
Citation: Garaev, R.; Rasheed, B.;

Khan, A.M. Not So Robust after All:

Evaluating the Robustness of Deep

Neural Networks to Unseen

Adversarial Attacks. Algorithms 2024,

17, 162. https://doi.org/10.3390/

a17040162

Academic Editors: Ali Safaa Sadiq Al

Shakarchi, Houbing Song, Ahmad

Fadhil Yusof, Sushil Kumar and

Omprakash Kaiwartya

Received: 14 March 2024

Revised: 14 April 2024

Accepted: 15 April 2024

Published: 19 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Not So Robust after All: Evaluating the Robustness of Deep
Neural Networks to Unseen Adversarial Attacks
Roman Garaev 1,*, Bader Rasheed 1 and Adil Mehmood Khan 2

1 Institute of Data Science and Artificial Intelligence, Innopolis University, Innopolis 420500, Russia;
b.rasheed@innopolis.university

2 School of Computer Science, University of Hull, Hull HU6 7RX, UK; a.m.khan@hull.ac.uk
* Correspondence: o.garaev@innopolis.university

Abstract: Deep neural networks (DNNs) have gained prominence in various applications, but re-
main vulnerable to adversarial attacks that manipulate data to mislead a DNN. This paper aims
to challenge the efficacy and transferability of two contemporary defense mechanisms against ad-
versarial attacks: (a) robust training and (b) adversarial training. The former suggests that train-
ing a DNN on a data set consisting solely of robust features should produce a model resistant to
adversarial attacks. The latter creates an adversarially trained model that learns to minimise an
expected training loss over a distribution of bounded adversarial perturbations. We reveal a sig-
nificant lack in the transferability of these defense mechanisms and provide insight into the
potential dangers posed by L∞-norm attacks previously underestimated by the research community.
Such conclusions are based on extensive experiments involving (1) different model architectures,
(2) the use of canonical correlation analysis, (3) visual and quantitative analysis of the neural net-
work’s latent representations, (4) an analysis of networks’ decision boundaries and (5) the use of
equivalence of L2 and L∞ perturbation norm theories.

Keywords: machine learning; deep learning; adversarial attacks

1. Introduction

The growth of computing power and data availability has led to the development of
more efficient pattern recognition techniques, such as neural networks and deep learning.
When a sample accurately represents a population of data and is of sufficient size, deep
learning methods can produce impressive results, even on unseen data, making them
suitable for tasks such as classification and prediction tasks. Although these methods offer
significant advantages, they also come with limitations, such as the sensitivity of deep
neural networks (DNNs) to data quality and sources, as well as overfitting when trained on
insufficient amounts of data. However, variations in input samples from different domains
or insufficient training data can still significantly affect the performance of DNNs. As DNNs
are increasingly being employed in critical applications such as medicine and transportation,
enhancing their robustness is essential due to the potentially severe consequences of
their unpredictability.

Using adversarial attacks is one approach to examining DNNs’ robustness to diverse
inputs. Adversarial attacks aim to generate the smallest adversarial perturbation, i.e., a
change in input, that results in a misclassification by the model.

This study investigated the abilities and drawbacks of modern defense techniques
against adversarial attacks, such as adversarial and robust training. The latter refers to the
hypothesis proposed by Ilyas et al. [1]. It states that adversarial attacks exploit non-robust
features inherent to the data set rather than the objects in the images. According to this
hypothesis, removing these features from the data set and training a model on the modified
data should render adversarial attacks ineffective.
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We expanded the experiments from the original paper, trained a model on robust
features, and tested it on unseen attacks. Our tests revealed that models trained on robust
features are generally not resistant to L∞-norm perturbations . According to our hypoth-
esis, even if perturbations of the L∞- and L2-norms are both imperceptible to humans,
L∞-norm attacks have a greater impact on the representations of the models.

We conducted a series of experiments and found strong evidence for our hypothesis.
First, we compared the perturbations produced by different attacks utilising the theorem of
vector norm equivalence in a finite-dimensional space. This comparison showed that the
choice of perturbation constraints is too loose, despite being widely used in the literature.
Second, by applying canonical correlation analysis, we discovered that L∞-norm attacks
cause the most dispersion in the latent representation. Finally, we analysed the impact
of robust and adversarial training methods on the decision boundary of a model. The
experiment showed that an L∞-norm attack actually reduces the distance between the
representations of a model and its decision boundary, which has a negative influence on
the model generalisation.

Researchers might use our findings to develop more reliable adversarial training
methods: while L2- and L∞-norm perturbations look similar, the L∞-norm ones are much
harder to resist. To our knowledge, no one has paid so close attention to the differences
between the attack norms before.

The structure of this paper is as follows: In Section 2, we present a brief overview of
various attacks on image classifiers, discuss the potential defense strategies that we used in
our experiments, and review the theory of robust features.

To present our massive experiments in the most convenient way, we do not separate
them into methodology and results Sections. Instead of that, we group the experiments into
three logical blocks. Despite being separated into different Sections, all of them serve to
answer to what extent adversarial and robust training are transferable. The corresponding
results follow right after the experiment descriptions. In Section 3, we challenge the general-
isation of robust and adversarial training using various approaches. In Section 4, we analyse
how the robustly trained models represent the adversarial and benign data samples. In
Section 5, we investigate the impact of adversarial training on the decision boundaries of
neural networks.

In Section 6, we discuss the possible explanation of our observations. The conclusion
of our study is presented in Section 7.

2. Related Works

We focus on attacks on image classifiers, as they are the most widespread and mature;
however, adversarial attacks are not limited by the type of input or task. The reader may
find examples of attacks in other domains, such as malicious URL classification [2], commu-
nication systems [3], time series classification [4], malware detection in PDF
files [5], etc. We suppose that an adversary has complete information about the neu-
ral network, including weights, gradients, and other internal details (white-box scenario).
We also assume that in most cases, the adversary’s goal is to simply cause the classifier to
produce an incorrect output without specifying a particular target class (untargeted attack
scenario). Other possible scenarios of adversarial attacks can be found, for example, in [6].

2.1. Adversarial Attacks

In this Subsection, we briefly describe the adversarial attacks that we used in the
experiments.

2.1.1. Fast Gradient Sign Method (FGSM)

The FGSM was proposed by Goodfellow et al. in [7]. Adversarial example x̃ for image
x is calculated as

x̃ = x + ϵSign(∇x J(x, θ, y)) (1)
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where ϵ is the perturbation; J is the cost function for a neural network with weight θ,
calculated for the input image x with true classification label y.

2.1.2. Projected Gradient Descent (PGD)

A PGD attack, introduced by Madry et al. in [8], is an iterative variant of the FGSM,
carrying out a similar operation to (1) with projection on the ϵ-ball:

x̃t = πx+S(x̃t−1 + ϵSign(∇x J(x, θ, y))) (2)

where π is the projection of an adversarial example on the set of possible perturbations S,
and t is the number of steps in iteration.

2.1.3. DeepFool

Moosavi-Dezfooli et al. [9] provided a simple iterative algorithm to perturb images
to the closest wrong class. In other words, DeepFool is equal to the orthogonal projection
onto the classifier’s decision boundary. This property allows one to use the attack to test
the robustness of a model:

ρ̂adv( f ) =
1
|D| ∑

x∈D

∥r̂∥2

∥x∥2
(3)

where ρ̂adv is the average robustness, f is the classifier, r̂ is the successful perturbation from
DeepFool, and D is the data set. DeepFool can be used to calculate the distance from a data
point to the closest point on the decision boundary [10].

2.2. Adversarial Training as a Defense Method

One of the most popular approaches to defending neural networks against attacks is
called adversarial training. It proposes “including” possible adversarial examples in the
training data sets to prepare a model for attacks. To obtain an adversarially trained model,
one should solve the following min–max optimisation problem [8]:

arg min
θ

∑
(xi ,yi)∈D

max
δ∈S

L( fθ(xi + δ), yi) (4)

where, θ is the weight of the neural network, D is the training data set, S is the space for
possible perturbations, and S = {δ : ∥δ∥p < ϵ} for a given radius ϵ.

Adversarial training was introduced by Goodfellow et al. in [7]. Madry et al. [8]
proposed using a PGD attack during the training procedure and presented better robustness
against adversarial attacks. However, Wong et al. [11] achieved about the same accuracy
against adversarial attacks using a simple one-step FGSM. Here and further, we refer to
training based on empirical risk minimisation as “regular” since it does not involve any
adversarial attack and is traditionally used to train neural networks.

It is important to note that the provable defense (i.e., “certified robust”) against any
small-ϵ attack has already been studied, for example, by Wong and Kolter [12] and Wong
et al. [13]. However, the experiments in these works were conducted with relatively small
perturbations. For example, in [13] the maximum radius of the L∞ perturbation is 2

255 ,
while the same norm in the adversarial training package in [14] is 8

255 . Thus, we do not
include certified methods in our research.

2.3. Hypothesis about the Cause of Adversarial Attacks

The exact reason why neural networks are susceptible to small changes in input data
remains unclear. Goodfellow et al. [7] argued that adversarial examples result from models
being overly linear rather than nonlinear. However, another perspective considers poor
generalisation as the source of attacks. Ilyas et al. [1] hypothesised that neural networks’
vulnerability to adversarial attacks arises from their data representation. Classifiers aim
to extract useful features from data to minimise a cost function. Ideally, these features
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should be related to the classification objects (robust features), but neural networks may
utilise unexpected properties specific to a particular data set (non-robust features). As a
consequence, an adversary can utilise non-robust features that actually make no sense for
human perception. If a classifier can be trained on a data set containing only robust features,
it should be resistant to adversarial attacks. We refer to this process as robust training.

This hypothesis serves as an entry point for our broad research on the role of ad-
versarial attack norms in network prediction. We challenge the robust features hypoth-
esis for several reasons. First, it is not fully proven, except for the toy example in [1]
and experiments on robust and non-robust data set creation. Second, subsequent works
like [15,16] consider this hypothesis, though it might not be entirely accurate. For example,
Zhang et al. [16] proposed a similar experiment, referring to [1], and developed it for
universal perturbation. Although the results of [1] were discussed in [17], the accuracy of a
robustly trained model was tested nowhere but in the original work, and we would like to
fill this gap.

3. Generalisation of Robustly and Adversarially Trained Models

One of the goals of this work is to check the generalisation of robustly and adversarially
trained models to various unseen attacks. The lack of generalisation can be critical for the
users of such models who want to be sure that they respond adequately to any noisy data.
In this Section, we show that, indeed, the robustly and adversarially trained models do
not generalise well and highlight the cases when their performance can be compromised
significantly. In the further experiments, we explain the difference between L2- and L∞-
norm perturbations, which might be the cause of the lack of generalisation.

3.1. The Broad Testing of Robust and Adversarial Training

We replicated robust training from [1], employing a broader testing setup. It included
various attack norms, data sets, and model architectures. The motivation for this experiment
stems from the work of Tramer et al. [18], which demonstrates that even adversarially
trained models could be compromised by unseen attacks; thus, they do not generalise well.
We wanted to test this statement and go further by checking the generalisation of robustly
trained models.

Robust training involves several steps:

1. Select an adversarially pre-trained model and the data set for image classification.
2. For each image (named “target“) from the data set, randomly generate a noisy image.
3. Compute the representations using an adversarially trained model for both the ran-

dom and target images. At each iteration, slightly adjust the random image to min-
imise the distance between the vectors of the two images. After a set number of steps,
this method produces a modified image with robust features only. So, image by image,
compute a new, robust data set from the original.

4. Train the model regularly with the same architecture on this modified data set, ulti-
mately resulting in a robustly trained model.

5. Test the generalisation capacity of both the adversarial and robust models: compute
the accuracy under attacks that were not considered during the adversarial training
phase and hence not used in the formation of the robust model.

Following this approach, we performed several experiments. Firstly, we took two ad-
versarially trained ResNet50-s [19]. The training data set for the models was CIFAR-10 [20];
the training attack was PGD with L2- and L∞-norms. We tested their performance against
FGSM (L1-, L2-, L∞-norms), PGD (L1-, L2-, L∞-norms), C-W (L2-norm), and DeepFool
(L2-norm) attacks. A C-W attack refers to the Carlini and Wagner adversarial attack; a
detailed description of it can be found in the original paper [21]. The performance results
of the L2-trained model are outlined in Table 1, and those of the L∞-trained model are
presented in Table 2.

Second, we performed the same experiment on the Inception V3 [22] model. For
computational reasons, we only took one model, trained with a PGD attack with an L∞-



Algorithms 2024, 17, 162 5 of 15

norm. The results are displayed in Table A1. Note that ϵ for the attacks differs from the
similar ones for ResNet50-s because the model has a bigger input shape (224 × 224 vs.
32 × 32, respectively).

Thirdly, we tried to manage the entire adversarial training pipeline ourselves from
scratch. Owing to computational constraints, we selected the relatively more manageable
ResNet18 architecture. The models were trained on a PGD attack with five iterations and
L2- and L∞-norms. For data sets, we utilised CIFAR-10 and CINIC-10 [23] as the data
sets, and PGD and FGSM as the test attacks. The results for CIFAR-10 and CINIC-10 are
displayed in Tables 3 and A2, respectively.

To save space in this subsection, we put some of the tables in Appendix A and do not
specifically comment on them. However, these results make the experiment more solid,
confirm the overall conclusion (written in the following), and present the same patterns of
adversarial and robust training as the models in Tables 1 and 2.

Table 1. Robust ResNet50 trained on L2 data set and related adversarial model. The epsilon column
stands for the budget of perturbation; the norm stands for the way of measurement for this budget;
steps—maximum iterations for adversarial example creation, Robust acc.—accuracy of robustly
trained model, Adv. acc.—accuracy of the corresponding adversarially trained model.

Attack Norm Epsilon Steps Robust acc. Adv. acc.

No attack - - - 0.813 0.91
FGSM L1 0.5 1 0.81 0.91
FGSM L2 0.25 1 0.59 0.87
FGSM L∞ 0.25 1 0.1 0.13
FGSM L∞ 0.025 1 0.22 0.62

PGD L1 0.5 100 0.81 0.91
PGD L2 0.25 1000 0.483 0.82
PGD L2 0.5 100 0.202 0.75
PGD L∞ 0.025 5 0.168 0.54
PGD L∞ 0.25 5 0.08 0.06

C-W L2 0.25 10 0.219 0.86
DeepFool L2 0.25 - 0.124 0.127

Table 2. Robust ResNet50 trained on L∞ data set and related adversarial model.

Attack Norm Epsilon Steps Robust acc. Adv. acc.

No attack - - - 0.73 0.87
FGSM L1 0.5 1 0.73 0.87
FGSM L2 0.25 1 0.504 0.826
FGSM L∞ 0.25 1 0.07 0.19
FGSM L∞ 0.025 1 0.2 0.724

PGD L1 0.5 100 0.731 0.87
PGD L2 0.25 1000 0.414 0.813
PGD L2 0.5 100 0.195 0.663
PGD L∞ 0.025 5 0.155 0.683
PGD L∞ 0.25 5 0.11 0.052

C-W L2 0.25 10 0.51 0.81
DeepFool L2 0.25 - 0.13 0.111

On examination, it is apparent that adversarial and robustly trained models demon-
strate reasonable stability against some variations of PGD and FGSM attacks, for example,
with an L1-norm. However, all attacks with an L∞-norm significantly undermined the
accuracy of the models. Hence, the model does not ensure generalisation against all attack
types, primarily because a simple increase in norm or perturbation shows a drastic impact.
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Table 3. Accuracy of ResNet18-s, trained on CIFAR-10 data set.

Regular Model Adv. Trained, L∞-Norm Adv. Trained, L2-Norm

Accuracy on CINIC-10 (no attack) 76% 75% 72%
Accuracy on CIFAR-10 (no attack) 95% 94% 91%

Accuracy on CINIC-10 (PGD attack) 7%— L∞ attack,
11%—L2 attack

37%—L∞ attack,
36%—L2 attack

40 %—L∞ attack,
43%—L2 attack

Accuracy on CIFAR-10 (PGD attack) 7%—L∞ attack,
27%—L2 attack

57%—L∞ attack,
55%—L2 attack

61 %—L∞ attack,
64 %—L2 attack

Accuracy on CINIC-10 (FGSM attack) 49 %—L∞ attack 67 %—L∞ attack 66 %—L∞ attack
Accuracy on CIFAR-10 (FGSM attack) 72 %—L∞ attack 89 %—L∞ attack 87 %—L∞ attack

3.2. Equivalence of L2 and L∞ Perturbation Norms

To explain the lack of generalisation in the previous experiment, we used the theorem
of the equivalence of vector norms on finite-dimensional spaces. The theorem states that
for a given two norms ∥.∥a and ∥.∥b on the finite-dimensional vector space V over C,
there exists a pair of real numbers 0 < C1 ≤ C2 such that, for all x ∈ V , the following
inequality holds:

C1∥x∥b ≤ ∥x∥a ≤ C2∥x∥b (5)

In other words, all norms are equal to each other with respect to some coefficients.
Images and adversarial perturbations are finite-dimensional vectors over R; thus, the
same inequality holds for the L2- and L∞-norms. The ϵ-s that we used in the previous
experiments, such as ϵ = 0.03 for the L∞-norm and ϵ = 0.25 for the L2-norm on the CIFAR-
10 data set, are widely used [7,8]. In practice, such a choice seems reasonable because the
corresponding perturbations are indistinguishable by the human eye. However, such ϵ-s
might be too loose, which can explain the superiority of L∞-norm attacks.

1. Take the CIFAR-10 test data set and two attacks: PGD with an L2-norm of attack and
ϵ = 0.25; and PGD with an L∞-norm and ϵ = 0.03.

2. Generate adversarial perturbations by these attacks. Save only the perturbation that
misclassifies a network: the prediction of such an adversarial sample must not be
equal to the true label and prediction of the original image.

3. Flatten the perturbation matrices into vectors and calculate the norms.
4. Iterating over the perturbations, take C1 and C2 as C1 = min(

xpert2
xpert∞

) and C2 =

max(
xpert2
xpert∞

). Therefore, in Equation (5) we picked a = 2, b = ∞, but this was an
arbitrary choice.

5. Repeat for three models: regular ResNet-50 and adversarially trained ResNets-50 with
L2- and L∞-norms of attacks. In addition, for all cases, calculate the percentage of
adversarial misclassified samples by the model.

The results are presented in Table 4.

Table 4. Coefficients for Equation (5). Testing attacks are PGD with L2 and L∞ perturbation norms;
testing data set is CIFAR-10.

Attack Norm
Model L2 L∞

C1 C2 % of Misclassified C1 C2 % of Misclassified

Regular ResNet-50 4.6 14.4 86 43.6 55.4 96

Adv. trained ResNet-50 (L2) 3.3 14.3 8 45.8 55.4 52

Adv. trained ResNet-50 (L∞) 1.6 7.3 10 45.4 55.4 44
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For generalisation purposes, we also tested the same models on an FGSM attack with
ϵ = 0.03 (attack norm was L∞) and we present the results in Table 5. We also conducted the
same experiment on the CINIC data set (Table 6).

Table 5. Coefficients for Equation (5). Testing attack is FGSM; the testing data set is CIFAR-10.

Model C1 C2 % of Misclassified

Regular ResNet-50 41.9 55.4 36

Adv. trained ResNet-50 (L2) 40 55.4 22

Adv. trained ResNet-50 (L∞) 45.6 55.4 13

Table 6. Coefficients for Equation (5). Testing attacks are PGD with L2 and L∞ perturbation norms,
the testing data set is CINIC.

Attack Norm
Model L2 L∞

C1 C2 % of Misclassified C1 C2 % of Misclassified

Regular ResNet-50 4.5 14.8 70 39.7 55.4 82

Adv. trained ResNet-50 (L2) 4.1 15.2 12 43.3 55.4 52

Adv. trained ResNet-50 (L∞) 1.2 7.3 15 43.5 55.4 37

From Tables 4 and 5, one can observe the following:

• The coefficients in L∞ attacks are significantly higher than those for L2-norm attacks.
Since the coefficients are the fractions between the norms, and xpert∞ = 0.03, the L2-
norm of such perturbations is much higher than 0.25. In fact, when C2 is approximately
55, each pixel of the perturbed image is equal to ±0.03.

• For L2 attacks, on the other hand, the overall perturbation is restricted by 0.25, but
some particular pixels can be changed more than 0.03. The small values of C1 and
C2 for the L∞-norm adversarially trained model indicate high magnitude in some
image regions.

In this experiment, we called into question the traditional choice of ϵ-s in the literature
on adversarial attacks. We leave the more detailed analysis of the coefficient range for a
truly robust model for further research.

3.3. Loss Distributions of the Adversarially Trained Models

To illustrate the disparity between adversarial attack norms, we took three ResNet50
models from the first experiments: one model was regularly trained on CIFAR-10, while the
other two were adversarially trained by PGD attacks with L2- and L∞-norms, respectively.
The performance of each model was evaluated using histogram plots, where the X-axis
represents the cross-entropy loss between predictions and one-hot-encoded labels and the
height of bars displays the number of samples in a given region. We used a CIFAR-10 test
data set with 10,000 samples in total.

To challenge these models, we used two types of PGD attacks: the L2-norm of pertur-
bation with ϵ = 0.5 and the L∞-norm with ϵ = 0.05. The number of steps for the L∞-norm
attack was set to five, while that for the attack on L2 was 10. Additionally, the loss of each
model on clean data was assessed.

Each plot represents one model and includes three distributions: losses in clean and
adversarially perturbed CIFAR-10 test data (10,000 samples), with L2- or L∞-norm attacks.
The performance of each model is presented by histogram plots. The X-axis stands for the
cross-entropy loss between predictions and one-hot encoded labels (lower is better). The
height of bins displays the number of samples that fell in a given region. The A-distance,
which is used in domain adaptation [24], additionally illustrates the difference between the
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distributions of clean and adversarial samples. A higher A-distance value indicates greater
dissimilarity between distributions. The plots are presented in Figures 1–3. For the better
visualization, we plot kernel density estimation alongside with histogram for each attack,
with the corresponding color.

Figure 1. Distributions of samples for adversarially trained ResNet50. Training attack—PGD with
L∞-norm, ϵ is 0.03.

Figure 2. Distributions of samples for adversarially trained ResNet50. Training attack—PGD with
L2-norm, ϵ is 0.5.

In all figures, the distributions of attack with an L∞ perturbation norm (Figure 1)
have a peak near the maximum loss. Although, for the regularly trained model (Figure 3),
approximately all samples are located near this peak, for adversarially trained models,
there are also smaller peaks on the left side of the distributions. The distributions of clean
data have about the same shape on every plot: a high peak on the very left bar (mean with
the least error) and a smooth decrease to the right side. The distributions of adversarial
samples with the L2-norm (Figure 2) have a similar peak for adversarially trained models;
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however, they have a more flattened tail. For the regularly trained model, most of the
examples fall into the right region, as for the attack with the L∞-norm (note the scale).

Figure 3. Distributions of samples for regularly trained ResNet50.

The results indicate that adversarial attacks alter the shape of the sample distribution,
with the norms of attack playing a significant role in determining the curves’ appearance.
The A-distance confirms this finding. Adversarial training brings the adversarial and be-
nign distributions closer together but does not achieve complete convergence, particularly
for attacks with an L∞-norm.

4. Analysis of the Representations

We extend the research on adversarial and robust training. While in the previous
Section we focused mostly on attack parameters and perturbations, we are also interested
in how a model represents benign and adversarial samples. We aim to determine the
proximity of such representations for a robustly trained model. The degree of similarity
between representations of samples with small L∞- or L2-norms indicates the stability of
a model. We analysed the representations of neural networks from the robust training
experiment (Section 3.1) using singular value canonical correlation analysis and performed
a principal component analysis for their visualisation.

4.1. Comparison of Representations under Adversarial Attacks

Canonical correlation analysis (CCA) is a method used to compare the representa-
tions of neural networks. Its objective is to identify linear combinations of two sets of
random variables that maximise their correlation. CCA has been employed to compare
activations from different layers of neural networks, for example, by Morcos et al. [25] and
An et al. [26]. Raghu et al. [27] proposed an extension of CCA, singular value canonical
correlation analysis (SVCCA), for neural network analysis.

We employed SVCCA to compare the representations of the original and correspond-
ing adversarial images. For each experiment, we took a batch of 128 images, computed the
related adversarial examples under some attack, calculated the SVCCA for the representa-
tions, and took the mean. In each experiment, we tested the same models as in the previous
experiments: a regularly and two adversarially trained ResNet50-s. In this experiment, a
high mean correlation coefficient indicated that the representations were similar to each
other and that small perturbations did not impact the model.
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Although attack norms were the primary variables in these experiments, we also
tested two different attacks (FGSM and PGD) to eliminate the threat of validity. The means
of SVCCA are presented in Table 7. The results of the same for the best and worst cases
from Tables 1 and 2 in Table A3 can be found in Appendix B.

Table 7. Mean correlation coefficient for different models. The values of the lowest mean correlation
coefficients for each model are bold.

Attack Parameters Regular Model Adv. Trained, L2 Adv. Trained, L∞

PGD L2, ϵ = 0.25, steps = 100 0.686 0.981 0.989
L∞, ϵ = 0.025, steps = 100 0.587 0.751 0.822

FGSM L2, ϵ = 0.25 0.833 0.982 0.991
L∞, ϵ = 0.025 0.618 0.78 0.837

The results in Tables 7 and A3 demonstrate that adversarial attacks with L∞-norm
perturbation have the most significant impact on the representations. This effect is evident
even in models that were trained specifically to handle L∞-norm attacks. These findings
emphasise the importance of considering adversarial attack norms when evaluating model
robustness because testing in the L2-norm may provide a false sense of security.

4.2. Visualisation of Representations

The visualisation of representations presents a challenge due to the high dimension-
ality of representation vectors. Nonetheless, such visualisation can be useful for analysis
purposes. To address this issue, we employed principal component analysis (PCA) to
reduce the dimensionality of representations from 512 to 2. We limited our experimentation
to ResNet18 due to computational constraints.

We present the visualisation of representations for different combinations of models
and norms of PGD attacks in Figures 4–8. Figure 4 depicts the representations of samples
from CIFAR-10 for a regularly trained ResNet18, which serves as a baseline case. In
Figures 5 and 6, we visualise the data as adversarial samples with L2- and L∞-norms of
attack, respectively. Furthermore, we examine the representations of adversarial samples
for adversarially trained models in Figures 7 and 8. To challenge the models, we use alter
norms of attacks from training ones: the model trained on PGD with an L2-norm is tested
on an L∞-norm PGD (Figure 8), and vice versa (Figure 7). We group the representations
of different classes by colours in all figures to comprehend how the representations of
different classes intermingle under adversarial attacks.

The representations of the regularly trained networks are clustered according to the
classes in the data set, as shown in Figure 4. However, when subjected to adversarial attacks,
all representations become heavily mixed, resulting in a more challenging classification task
due to overlapping representations of different classes. The most mixed representations
were observed on the regularly trained network through the L∞-norm PGD attack (Figure 6).
On the contrary, adversarial training, as shown in Figures 7 and 8, resulted in some class
representations (e.g., “Automobile” or “Truck”) remaining clustered while becoming closer
to each other than those without attacks. The same pattern was observed for the L2-norm
attack (Figure 6).
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Figure 4. Representations of regularly trained ResNet18 on clean data set (CIFAR-10).

Figure 5. Representations of regularly trained ResNet18 on adversarial data set (CIFAR-10), PGD
with L2-norm and 20 steps.

Figure 6. Representations of regularly trained ResNet18 on adversarial data set (CIFAR-10), PGD
with L∞-norm and 20 steps.

Figure 7. Representations of adversarially trained ResNet18 (PGD, L∞-norm) on adversarial data set
(CIFAR-10), PGD with L2-norm and 20 steps.
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Figure 8. Representations of adversarially trained ResNet18 (PGD, L2-norm) on adversarial data set
(CIFAR-10), PGD with L∞-norm and 20 steps.

5. Impact of Adversarial Training on the Network’s Decision Boundary

As a continuation of generalisation testing, we aim to investigate the impact of robust
and adversarial training methods on the decision boundary of a model. Particularly, we
show how the mean distance between samples and decision boundaries varies for different
models when exposed to adversarial attacks.

We use the idea of Mickisch et al. [10], who utilised the DeepFool attack in Section 2.1.3
to measure this distance. The decision boundary is defined as the set of input images where
two or more classes share the same maximum probability, indicating that the classifier is
uncertain about the class of the image:

D = {x ∈ Rn|∃k1, k2 = 1...c, k1 ̸= k2,

f (x)k1 = f (x)k2 = max( f (x))}
(6)

where c is the number of classes. Under this definition, the usage of the DeepFool attack
looks natural because it aims to find a perturbation to the closest wrong class. The distance
of the sample x to the decision boundary D can be measured as

d(x) = min ϵ, s.t.x + ϵ ∈ D (7)

The pre-trained ResNet50 model is used with 20 steps of PGD attack during training,
while ResNet18 models are trained under PGD with only 5 steps. The test data set is
CIFAR-10. The outputs of the ResNet18 and ResNet50 models with different training
configurations are presented in Table 8. The table displays the mean difference between
the decision boundaries of models and images from CIFAR-10, calculated using the L2
distance. The “steps” column represents the mean iteration of DeepFool spent during the
attack generation. A comparison is made between the models in Tables 1–3.

Table 8. Mean distance of samples to decision boundary.

Model Mean L2 Distance Steps

Regularly trained ResNet18 0.1793 1.92
Adversarially trained ResNet18 (L2-norm) 0.659 1.98
Adversarially trained ResNet18 (L∞norm) 0.1018 2.5

Regularly trained ResNet50 0.17 2.58
Adversarially trained ResNet50 (L2-norm) 1.3728 1.77
Adversarially trained ResNet50 (L∞-norm) 1.18 2.66

The results indicate that the mean distance for ResNet18-s (for all types of training)
from the decision boundary is relatively small, especially for the L∞-norm. A small dis-
tance from a sample to the decision boundary implies that it is easier to misclassify this
sample because it does not require a significant perturbation. Interestingly, the distance for
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the L∞-norm adversarially trained model is actually less than training ϵ. However, the
testing of this model under PGD attack (Table 3) suggests that it has some robustness.
Therefore, the reliability of the popular method of model testing used in this study is called
into question.

6. Discussion

One explanation for the robustness difference between L∞-norm and L2-norm attacks
is according to the adversarial purification framework in Allen-Zhu and Li [28]. In this
context, L∞-norm attacks typically manipulate an image by applying the maximum al-
lowable perturbation to each pixel within the defined infinity norm constraint. This kind
of attack can exploit the dense mixtures in non-purified features more uniformly across
all dimensions of the input space. L2-norm attacks, on the other hand, distribute their
perturbations more smoothly and are constrained by the Euclidean distance. This form
of attack could be more aligned with the types of perturbations that adversarial training
with feature purification is specifically designed to defend against, as the training process
aims to stabilize the model against perturbations that have a concentrated energy in the
feature space.

7. Conclusions

While strong adversarial attacks on neural networks have already been developed,
most of the defense mechanisms still do not guarantee full resistance to them in general.
In this study, we consider the impact of adversarial and robust training on a model’s
ability to adequately represent adversarial samples. The experiments demonstrate that the
model, trained on a “robust” data set, is still vulnerable to some attacks; thus, adversarial
attacks do not compromise only non-robust features. Thus, the robust features are not
well generalised, especially on the L∞-norm of attack. We assume that the small difference
between clean and adversary inputs for the L∞ attack leads to a huge gap in the latent space
between them; SVCCA of different attack representations confirms this assumption. Our
visualisation of neural network representation also shows the difference between L2- and
L∞-norms of attack. Moreover, we discover that L∞-norm adversarial training decreases
the distance between the representations and the decision boundary.

In light of these results, we recommend that researchers in the field of adversarial
attacks and defense mechanisms pay closer attention to L∞-norm attacks to avoid a false
sense of security. It is crucial to consider this norm in their tests to ensure the robustness
of models against potential attacks. As the next step in this research, we would like to
determine the perturbation coefficient range (experiment in Section 3.2) that should be
reasonable for a robust model.
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Appendix A. Broad Test of Robust and Adversarial Training

Table A1. Robust InceptionV3 trained on L∞ data set.

Attack Norm Epsilon Steps Robust acc. Adv. acc.

No attack - - - 0.89 0.94
FGSM L2 0.25 1 0.49 0.83
FGSM L∞ 0.25 1 0.10 0.415
FGSM L∞ 0.025 1 0.63 0.79

PGD L2 100 5 0.87 0.912
PGD L2 45 100 0.88 0.903
PGD L2 0.5 100 0.89 0.94
PGD L∞ 0.5 5 0.06 0.378
PGD L∞ 1.0 5 0.04 0.281

C-W L2 0.25 10 0.51 0.85
DeepFool L2 0.25 - 0.48 0.784

Table A2. Accuracy of ResNet18-s, trained on CINIC-10 data set.

Regular Model Adv. Trained, L∞-Norm Adv. Trained, L2-Norm

Accuracy on CINIC-10 (no attack) 86 % 84 % 80 %
Accuracy on CIFAR-10 (no attack) 94 % 93 % 90 %

Accuracy on CINIC-10 (PGD attack) 3%—L∞ attack,
6%—L2 attack

33%—L∞ attack,
30%—L2 attack

42 %—L∞ attack,
46%—L2 attack

Accuracy on CIFAR-10 (PGD attack) 4%—L∞ attack,
7%—L2 attack

45%—L∞ attack,
41%—L2 attack

55 %—L∞ attack,
59 %—L2 attack

Accuracy on CINIC-10 (FGSM attack) 50 %—L∞ attack 75 %—L∞ attack 73 %—L∞ attack
Accuracy on CIFAR-10 (FGSM attack) 63 %—L∞ attack 87 %—L∞ attack 85%—L∞ attack

Appendix B. SVCAA

Table A3. Mean correlation coefficient for the best and worst cases in Tables 1 and 2.

Attack Parameters Regular Model Adv. Trained, L2 Adv. Trained, L∞

PGD, best L2, ϵ = 0.25,
steps = 1000 0.682 0.989 0.99

PGD, worst L∞, ϵ = 0.25, steps = 5 0.46 0.532 0.598

FGSM, best L2, ϵ = 0.25 0.833 0.982 0.991
FGSM, worst L∞, ϵ = 0.25 0.422 0.346 0.411
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