed on the worn surface. 
However, only the cutting mode leads to material removal, i.e., wear, while the ploughing 
and wedge formation modes mainly lead to plastic deformation of the surface material. 
Therefore, the resulting abrasive wear factor will depend on the dominant wear mode in 
the actual abrasive contact. A high abrasive wear rate is the result of a combination of high 
hardness, which reduces the penetration rate of the abrasive grains, and high fracture and 
peel strength of the material [42]. 

In all the tested welded joint zones, the dominant wear process is ploughing, caused 
by the action of sharp-edged abrasive grains on the material surface. Ploughing is accom-
panied by plastic deformation with an intensity that depends on the microstructure of the 
material in the tested zone. 

Figure 8. A comparison of the distribution of hardness and wear rate depending on the distance from
the weld centre. Error bars—standard deviation.

It is worth noting that the observed changes in the microstructure in the test area
extend to approx. 10 mm (heat-affected zone boundary), while the abrasive wear rate being
more than twice as high as that for the base material was noted at a distance of 17 mm
from the weld centre. This indicates that the change in the tribological properties is already
noticeable despite the lack of observed changes in the microstructure.

Large fluctuations in the obtained values of the wear rate and hardness index were
also observed. This can be related to the accuracy of the positioning of the samples in the
tribometer and the manual welding process. The accuracy of the specimen positioning
overlapped with the variable weld width. Wear tests were carried out on untreated surfaces
and specimen alignment was based only on the distance from the weld joint axis. The test
specimens had a thickness of 10 mm, and such a distance separates the different tested
joint surfaces. Due to the manual welding process, the width of the weld being produced
can vary, and consequently, the boundaries of individual zones in the cross-section can
be located at different distances from the weld centre. This has resulted in the fact that
some test runs (despite efforts) may have been conducted in different sub-zones of the joint
under test.

Three different modes of abrasive wear can be distinguished, i.e., cutting, ploughing,
and wedge formation [41]. In all these modes, grooves are formed on the worn surface.
However, only the cutting mode leads to material removal, i.e., wear, while the ploughing
and wedge formation modes mainly lead to plastic deformation of the surface material.
Therefore, the resulting abrasive wear factor will depend on the dominant wear mode in
the actual abrasive contact. A high abrasive wear rate is the result of a combination of high
hardness, which reduces the penetration rate of the abrasive grains, and high fracture and
peel strength of the material [42].

In all the tested welded joint zones, the dominant wear process is ploughing, caused by
the action of sharp-edged abrasive grains on the material surface. Ploughing is accompanied
by plastic deformation with an intensity that depends on the microstructure of the material
in the tested zone.

On the surface of the crater made in the area of the base material (approx. 23 mm from
the weld axis), scratches and grooves run parallel to the direction of abrasive travel along
the surface (Figure 9). The grooves are narrow and shallow, and there is only occasional
slight plastic deformation of the material in the form of indentations and material spreading
in their area. The cutting of irregularities is the main abrasive wear type in this case [25,36].
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As the test area approaches closer (remaining outside the HAZ) to the axis of the
welded joint, the grooves become deeper. However, they do not lose their orientation in
relation to the direction in which the abrasive moves across the surface of the specimen.
The plastic deformation of the material is slightly increased due to the decreasing hardness
value of the material [36] (Figure 10).
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Approximately 5 mm from the axis of the welded joint, in the heat-affected zone (HAZ),
the depth of cracks and grooves decreases slightly (Figure 11). This can be explained by the
increased hardness of the microstructure. Furthermore, plastic deformation (pits) is visible
in the grooves, which is related to the presence of areas of ferrite in the microstructure [36].
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In the WZ-1 and WZ-2 zones (0 to 4 mm from the welded joint axis), ploughing is still
the dominant wear process (Figure 12).
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The scratches and grooves on the specimen surface are characterised by varying depth
and width. This is due to the different abrasive wear resistance of ferrite and pearlite, and
thus the different abrasive wear mechanisms taking place. The perlite bands are subjected
to wear by the shearing of irregularities, while the ferrite is mainly subjected to wear by
furrowing with local plastic deformation of the material. The furrows are deep and pushed
material is visible at their edges. The plastic deformation takes the form of sharp-edged
pits and is more severe than in the HAZ. This is due to the pressing of hard abrasive grains
into the relatively soft material [36].

Analysis of the surfaces of the test specimens showed that the softer microstructures
are subjected to abrasive wear mainly due to furrowing. In the case of harder and more
brittle structures, material loss is caused by micro-cutting, which further smooths the worn
surface [36].

Welded joints of low-carbon martensitic steels with boron micro-additives, which
are the subject of this study, should be heat-treated. Heat treatment of a welded joint can
prolong the life of machine components exposed to abrasive wear.

4. Conclusions

This study’s results show that the thermal processes accompanying welding reduce
the hardness of the material and increase the wear rate index value. These changes mostly
affect the weld area and the heat-affected zone. The weld area of the welded joint proved
to be the least resistant to abrasive wear. The wear rate index for this area proved to be
greater by 5–8.5 times than that for the base material, with higher values noted closest to
the weld centre. The heat-affected zone (HAZ) exhibits a variable abrasive wear rate. In
the HAZ area located closest to the weld, a sudden decrease in the wear rate to a value
2.5 times higher than that for the base material was observed, followed by its subsequent
increase to a value five times higher (approx. 9 mm from the weld centre) than that for the
base material. Adverse changes in the tribological properties of a welded material persist
up to a distance of approx. 20 mm from the weld centre.

Due to the relatively small wear marks created by the ball-cratering method, it can be
applied to accurately assess the abrasion resistance of selected areas of a welded joint in its
cross-section.
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