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Abstract: This paper aimed to increase accuracy of an Alzheimer’s disease diagnosing function
that was obtained in a previous study devoted to application of decision roots to the diagnosis of
Alzheimer’s disease. The obtained decision root is a discrete switching function of several variables
applicated to aggregation of a few indicators to one integrated assessment presents as a superposition
of few functions of two variables. Magnetic susceptibility values of the basal veins and veins of
the thalamus were used as indicators. Two categories of patients were used as function values. To
increase accuracy, the idea of using artificial neural networks was suggested, but a feature of medical
data is its limitation. Therefore, neural networks based on limited training datasets may be inefficient.
The solution to this problem is proposed to preprocess initial datasets to determine the parameters of
the neural networks based on decisions’ roots, because it is known that any can be represented in the
incompletely connected neural network form with a cascade structure. There are no publicly available
specialized software products allowing the user to set the complex structure of a neural network,
which is why the number of synaptic coefficients of an incompletely connected neural network has
been determined. This made it possible to predefine fully connected neural networks, comparable in
terms of the number of unknown parameters. Acceptable accuracy was obtained in cases of one-layer
and two-layer fully connected neural networks trained on limited training sets on an example of
diagnosing Alzheimer’s disease. Thus, the scientific hypothesis on preprocessing initial datasets and
neural network architecture selection using special methods and algorithms was confirmed.

Keywords: integrated rating mechanisms; decisions’ roots; criteria trees; convolution matrices; data
preprocessing; system-cognitive analysis; neural network structure selection; neural network training

1. Introduction

Data mining and machine learning methods are used in various areas including
engineering, business and management, economics and finance, medicine, etc.

Artificial neural networks are actively used in the medical studies [1,2], etc., for
example in diagnosing cardiovascular diseases [3–5], intestinal dysbacteriosis [6], oncol-
ogy [7–12], in modeling of the prognosis of the outcome of the disease, and the likelihood
of tumor recurrence [13–15]. In [16], it is proposed to use convolutional neural networks
for automatic segmentation of edema in patients with an intracerebral hemorrhage. In [17],
deep learning models are used to analyze the complication of cerebral edema induced by
radiation therapy in patients with an intracranial tumor.

A feature of medical data is their limitation. This fact is partly due to ethical require-
ments, i.e., patients or their legal representatives must consent to the use of their medical
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data for scientific purposes and publication in open press. For example, researchers [18]
took 5 years to collect data about 81 subjects, including 59 subjects with clinically diagnosed
Alzheimer’s disease, and 22 elderly subjects did not have problems in cognitive abilities.
This limited dataset was chosen for performance verification of neural network training
after preprocessing initial datasets and neural network architecture selection using special
methods and algorithms on an example of diagnosing Alzheimer’s disease. The key prob-
lem of Alzheimer’s disease is an accurate diagnosis in the early stages, where cognitive
impairments do not yet appear at all or are not noticeable to the patient and others.

1.1. Related Papers

The key conclusions of some works of the last two decades [19–22] devoted to the
study of the brain are the growth of diseases associated with Alzheimer’s disease, which
does not immediately have distinctive signs for its identification. As shown in [23–25],
there is a connection between oxygen saturation of brain tissues and the level of its blood
circulation, qualitatively expressed through cerebral metabolism, with the symptoms of
Alzheimer’s disease.

In [26], decrease of the dopaminergic activity of the ventral tegmental area (located in
the midbrain area) may be of decisive importance for the earliest pathological symptoms of
Alzheimer’s disease. This was verified by data analysis of resting structural and functional
magnetic resonance imaging and neuropsychological assessments in 51 healthy adults.
Mild cognitive impairments were diagnosed for 30 patients, and Alzheimer’s disease was
diagnosed for 29 patients. A significant functional relationship was also noted between the
ventral tegmental area and the hippocampus in pathological symptoms of Alzheimer’s dis-
ease. Changes in the dopaminergic system are often noted among patients with Alzheimer’s
disease and are usually associated with cognitive and noncognitive symptoms [27].

In [28], it is shown that most dopamine-producing neurons are localized in the mid-
brain. Their loss is associated with some of the most famous human neurological disorders—
Parkinson’s disease and cognitive impairments. In [29,30], the importance of dopamine is
noted in participation in the mediated reaction of the body to the environment on different
time scales (from fast impulse responses associated with rewards to slower changes with
uncertainty, punishment, etc.). In [29], it is shown that the human brain contains about
200,000 dopamine neurons on each side of the brain. In [31–33], it is noted that cerebrovascu-
lar diseases largely stimulate the more rapid development of amnestic moderate cognitive
impairments and Alzheimer’s disease and are also characterized by more severe damage
to neuronal connections. In [34], the fact of increased cerebral blood flow without changing
the oxygen consumption of the brain is described with the use of acetazolamide. This
changes the signal observed on MRI images with a gradient echo from areas with increased
cerebral blood flow. There is also a relationship between the oxygen content in the blood
and the release of dopamine and neurotransmitters in [35,36]. In [37], the dependence of
the level of dopamine and the oxygen content into the blood are noted. Since the neuron
activity depends on the degree of oxygen uptake, the assessment of the degree of venous
blood saturation can become an indicator of the functional state of neurons. Accordingly,
we chose the following veins of all involved in the brain blood supply: the basal veins
involved in the blood circulation of the striatum and veins of the thalamus (these veins
drain the blood from the thalamus, which is closely connected with the midbrain [38]).

In [39], there is a fairly pronounced relationship between quantitative magnetic reso-
nance imaging (MRI) and spectroscopy (MRS) measurements of energy metabolism (the
rate of oxygen metabolism in the brain, CMR (O2)), the blood circulation (i.e., cerebral blood
flow (CBF) and volume (CBV)) and functional MRI signal over a wide range of neuronal
activity. Pharmacological treatments are used to interpret the neurophysiological basis
of levels of the blood oxygenation dependent on image contrast at 7 T in glutamatergic
neurons in the rat cerebral cortex.
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1.2. Research Statement

The motivation for the present paper was continuation of the previous study [40] on
the application of decisions’ roots to diagnosis of Alzheimer’s disease. “Decision root” is a
new name for the integrated rating mechanisms traditionally applicated to aggregation of
a few indicators into one integrated assessment [41]. The new term was proposed by Dr.
Habil. Korgin, Nikolay A. and his Ph.D. student Sergeev, Vladimir A. [42] in November
2021. Previously, the term “integrated rating mechanisms” was used.

Historically, “the integrated rating mechanisms were introduced as multidimen-
sional assessment and ranking systems for management and control in organizational
and manufacturing systems in the Soviet Union in earlier 80th of the previous century” [43]
(p. 610). Nowadays, these systems are used in different areas, including medicine [40].
Decision support system for diagnosis of Alzheimer’s disease is developed at the LLC
“Diagnosing systems”.

Mathematically, the integrated rating mechanism is a discrete switching function
of several variables presenting as a superposition of a few functions of two variables.
Therefore, it can be represented in a hierarchical form, which determines the sequence of
operations on variables. Each discrete function of two variables can be represented in matrix
form. The tuple of criteria, binary trees and convolution matrices, located in its nodes, gives
a graphical representation of such a function. In [44] (p. 1) it was said “integrated rating
mechanism belongs to the class of so-called verbal decision analysis approaches”. Verbal
decision analysis has been actively used for unstructured decision-making problems [45].

In 2020, two approaches to identification of integrated rating mechanisms based on a
training set were suggested. The first one was proposed by Professor, Dr. Habil Burkov,
Vladimir N., Dr. Habil Korgin, Nikolay A. and Sergeev, Vladimir A. [44]. This one-hot
encoding approach considered the integrated rating mechanism as a sequence of matrix
operations with one-hot encoded indicator values.

The second approach was proposed by one of the authors of this paper—Alekseev,
Aleksandr O. and was based on truth table transformation [46], therefore, it was called the
tabular algorithm for the identification of an integrated rating mechanism [47] (p. 599).

In 2021, Sergeev, Vladimir A. and Korgin, Nikolay A. [48] proposed to investigate
the integrated rating mechanism identification problem on an incomplete dataset using
equivalence groups. Approaches [46,47] and [48] are similar, but not the same.

In paper [46] (p. 402) it was shown that any integrated rating mechanism can be
represented in the form of an artificial neural network. An identified neural network
reproduces the training data with discrete values.

The obtained function, by using a tabular algorithm for identification [40], establishes
the relationship between Alzheimer’s disease and the magnetic susceptibility value of
the basal veins and veins of the thalamus. However, the accuracy of the function ob-
tained in a previous study [40] was near 84%, which is not enough for its application in
medical practice.

To increase accuracy, the idea was suggested to apply an artificial neural network to
approximate the relationship between the magnetic susceptibility value of cerebral veins
and Alzheimer’s disease. However, as previously mentioned, a feature of medical data
is their limitation. In such cases, neural networks based on limited training datasets may
be inefficient.

To solve this problem, it is proposed to preprocess initial datasets to determine the
parameters of the neural networks based on the integrated rating mechanism (decision’s
root). The scientific hypothesis of this paper is that it will be possible to obtain the acceptable
accuracy of the neural network by training a neural network on the initial data in a
continuous form.

Thus, the purpose of this work is performance verification of neural network training
in cases of limited training sets on the example of diagnosing Alzheimer’s disease.

The paper is organized as follows: Section 2 provides initial data, methods and
algorithms used in this study according to suggested methodology; Section 3 provides
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results of preliminary data analysis based on interval coding and identifies significant
indicators of the study area. The architecture of the neural network based on the found
decision’s root is proposed, which is the key result in this study, and the significance of
the results is beyond doubt for development and discussion in future works; Section 4 is
devoted to a discussion of the obtained results and the insights of this work. Lastly, the
main results of this paper and future research directions are briefly discussed in Section 5.

2. Materials and Methods
2.1. Initial Data

In reference [49], it was shown that synthetic data can be used for neural network
training, but in this paper, real medical data were taken for performance verification
of neural network training based on preprocessing initial datasets and neural network
architecture selection using special methods and algorithms.

The initial data were tomographic images of 81 patients examined using the mini-
mental state examination (MMSE), Montreal cognitive assessment (MoCA), clock drawing
task (CDT), and activity of daily living scale (ADL). Alzheimer’s disease was clinically
diagnosed in 59 subjects (21 males and 38 females). These patients are hereinafter defined as
in [18] as the AD group. Twenty-two patients (12 males, 10 females) did not have problems
in cognitive abilities and were placed in the control group (defined as CON group).

The magnetic susceptibility values (MSV) of the following cerebral veins were quanti-
fied based on tomographic images: left and right basal veins (L_BV and R_BV, respectively),
left and right internal cerebral veins (L_ICV, R_ICV), left and right veins of the thalamus
(L_TV, R_TV), left and right septal veins (L_SV, R_SV), left and right veins of the dentate
nucleus (L_DNV, R_DNV).

In this study, we exclusively used numerical data given in the appendix to the refer-
ence [18]. A fragment of the initial data is presented in Table 1.

Table 1. The fragment of the initial data with magnetic susceptibility values of the cerebral veins [18].

Subject Group 1 L_BV R_BV L_ICV R_ICV L_TV R_TV L_SV R_SV L_DNV R_DNV

sub001 1 279 288 255 263 140 138 131 131 165 185
sub002 1 274 247 223 243 239 262 190 222 204 102
sub003 1 259 333 236 243 172 159 135 145 152 153

... ... ... ... ... ... ... ... ... ... ... ...
sub079 0 279 288 179 189 141 153 245 214 177 149
sub080 0 249 232 221 232 154 142 165 151 161 143
sub081 0 300 259 295 299 216 197 163 131 162 129

1 In this Table in column “Group” 1 is the AD group, and 0—the CON group.

2.2. Methodology and Methods

Data preprocessing consists in interval coding of initial data and search of integrated
rating mechanisms (decisions’ roots). In paper [46] (p. 402), it is shown that any integrated
rating mechanism can be represented in the form of an artificial neural network. Thus,
it is possible to determine some of the parameters of the required neural network based
on the integrated rating mechanism (decision’s root). This mechanism reproduces the
encoded data using discrete values. This idea corresponds to the approach presented
in reference [50]. The scientific hypothesis lies in the assumption that it will be possible
to obtain the acceptable accuracy of the neural network by training a predefined neural
network on the initial data in a continuous form.

According to [46] (p. 398) the integrated rating mechanism is determined as a tuple (1).

< G, M, X, P >, (1)

where G is a graph describing a sequence of convolution of particular criteria, M is a set of
convolution matrices corresponding to the nodes of a criteria tree, X is a set of the scales for
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the scoring of the particular criteria, and P is the procedure of aggregation. In this study,
discrete procedure is used, but continuous, interval, fuzzy and F–fuzzy procedures are
also noted [51].

One of the problems of identifying integrated rating mechanisms (decisions’ roots) is
the choice of the structure of the graph G, which is a full binary tree with labeled leaves [52],
because their total number is determined according to the equation [43,48]:

|G| = (2l − 3)!!, (2)

where l is the total number of considered variables (leaves in terms of tree graph).
The number of G structures for 4 variables is 15, for 5–105, for 6–945 as can be seen

from Equation (2), and there are already more than 34 million, for example, for 10 variables.
This is a key limitation of the proposed algorithms, as can be seen from the above example.

To reduce the number of variables, it is suggested to use methods of the system-
cognitive analysis (hereinafter–SCA) [53,54] using the computer program RU 2022615135
“Personal intelligent online development environment “EIDOS-X Professional” (System
“EIDOS-Xpro”)” [55], developed by professor Lutsenko, Evgenue V. In this computer
program, to solve the classification problem, two integrated similarity criteria are used,
known as “Sum of knowledge” (3) and “Semantic resonance of knowledge” (4).

Ij =
I

∑
i=1

Li Iij, Li = {0; 1}, (3)

where Ij—is the amount of information about class j; I—the amount of features (signs,
attributes); Li—a variable describing the presence (Li = 1) or absence (Li = 0) of the feature
i; Iij—assessment of informational importance of feature i for class j (amount of information
about feature i for class j).

Ij =
1

σjσl M

I

∑
i=1

(
Iij − Ij

)(
Li − L

)
, Li = {0; 1} (4)

where M—number of gradations of descriptive scales (features); σj—standard deviation
particular criteria for class vector knowledge; σl—standard deviation along the vector
of the recognized object; Ij—average informativeness for class vector; L—average for
object vector.

In the case of diagnosing Alzheimer’s disease, index j is the ordinary number of
patient group {group AD, group CON}, j = 1 correspond to group AD, j = 2 correspond to
group CON. Index i is the ordinary number of the intervals of MSV of cerebral veins. We
have 10 veins, each of which is divided into 3 equal intervals, so the total amount of MSV
intervals is 30 (I = 30).

As a result of the implementation of the SC-analysis methods, the following model of
determination informational importance (5) were selected as the most reliable.

Iij = Nij −
Ni Nj

N
, (5)

where Nij—the number of observations of the i-th feature (sign) for objects of the j-th class
in the training sample; Ni—the total number of observations of the i-th feature over the
entire training sample; Nj—the total number of features for objects of the j-th class in the
training set; N—the volume of the training sample (number of observations).

These methods have been used to identify the most significant brain veins and subse-
quent reduction of the number of indicators.

The algorithm for identification of integrated rating mechanisms [47] has been used
for data structuring and representation as a decision root. These algorithms were suggested
previously by one of the authors of the present study–Alekseev, Aleksandr O.
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A specialized computer program called “Neurosimulator 5.0” was used for neural
network modeling [56]. It was developed by professor Yasnitsky, Leonid N. and his Ph.D
student, Cherepanov, Fedor M.

For training the neural network, the computer program “Software package that im-
plements the operation of incompletely connected neural networks” [57] was tested, but
this program does not implement the conjugate gradient method. The application of this
program is shown in the work [58].

Through inputs, the mathematical neuron receives input signals, which it sums up by
multiplying each input signal by the appropriate weighting factor wi1, wi2, . . . , wij:

si =
Nn

∑
j=1

wij · xij, (6)

where Nn—the number inputs of i-th neuron; xij—signals on the input of the i-th neuron;
wij—weights obtained in each iteration when performing neural network training.

Next, the activation function acts, which is usually an arbitrary monotonically increas-
ing function that takes real values in the range from 0 to 1. The activation threshold is a
number from the same interval.

yi = f (si) = f

(
Nn

∑
j=1

wij · xij + θi

)
= f

(
wT · x

)
, (7)

where yi—output signal; θi—neural bias b is interpreted as the weight of an additional
input with a synaptic link strength w0, whose signal x0 = 1; f —activation function.

The general task of training a neural network is as follows:
Let X be a set of objects; R the solution of the algorithm, and then there is an unknown

objective function G′ : X → R . It is necessary to find such a primary function G : X → R
that restores the assessment G′. According to the generally accepted neural network design
technology, the entire general population is divided into training, testing and confirming
sets in the ratio of 70%: 20%: 10% [59].

Based on a set of logical pairs dn
′ = (xn, rn), where dn

′ is n-th precedent, we will distin-
guish three relevant subsets of precedents DTr = {dn

′}NTr
n=1—Train Set, DTs = {dn

′}NTs
n=1—Test Set,

DTv = {dn
′}NTv

n=1—Validation Set, provided that data loss is excluded DTr ∩ DTs ∩ DTv ≡ ∅ [60]
(p. 426).

According to the methodology presented in Figure 1, the training of a non-fully
connected neural network will be carried out by the method of conjugate gradients [61],
which makes it possible to find the extrema of the function by iterative calculation. The
conjugate gradient vector is determined by the following formula:

ρk = −∇E(wk) + βkρk−1, (8)

where the choice of the parameter βk responsible for the conjugate direction can be deter-
mined according to the Fletcher and Reeves algorithm [62] (10) or algorithm by Polak and
Ribiere (11).

βk =
∇E(wk)

T∇E(wk)

∇E(wk−1)
T∇E(wk−1)

, (9)

βk =
(∇E(wk)−∇E(wk))

T∇E(wk)

∇E(wk−1)
T∇E(wk−1)

, (10)
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Figure 1. Suggested algorithm of data preprocessing and neural network architecture selection for
neural network training in limited initial dataset cases.

Two directions ρk and ρk−1 are defined as conjugate if the following condition is met:

ρk
T Hρk−1 = 0, (11)

In other words, conjugate directions are orthogonal directions in the space of an
identity Hessian matrix.

We chose the algorithm of elastic backpropagation (RPROP—Resilent back PROPaga-
tion) to train classic single-layer two-layer hidden artificial neural networks with a different
number of neurons on each hidden layer. According to this algorithm, when correcting the
weight coefficients, only the sign of the gradient matching [63]:

∆wij(t) = −η(t)sign

(
∂ε(t)
∂wij

)
, (12)

The methodology of this study is presented below (Figure 1).

3. Results
3.1. Results of the Preliminary Data Analysis

The initial data were processed using SCA methods. The intervals of magnetic sus-
ceptibility values of the above-described veins L_BV, R_BV, L_ICV, R_ICV, L_TV, R_TV,
L_SV, R_SV, L_DNV, R_DNV were used as features. The state of the patient was used
as a class: AD group or CON group, and the domains of observed values were divided
into Three equal intervals for each vein (Table 2). Such a division of the initial dataset
into three intervals was due to expert opinion, since when choosing two intervals, we
get the classical problem of finding a Boolean function. The choice of four intervals is
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inappropriate, since when using 10 variables in the initial data, 80 features will be formed,
and the initial dataset, which must be divided into training and testing, contains only 81
examples. Of interest is the division of the observation area into different intervals with an
almost uniform number of examples in each of these intervals. In view of the multivariate
results of possible partitions, this approach will be considered in a future study.

Table 2. The intervals for discrete coding.

Cerebral Veins Variable Abbrev. Domain of MSV 1st Interval 2nd Interval 3rd Interval

left basal vein L_BV {153.0; 324.0} {153.0; 210.0} {210.0; 267.0} {267.0; 324.0}
right basal vein R_BV {164.0; 357.0} {164.0; 228.3} {228.3; 292.7} {292.7; 357.0}

left internal cerebral vein L_ICV {179.0; 394.0} {179.0; 250.7} {250.7; 322.3} {322.3; 394.0}
right internal cerebral vein R_ICV {163.0; 411.0} {163.0; 245.7} {245.7; 328.3} {328.3; 411.0}

left vein of the thalamus L_TV {131.0; 288.0} {131.0; 183.3} {183.3; 235.7} {235.7; 288.0}
right vein of the thalamus R_TV {109.0; 286.0} {109.0; 168.0} {168.0; 227.0} {227.0; 286.0}

left septal vein L_SV {83.0; 310.0} {83.0; 158.7} {158.7; 234.3} {234.3; 310.0}
right septal vein R_SV {73.0; 287.0} {73.0; 144.3} {144.3; 215.7} {215.7; 287.0}

left vein of the dentate nucleus L_DNV {94.0; 244.0} {94.0; 144.0} {144.0; 194.0} {194.0; 244.0}
right vein of the dentate nucleus R_DNV {81.0; 269.0} {81.0; 143.7} {143.7; 206.3} {206.3; 269.0}

With the help of the intelligent analytical system “EIDOS-Xpro”, all patients were
distributed based on the level of progression of Alzheimer’s disease by applying two
integral similarity criteria: “Semantic resonance of knowledge” (4) and “Sum of knowledge”
(3) (Figure 2).
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Figure 2. Recognition results for the AD group of patients in the “Class-objects” mode in the system
“EIDOS-Xpro”.

The intervals of MSV were determined as a result of the application of SCA. These
values had the greatest informational significance for classification of a patient in the AD
group (Figure 3, see “contributing”), as well as signs that did not characterize this class
to the greatest extent (Figure 3, see “impending”). Since patients belong to only two
classes (AD and CON) in the research dataset, the insignificance for the AD group meant
significance for the CON group, respectively.
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Figure 3. The most significant factors influencing a possible brain pathology in the form of
Alzheimer’s disease (after the name of the variable corresponding to a certain vein, the serial number
of the interval of values out of 3 is indicated, and the interval of MSV values are directly indicated in
curly brackets) [40] (p. 426).

It can be seen from the left part of Figure 3, that the 3rd interval of MSV in the veins
of the thalamus (L_TV, R_TV) are among the first 3 most contributing factors, and the 1st
interval of MSV in the same veins are impending factors (see right part of Figure 3). Second
and third intervals of MSV for both the basal veins (R_BV, L_BV) were included in seven
contributing factors for classification of a patient in the AD group (see Figure 3), and the
first interval of MSV in both left and right basal veins are considered impending factors
(see Figure 3) [40]. Thus, four indicators (L_BV, R_BV, L_TV, R_TV) were selected as the
most significant from among all available indicators.

3.2. Results of Interval Coding Initial Data to Discrete Values

Veins of the thalamus L_TV, R_TV and in the basal veins L_BV, R_BV have intervals
performed for coding to discrete values (see, Table 2).

The initial data were quantized by replacing the MSV values for a specific patient in
a specific vein (L_BV, R_BV, L_TV, R_TV) with the value of the interval obtained using
SCA methods after reducing the number of analyzed parameters. In other words, the
original initial data set [18] was encoded (Table 3) to discrete values from one to three with
correspondence to the number of MSV intervals (see, Table 2).

Table 3. The fragment of the encoded data.

Subject Group Encoded L_BV Encoded L_TV Encoded R_BV Encoded R_TV

sub001 AD 3 1 2 1
sub002 AD 3 3 2 3
sub003 AD 2 1 3 1

. . . . . . . . . . . . . . . . . .
sub079 CON 3 1 2 1
sub080 CON 2 1 2 1
sub081 CON 3 2 2 2
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Subjects with the same vectors of encoded veins were united into 42 subgroups. For
example, subjects 003 has a vector of values of the MSV {259.0; 172.0; 333.0; 159.0}, which
was encoded to vector {2; 1; 3; 1}, and subjects 057 has a vector of values of the MSV {216.0;
147.0; 301.0; 140.0}, which was encoded to the same vector {2; 1; 3; 1}. Moreover, there
were 8 contradictory examples in the encoded dataset. For example, from Table 3 we can
see that subjects 001 and 079 have the same vector of discrete values {3; 1; 2; 1}, but they
belong to different groups: AD and CON. To reduce conflict examples, we excluded those
subgroups or subjects that had high level of similarity to one group but in fact belonged to
another group. The similarity was measured in the System “EIDOS-Xpro” by values of the
integrated similarity criteria using information model INF3.

The “EIDOS-Xpro” system, according to both integral similarity criteria “Semantic
stability of knowledge” and “Sum of knowledge” with a value of 99.69% similarity, refers
the patient sub007 to the CON groups, i.e., is not ill, while this patient is clinically diagnosed
with Alzheimer’s disease (Figure 4).
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Figure 4. Recognition results for CON group of patients in the “Class-objects” mode in the system
“EIDOS-Xpro”.

Other subjects (Table 4) were excluded in the same way.

Table 4. Subjects excluded from conflicting examples.

Subjects Group Encoded
L_BV

Encoded
L_TV

Encoded
R_BV

Encoded
R_TV Comments

sub007 AD 1 1 1 2 The similarity of the subject 007 to CON group is 99.69%, but
in fact is sick

sub004, sub006 AD 2 1 2 1

Subject 004 is sick, but the similarity to the CON group is
12.94%, also the subject 080, which has the same vector

{2; 1; 2; 1} and is in fact in the CON group, has a similarity to
the CON group value 38.61%

sub042, sub059 AD 2 1 2 2

The similarity of the subject 059 to the CON group is 12.94%,
also the subjects 070 and 072 which have the same vector

{2; 1; 2; 2} and are in fact in the CON group, have similarity to
the CON group value 62.66% and 38.67%, respectively

sub060 CON 2 3 2 3 The similarity of the subject 060 to the AD group is 60.01%,
but in fact is not sick

sub063, sub073 CON 2 2 3 2 The similarity of the subject 063 to the AD group is 19.15%,
but in fact is not sick
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Table 4. Cont.

Subjects Group Encoded
L_BV

Encoded
L_TV

Encoded
R_BV

Encoded
R_TV Comments

sub031 AD 2 2 3 2 The similarity of the subject 031 to the CON group is 50.23%,
but in fact is sick

sub068, sub078 CON 2 3 3 3 The similarity of the subjects 078 and 068 to the AD group are
63.63% and 39.33%, respectively, but in fact they are not sick

sub079 CON 3 1 2 1
The similarity of the subject 079 to the CON group is 10.03%,
but the subject 001, which has the same vector {3; 1; 2; 1} and
in the AD group, has similarity to the AD group value 28.73%

sub071, sub081 CON 3 2 2 2 The similarity of both subjects 071 and 081 to the AD group is
33.62%, but in fact they are not sick

Subjects 057, 003, 076 and 075 were excluded from the encoded dataset because the
vectors {2; 1; 3; 1}, {2; 2; 1; 3} corresponding to them have uncertainty.

The training set, after excluding the conflict examples, includes 34 unique, encoded
vectors. They corresponded to 63 subjects (patients), which accounted for 78% of the
original number of subjects. This training set for identification of the integrated rating
mechanism (decision’s root) is presented in Table S1.

3.2.1. The Integrated Rating Mechanism (Decisions’ Roots) Identified Based on the
Encoded Training Set

In the previous study [40], we used the identification algorithm proposed in [47],
which is applicable to any structure of criteria trees without restrictions on the alphabet
used inside the convolution matrix. Removing the restriction on the alphabet used to
encode the elements of the convolution matrices, it is possible to approximate the initial
data with several functions due to the fact that when gluing equivalence groups, the
variability of these gluings arises [48].

As was said above, 15 full binary trees with named leaves are possible for 4 factors.
From all possible tree structures in [40], it was proposed to convolve to produce indicators
characterizing the left veins with each other, as well as the right ones with each other. This
is because veins are paired and participate in the process of blood circulation of the two
hemispheres separately and because arteries and veins in each of the hemispheres, and
in the brain as a whole, have many collaterals that redistribute blood flow both among
themselves at the beginning, within one hemisphere, and then, with a lack of compensatory
capabilities within the entire brain (Figure 5).
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Figure 5. Criteria tree structure of convolution for the basal and thalamic.

For each criteria tree structure, a few decisions’ roots can be identified; one example
was presented in [40] (p. 426). The following decision’s root (Figure 5) was identified based
in the training set presented in Table S2.
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The founded decision root (see Figure 6) can be used to predefine architecture of the
desired neural network.
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Figure 6. Decision’s root for diagnosing Alzheimer’s disease. The values in the left matrix at the
lower level are the average numbers of the rows of the root matrix, the values in the right matrix are
the numbers of the columns of the root matrix, respectively.

3.2.2. Neural Network Architecture Selection

Using algorithm [47] (p. 402), we can predefine the neurons number of the desired
neural network based on the decisions’ root (see, Figure 6). The first hidden layer has
12 neurons, because four input variables are indicated on Set 3 by encoded discrete values
{1; 2; 3}. For both convolution matrices from the bottom level of the decisions’ roots, there
are nine neurons on the second hidden layer, because matrices have nine elements. Matrix
ML has four values, MR has three values, so the third hidden layer has seven neurons. The
fourth hidden layer has 12 neurons because root matrix ML has 12 elements. The fifth
hidden layer has two neurons because root matrix MS has values from set {CON; AD}.
Thus, we have obtained a neural network with five hidden layers and 56 neurons on all
layers (including one input and one output layer). The neural network architecture is
shown in Figure 7, and the parameters of this network are presented in Table 5.
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Figure 7. Neurons of artificial neural network (where: vector of neurons on the Input Layer ∈ R4,
vector of neurons on the Hidden Layer (1) ∈ R12, vector of neurons on the Hidden Layer (2) ∈ R18,
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vector of neurons on the Hidden Layer (3) ∈ R7, vector of neurons on the Hidden Layer (4) ∈ R12,
vector of neurons on the Hidden Layer (5) ∈ R2, vector of neurons on the Output Layer ∈ R1).

Table 5. Numbers of neurons in hidden layers of the desired artificial neural network.

Hidden Layer Number of
Neurons

Group of
Neurons Comments

Input
4 signals

1 12 6 and 6 Neurons corresponds to intervals on input signals
2 18 9 and 9 Neurons corresponds to elements of matrices ML and MR

Output
1 signal

3 7 4 and 3 Neurons corresponds to values of matrices ML and MR

4 12 12 Neurons corresponds to elements of matrix MS

5 2 2 Neurons corresponds to values of matrix MS

The synaptic connections (Figure 8) are determined in full accordance with the ele-
ments of convolutional matrices in the decisions’ roots (see, Figure 6).
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Figure 8. Incompletely connected artificial neural network identified based on the decision root.
Numbers from 1 to 5 designations of serial numbers of hidden layers of the neural network.

The total number of unknown parameters (synaptic coefficients) of the incompletely
connected neural network predefined, based on the decision’s root is 158.

The structure of the predefined neural network model had 12 connections between
the input signals and the first hidden layer (each connection generates two parameters of
the mathematical model, which means that we have 24 parameters in total).

The next layer, in which the neurons correspond to the elements of the matrix, has
three parameters each (two inputs from the previous layer and one unknown constant).
Since we have two matrices of nine elements each at the bottom level of the criteria tree, this
generates 18 neurons on the second layer, which means a total of 54 unknown parameters.

The next layer consists of the neurons corresponding to the matrix estimates, and
there are exactly as many connections as there were neurons on the previous layer, i.e., in
our case, 18, but we need to add seven parameters to them (determined by the number
of neurons on the 3rd layer), which also means we have eighteen and seven parameters
(25 parameters on the third layer).

Then, there is a matrix containing 12 elements, where each element corresponds to
three parameters (two inputs and one unknown constant). It means 36 parameters on the
4th layer.
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There are two neurons on the last hidden layer, where 14 input signals (10 neurons
on the previous layer have one signal and two neurons have two signals; the last ones
correspond to elements in the root matrix with value CON/AD, see Figure 6) plus two
unknown constants (the number of neurons on the current layer) are taken.

There is only one signal at the output. This signal is associated with the last two
neurons. It means there are three parameters (two inputs plus one unknown constant).

Thus, the total number of unknown parameters is determined by the sum (24 + 54 +
25 + 36 + 16 + 3 = 158).

Nowadays, it is worth noting that there are no publicly available specialized software
products allowing the user to set the neural network structure, for example, to load the
adjacency matrix or the incidence matrix of the graph corresponding to the neural network
architecture. We tried to use the computer program “Software package that implements the
operation of incompletely connected neural networks” [57]. It implemented incompletely
connected neural networks only for one hidden layer, but as you can see from Figure 8, the
required neural network has incompletely connected neurons on each hidden layer. Thus,
this program is not applicable for this case.

Though there are no publicly available specialized software products allowing the
user to set the structure of the neural network, we can find fully connected neural networks
comparable in terms of the number of unknown parameters and compare the effectiveness
of diagnosing Alzheimer’s disease knowing the number of unknown parameters that will
be determined in the process of training the neural network.

Therefore, a fully connected single-layer neural network (Figure 9) with four input
signals and one output signal has the following rule—each neuron on the hidden layer
corresponds to four input-unknown variables corresponding to the input signals and one
unknown constant (i.e., 5x unknown parameters); the output signal receives signals from x
neurons at the input and has one unknown constant.
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Figure 9. Schematic representation of a single-layer neural network structure with x neurons and
numbers of unknown parameters.

Thus, the number of unknown parameters in a fully connected network with one
hidden layer can be expressed using the Equation (14)

4x + x + 1 ≥ 158, x ∈ N (13)

According to (3), the minimum number of neurons on the hidden layer for a single-
layer network is 27, where this number is comparable to the number of unknown parame-
ters with the found incompletely connected neural network (see Figure 8).

The following equation will be obtained for a two-layer neural network structure
(Figure 10):

5x + xy + 2y + 1, x, y ∈ N (14)
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Figure 10. Schematic representation of the structure of a fully connected two-layer neural network
and the number of unknown parameters.

These minimal integer values x were found by changing the number of neurons on
the second hidden layer y, starting from one, subject to the fulfillment of inequality (4).
These values determine the number of neurons on the first hidden layer (Figure 11). Thus,
various two-layer neural networks were found, where they are comparable in terms of the
number of unknown neural network parameters (this network is built by the decision’s
root) (see Figure 6).
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Figure 11. The dependence of the number of neurons between the two layers (x—first hidden layer,
y—second hidden layer).

3.2.3. Results of Neural Network Training

According to the generally accepted neural network design technology, the entire
general population is divided into training, testing and confirming sets in the ratio of
70:20:10% [52]. In our problem, we neglect a strict formal approach to determining the
percentage ratio between training, testing and confirming sets due to a fairly small number
of examples, which is acceptable [63], thereby dividing the entire initial set only into
training and testing in the ratio of 90:10%.

We performed multiple training and testing of neural networks for diagnosing Alzheimer’s
disease on limited raw data using one-layer and two-layer neural networks. Several results
of one-layer neural networks training and testing are shown below (Figure 12, Table 6).
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Figure 12. Changing of the square errors at training and testing depending on iterations of calculation
synaptic coefficients at fully connected one-layer neural networks with different numbers of neurons
on the hidden layer (hereinafter the following designation will be used HL1 stands for neural network
with 1 hidden layer): HL1-5 has 5 neurons (a); HL1-10 has 10 neurons (b); HL1-15 has 15 neurons (c);
HL1-20 has 20 neurons (d), HL1-25 has 25 neurons (e), and fully connected one-layer neural network
with predefined number of neurons HL1-27 has 27 neurons (f).

Table 6. Results of a trained different fully connected one-layer neural networks.

Neural Network Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

HL1-5 1 layer with 5 neurons 17.068 12.582 24.517 21.047 2.913 6.011 0.849 0.744
HL1-10 1 layer with 10 neurons 11.557 8.718 17.329 13.899 1.334 3.003 0.930 0.872
HL1-15 1 layer with 15 neurons 9.268 7.000 21.897 18.348 0.859 4.795 0.955 0.795
HL1-20 1 layer with 20 neurons 5.829 4.422 21.262 18.988 0.034 4.521 0.982 0.807
HL1-25 1 layer with 25 neurons 2.047 1.440 21.827 16.692 0.042 4.764 0.997 0.797
HL1-27 1 layer with 27 neurons 1.987 1.392 21.138 14.462 0.039 4.468 0.997 0.809

Figure 12a–e shows five neural networks, distinguished by five neurons. Figure 12f
shows the training and testing errors for the neural network HL1-27 with the 27 neurons
satisfying inequality (14). Figure 12 shows that the quadratic error becomes less than 10%
in all cases. Therefore, we should compare the results of the training with the other criteria:
Q1–average quadratic relative (%); Q2–average relative error; Q3–average quadratic relative
(Test, %); Q4–average relative error (Test); Q5–quadratic train error; Q6–quadratic test error;
Q7–R2 train set; Q8–R2 test set (Table 6).

Comparing the performance by all the criteria in Table 6, it can be seen that the
proposed neural network HL1-27 is better on almost all the criteria. At the same time, the
best neural network training results from the multiple experiments we showed on both
Figure 12a–e and the first seven rows of Table 6.
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In our experiments, we noticed that the quality and speed of neural network learning
could be improved by increasing the number of neurons. The neural network with pre-
defined number of neurons HL1-27 (see Figure 12f) was trained rather quickly, and the
results were more robust compared to variants HL1-5, HL1-10, HL1-15, HL1-20, which
often over-trained the neural network.

We propose to consider nine variations of two-layer neural networks with different
numbers of neurons on first and second hidden layers. The network structures are chosen
so that the number of neurons on the first and the second hidden layer form a cross of
gridlines with steps of five neurons—selected combinations of neuron number on the first
and second layers are highlighted by black points (Figure 13, points 1–9).
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Figure 13. Selected two-layers neural networks with different numbers of neurons on first and second
hidden layers (hereinafter the following designation will be used–HL2 stands for two hidden layers,
the next number after the hyphen stands for the number of neurons on the first hidden layer, and the
last number stands for the number of neurons on the second hidden layer, respectively).

We also propose to consider several variations of neural networks whose structures
are comparable to dependence (see, Figure 11). Selected eight combinations of neuron
number on first and second are highlighted by red points (Figure 13, points a–h). This is
necessary to assess the quality and ability to recognize and predict our neural network, the
structure of which is determined according to the decision’s root and convolution matrices.

The dotted line in Figure 13 divides all neural networks into two types: in the upper
left corner, there are neural networks with fewer neurons on the first layer than on the
second layer. In the lower right area, on the contrary, there are neural networks with more
neurons on the first layer than on the second layer.

The network HL2-10-10 refers to both a set of nine neural networks (see Figure 13,
point 5) chosen by varying the number of variables on the first and second layer of five
neurons (see Figure 13, black points 1–9), and a set of eight predefined neural networks
(Figure 13, point d) that contain a number of synaptic coefficients comparable to a decision-
root-based neural network (see Figure 8).

Therefore, out of nine neural networks, Figure 14 and Table 7 show the training and
testing results of eight networks: HL2-5-5-5 (Figure 14a); HL2-5-10 (Figure 14b); HL2-
5-15 (Figure 14c); HL2-10-5 (Figure 14d); HL2-10-15 (Figure 14e); HL2-15-5 (Figure 14f);
HL2-15-10 (Figure 14g); and HL2-15-15 (Figure 14h).
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tion synaptic coefficients at two-layers neural networks with different numbers of neurons on the
hidden layers: HL2-5-5 (a); HL2-5-10 (b); HL2-5-15 (c); HL2-10-5 (d); HL2-10-15 (e); HL2-15-5 (f);
HL2-15-10 (g); HL2-15-15 (h).

Table 7. Results of a trained different fully connected two-layer neural networks.

Neural Network Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

HL2-5-5 2 layers with 5 neurons on first layer and
5 neurons on second layer 4.132 2.755 16.518 12.429 0.145 2.210 0.996 0.884

HL2-5-10 2 layers with 5 neurons on first layer and
10 neurons on second layer 4.003 2.922 17.234 11.922 0.160 2.970 0.992 0.873

HL2-5-15 2 layers with 5 neurons on first layer and
15 neurons on second layer 4.581 3.163 17.720 15.341 0.210 3.140 0.989 0.866

HL2-10-5 2 layers with 10 neurons on first layer and
5 neurons on second layer 0.715 0.480 13.094 8.362 0.005 1.714 0.999 0.934

HL2-10-15 2 layers with 10 neurons on first layer and
15 neurons on second layer 0.775 0.458 16.823 9.647 0.006 2.830 0.999 0.888

HL2-15-5 2 layers with 15 neurons on first layer and
5 neurons on second layer 0.665 0.479 9.918 7.110 0.004 0.797 0.999 0.958

HL2-15-10 2 layers with 15 neurons on first layer and
10 neurons on second layer 0.904 0.548 14.145 10.509 0.007 1.621 0.999 0.915

HL2-15-15 2 layers with 15 neurons on first layer and
15 neurons on second layer 1.010 0.654 12.276 9.647 0.008 1.221 0.999 0.936
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Figure 14 shows the networks HL2-10-5 (Figure 14d); HL2-15-5 (Figure 14f) and
HL2-15-10 (Figure 14g) required fewer iterations to training.

Table 7 shows that the HL2-15-5 network is better than the others by all criteria except
Q2–average relative error. The HL2-15-5 network is insignificantly inferior to the HL2-10-15
network in this criterion. At the same time, the HL2-10-15 network is inferior to other
networks in many criteria.

It is of interest to compare the training results of randomly selected neural networks
and predefined neural networks. Table 8 and Figure 15 show the results of training and
testing of eight selected neural networks with predefined number of synaptic coefficients:
HL2-22-2 (Figure 15a); HL2-17-4 (Figure 15b); HL2-14-6 (Figure 15c); HL2-10-10 (Figure 15d);
HL2-6-17 (Figure 15e); HL2-3-29 (Figure 15f); HL2-2-41 (Figure 15g); HL2-1-51 (Figure 15h).

Table 8. Results of a trained predefined fully connected two-layer neural networks.

Neural Network Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

HL2-22-2 2 layers with 22 neurons on first layer and
2 neurons on second layer 1.043 0.556 20.344 15.716 0.011 4.139 0.998 0.823

HL2-17-4 2 layers with 17 neurons on first layer and
4 neurons on second layer 0.774 0.477 16.971 11.897 0.006 2.888 0.999 0.877

HL2-14-6 2 layers with 14 neurons on first layer and
6 neurons on second layer 0.543 0.348 14.759 9.564 0.003 2.178 1.000 0.907

HL2-10-10 2 layers with 10 neurons on first layer and
10 neurons on second layer 0.809 0.507 14.293 12.834 0.005 1.655 0.999 0.913

HL2-6-17 2 layers with 6 neurons on first layer and
17 neurons on second layer 1.121 0.818 21.026 16.886 0.010 3.581 0.998 0.811

HL2-3-29 2 layers with 3 neurons on first layer and
29 neurons on second layer 6.006 3.763 14.313 12.314 0.292 1.659 0.981 0.913

HL2-2-41 2 layers with 2 neurons on first layer and
41 neurons on second layer 15.952 6.950 32.393 17.504 2.061 8.499 0.868 0.552

HL2-1-51 2 layers with 1 neuron on first layer and
51 neurons on second layer 27.104 16.408 34.519 23.725 5.951 9.652 0.618 0.492

The network HL2-15-5 is close to the predefined networks HL2-17-4 and HL2-14-6 by
number of neurons, precisely these two networks with the HL2-10-10 network that have
Q1 values less than one (see Table 8). The HL2-14-6 network has the lowest Q2, Q4 and
Q5 values (see Table 8). HL2-10-10 has the lowest Q3, Q6 values (see Table 8). In terms
of the coefficient of determination, the network HL2-14-6 has one, which means 100% of
the variance of the resultant quantity in the training set is explained by the influence of
selected variables.

Figure 15 shows that neural networks with a predefined number of neurons required
significantly fewer iterations to train as compared to the brute-force selected networks. It
is worth recalling again that Figures 14 and 15 show the best results from the number of
multiple computational experiments. A smaller number of iterations was required to train
the predefined neural networks.

Having learnt the results of training two-layer networks, we noticed the following—
the quality of neural network models is better if the number of neurons on the first layer is
greater than on the second (Figures 14d–g and 15a–d).

The results of training and testing two-layer neural networks are not entirely consistent
with the observation in the case of single-layer neural networks. In the case of single layer
neural networks, we observed the following—as the number of neurons on the hidden layer
increases, the quality of neural network models becomes better. With two-layer networks,
this is not true, e.g., HL2-22-2 with 24 neurons or HL2-17-4 with 21 neurons are in many
ways (see Table 8) worse than the 20-neuron HL2-14-6 and HL2-10-10.
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Figure 15. Changing of the square errors at training and testing depending on iterations of calcula-
tion synaptic coefficients at two-layers neural networks with different numbers of neurons on the
hidden layers: HL2-22-2 (a); HL2-17-14 (b); HL2-14-6 (c); HL2-10-10 (d); HL2-6-17 (e); HL2-3-29 (f);
HL2-2-41 (g); HL2-1-51 (h).

4. Discussion

Having compared all obtained results of training and testing of neural networks for
diagnosing Alzheimer’s disease on limited data, it is possible to make a general conclusion—
the constructed neural networks whose structure is chosen according to a predefined
number of synaptic coefficients according to inequalities (14) and (15) have acceptable
accuracy in comparison with neural networks whose structure is chosen by brute force.

In our experiments, we noticed that neural networks with a predefined number of
neurons needed less training to obtain acceptable accuracy, and the results were more
robust compared to neural networks with a random number of neurons. In the latter case,
if the number of neurons was very different from the predefined number of neurons, we
quite often observed retraining of neural networks.

The key value of the approach proposed in this paper for analyzing data and deter-
mining the structure of a neural network is to reduce the time spent on finding the optimal
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neural network, since based on the results of data preprocessing, we obtain an encoded
data set, which is already a graph-matrix representation of the possible structure of the
neural network. Moreover, the prospects for such an approach to data processing and
analysis are reduced to improve the quality and accuracy of models on a limited data set,
which we encountered in the study of brain disease in the form of Alzheimer’s disease.

Thus, it is possible to determine some of the parameters of the incomplete neural
network with cascade structure based on the integrated rating mechanism (decision root).
In future studies, we will use the term decisions-root-based neural network (DRB NN).

We would also like to point out that the best distribution for two-layer neural networks
appears to be in the upper left corner of the space, separated by a dotted line (see Figure 13),
which means that there should be fewer neurons on the first layer than on the second in
the case of limited sets of training examples. Based on this, we can assume that in the case
of multilayer neural networks, a similar ratio of neurons on upstream and downstream
layers will also affect the quality of neural networks. This is fundamentally important for
the proposed approach of building incomplete neural networks. Figure 8 clearly shows
that the decisions-root-based neural network on layers three and five has a greater number
of neurons than layers two and four, respectively. This could potentially limit the learning
effectiveness of decision-root-based neural networks. However, the pattern described
above regarding the correlation of neurons on previous and subsequent layers is true for
fully connected neural networks. We will study incompletely connected neural networks
in the future. This is of interest, and we plan to explore such a pattern in more detail in the
following studies.

There are no publicly available specialized software products allowing the user to
get the incompletely connected neural network structure. For example, the computer
program “Software package that implements the operation of incompletely connected
neural networks” [57] can create incompletely connected neural networks, but with only
one hidden layer with incompletely connected neurons. It is not enough. Therefore, the
authors intend to create a special computer program on software as a service available
online for all researchers. This work is performed at the LLC “Perm Decision Making
Support Center”.

5. Conclusions

It should be noted that the purpose of this study was achieved, and the hypothesis
was confirmed. The neural network, preidentified, based on preprocessing initial datasets
using suggested methods and algorithms, has acceptable accuracy in a case with a very
limited training set. The suggested methodology consisting of interval coding of initial
data and search of integrated rating mechanisms, following representation in the form of
an artificial neural network and training using initial data, is effective.

Based on the results of this study, it should be noted that with the help of special meth-
ods based on the mechanism of complex assessment, it was possible to obtain the optimal
structure of the neural network model capable of describing the study area with sufficient
accuracy, using the example of Alzheimer’s disease. This, once again, confirms that neural
network technologies are quite successful in medicine, which is especially valuable with a
limited set of initial data. Similar conclusions about the successful application of neural
network modeling in medicine and, in particular, the study of the brain, can be found in
references [16,17] etc., where it was proposed to use convolutional neural networks and
deep learning models in medicine.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/a16050219/s1, Table S1: The training set for identification of integrated
rating mechanism (decisions’ root).
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