
Citation: Chen, Y.; Khaliq, A.

Quantum Recurrent Neural Networks:

Predicting the Dynamics of

Oscillatory and Chaotic Systems.

Algorithms 2024, 17, 163. https://

doi.org/10.3390/a17040163

Academic Editor: Frank Werner

Received: 24 March 2024

Revised: 13 April 2024

Accepted: 17 April 2024

Published: 19 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Quantum Recurrent Neural Networks: Predicting the Dynamics
of Oscillatory and Chaotic Systems
Yuan Chen 1,† and Abdul Khaliq 2,*,†

1 Computational and Data Science Program, Middle Tennessee State University, Murfreesboro, TN 37132, USA;
yc3y@mtmail.mtsu.edu

2 Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA
* Correspondence: abdul.khaliq@mtsu.edu
† These authors contributed equally to this work.

Abstract: In this study, we investigate Quantum Long Short-Term Memory and Quantum Gated
Recurrent Unit integrated with Variational Quantum Circuits in modeling complex dynamical
systems, including the Van der Pol oscillator, coupled oscillators, and the Lorenz system. We
implement these advanced quantum machine learning techniques and compare their performance
with traditional Long Short-Term Memory and Gated Recurrent Unit models. The results of our
study reveal that the quantum-based models deliver superior precision and more stable loss metrics
throughout 100 epochs for both the Van der Pol oscillator and coupled harmonic oscillators, and
20 epochs for the Lorenz system. The Quantum Gated Recurrent Unit outperforms competing models,
showcasing notable performance metrics. For the Van der Pol oscillator, it reports MAE 0.0902 and
RMSE 0.1031 for variable x and MAE 0.1500 and RMSE 0.1943 for y; for coupled oscillators, Oscillator
1 shows MAE 0.2411 and RMSE 0.2701 and Oscillator 2 MAE is 0.0482 and RMSE 0.0602; and for the
Lorenz system, the results are MAE 0.4864 and RMSE 0.4971 for x, MAE 0.4723 and RMSE 0.4846 for
y, and MAE 0.4555 and RMSE 0.4745 for z. These outcomes mark a significant advancement in the
field of quantum machine learning.

Keywords: Quantum Long Short-Term Memory (QLSTM); Quantum Gated Recurrent Unit (QGRU);
Van der Pol oscillator; harmonic oscillators; Lorenz system

1. Introduction

Ordinary differential equations (ODEs) are foundational mathematical models that
play a critical role across diverse domains, such as physics [1], biology [2,3], and eco-
nomics [4]. The numerical resolution of ODE systems is pivotal for understanding the
dynamics of these varied processes. To this end, numerous methodologies have been
devised, including linear multistep methods [5,6] and Runge–Kutta methods [7,8]. Never-
theless, the practical application of these methods frequently encounters the complexity of
systems characterized by nonlinear and time-varying elements, alongside a pronounced
sensitivity to initial conditions. Such complexities [9] significantly challenge the efficacy
of traditional analytical and numerical strategies, especially in terms of achieving desired
levels of precision, stability, and computational efficiency. Given these considerations, there
is a pressing need for more sophisticated techniques capable of navigating the intricate
landscape of ODE systems.

In recent years, recurrent neural networks (RNNs) have achieved significant break-
throughs in processing sequential data. RNNs have been used extensively in various
domains, including but not limited to, time series data prediction [10–12], machine trans-
lation [13], and speech recognition [14]. Notably, RNNs have also played a critical role
in scientific research [15,16], an area of particular interest to us. Within this framework,
RNNs and their specific variants, such as Long Short-Term Memory (LSTM) [17] and Gated

Algorithms 2024, 17, 163. https://doi.org/10.3390/a17040163 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17040163
https://doi.org/10.3390/a17040163
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-8140-0545
https://doi.org/10.3390/a17040163
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17040163?type=check_update&version=1

Algorithms 2024, 17, 163 2 of 24

Recurrent Units (GRUs) [18], have proven to be efficacious in learning or forecasting com-
plex, nonlinear challenges. The intrinsic nature of RNNs, which are capable of capturing
temporal dependencies and learning from sequential data, makes them particularly suited
for modeling dynamical systems. Unlike conventional approaches that require explicit
numerical schemes for integration over time, RNNs can implicitly learn the underlying
dynamics from data, offering a way to bypass the complexities of directly solving ordinary
differential equations (ODEs). This capability allows for the modeling of complex systems
with high degrees of freedom and nonlinearity, providing a flexible and potentially more ac-
curate alternative to traditional methods. Consequently, the use of RNNs in solving ODEs,
especially systems of ODEs, represents a significant shift towards data-driven approaches
in the prediction of dynamical [19–22] and time series chaotic systems [23–26].

Concurrently, quantum computing has been advancing rapidly, spearheaded by tech-
nology giants such as IBM [27], Google [28], PennyLane [29], and D-Wave Systems [30].
These quantum systems offer theoretical advantages for specific computational tasks and
simulations of intricate quantum phenomena. However, the practical utility of current
Noisy Intermediate-Scale Quantum (NISQ) devices is constrained by limitations in quan-
tum error correction [31–33]. This limitation poses a significant challenge, as it restricts the
reliability and scalability of quantum computations, impeding their broader application in
complex problems.

The advent of variational quantum algorithms and circuits, pioneered by Mitarai
et al. [34], has been a landmark development in the integration of quantum computing
with machine learning. These algorithms leverage quantum entanglement to address
fundamental machine learning challenges, such as function approximation and classifica-
tion [34,35]. More studies about variational quantum algorithms and circuits can be found
here [36]. This innovation has facilitated the development of hybrid quantum–classical al-
gorithms, adaptable for use on existing Noisy Intermediate-Scale Quantum (NISQ) devices.
Such hybrid approaches have shown promise across various domains, including classifi-
cation [37,38], generative adversarial learning [39], and deep reinforcement learning [40].
Furthermore, the exploration of quantum machine learning [41–46] has opened a new path
for processing and analyzing data, harnessing the unique computational capabilities of
quantum systems.

Among the studies, the study by Chen et al. [47,48] innovated in the quantum machine
learning domain by introducing Quantum LSTM (QLSTM) and Quantum GRU (QGRU),
integrating variational quantum circuits (VQCs) with recurrent neural network architec-
tures. Designed for Noisy Intermediate-Scale Quantum (NISQ) devices, these quantum
models utilize quantum entanglement to enhance learning efficiency and stability. Their
research showcases that QLSTM and QGRU outperform traditional LSTM models in terms
of learning efficiency and convergence stability, marking a significant step in sequential
data learning within the quantum computing sphere. However, the scenarios examined
in Chen’s studies [47,48] only involved singular ODEs, which prompted us to explore the
application of QRNN to systems of ODEs.

In this research, we explore the application of Quantum Long Short-Term Memory
(QLSTM) and Quantum Gated Recurrent Unit (QGRU) models, based on the Variational
Quantum Circuits (VQCs) developed by Chen et al. [47,48], to complex dynamical systems
described by ODEs. Our approach involves a nuanced modification to the VQC, thereby
refining its compatibility with QLSTM and QGRU models for their application in this con-
text. Our focus is on the Van der Pol oscillator, two coupled damped harmonic oscillators,
and the Lorenz equations. We conduct a comparative analysis of these quantum models
against their classical counterparts, LSTM and GRU, focusing on error metrics and loss
evolution across epochs. This comparison aims to evaluate their effectiveness in modeling
and predicting the dynamics of nonlinear and chaotic systems.

The structure of this paper is organized as follows: Section 2 presents an overview of
fundamental concepts in quantum computing, including qubits, superposition, quantum
gates, and entanglement. In Section 3, we introduce the computational models under inves-

Algorithms 2024, 17, 163 3 of 24

tigation, namely variational quantum circuits, classical Long Short-Term Memory (LSTM),
classical Gated Recurrent Unit (GRU), Quantum Long Short-Term Memory (QLSTM), and
Quantum Gated Recurrent Unit (QGRU). Section 4 introduces three numerical experiments
conducted to evaluate these models, including the Van der Pol oscillator, two coupled
damped harmonic oscillators, and the Lorenz equations system. Section 5 is the discussion
and Section 6 is the conclusion.

2. Fundamental Quantum Computing Concepts
2.1. Qubits

The core distinction between classical and quantum computing lies in their funda-
mental units of information: the classical bit and the quantum bit (qubit), respectively. In
classical computing, a bit is a binary unit that can exist in one of two states, either 0 or
1. This binary nature underpins all classical computing processes, with data storage and
computations executed through combinations of these binary states.

In contrast, the qubit, the fundamental unit of quantum computing, transcends this
binary limitation. A qubit differs from a classical bit in its ability to exist in a superposition
of states. Rather than being limited to a strict 0 or 1, a qubit can represent both 0 and
1 simultaneously, a phenomenon that is central to quantum computing’s potential for
processing complexity.

This unique property of qubits arises from the principles of quantum mechanics.
Unlike classical bits, whose state is definite and observable, a qubit’s state is described
probabilistically. The actual state of a qubit is not determined until it is measured. Before
measurement, a qubit exists in a superposition of the states |0⟩ and |1⟩, where the probabili-
ties of these states are determined by quantum amplitudes. These amplitudes, which are
complex numbers, dictate the likelihood of the qubit collapsing into either the |0⟩ or |1⟩
state upon measurement.

The concept of superposition enables qubits to perform computations on a scale and
at a speed unattainable by classical bits. This capability forms the basis for quantum com-
puting’s potential to solve problems that are currently intractable for classical computers,
which will be introduced in the following section.

2.2. Superpositions

Superposition in a quantum system allows a qubit to exist in multiple states simul-
taneously until it is measured. This characteristic differentiates a quantum bit from a
classical bit, which can only be in one state at any given time. In a single qubit system,
the state of a qubit can be described as a linear combination of the basis states |0⟩ and |1⟩.
Mathematically, this is represented as:

|ψ⟩ = α|0⟩+ β|1⟩, (1)

where α and β are complex numbers representing the probability amplitudes for the qubit
being in state |0⟩ and |1⟩, respectively. According to the Born’s rule, the probabilities of
finding the qubit in either state upon measurement are |α|2 and |β|2, with the condition
that |α|2 + |β|2 = 1.

For example, if α =
√

0.3 and β =
√

0.7, the qubit has a 30% probability of being
measured in state |0⟩ and a 70% probability of being in state |1⟩.

Extending the concept of superposition to a two-qubit system, we find a more complex
scenario. In a two-qubit system, the combined state can be represented as a superposition
of all four possible states of the two qubits. The state vector for such a system is given by:

|Ψ⟩ = α|00⟩+ β|01⟩+ γ|10⟩+ δ|11⟩, (2)

where α, β, γ, and δ are complex probability amplitudes corresponding to each of the four
states. As per the normalization condition, the sum of the squares of the absolute values of
these amplitudes must equal one:

Algorithms 2024, 17, 163 4 of 24

|α|2 + |β|2 + |γ|2 + |δ|2 = 1. (3)

For instance, if the amplitudes are α =
√

0.1, β =
√

0.2, γ =
√

0.3, andδ =
√

0.4, the
probabilities of measuring the system in the states |00⟩, |01⟩, |10⟩, and |11⟩ are 10%, 20%,
30%, and 40%, respectively.

In both single and two-qubit systems, superposition allows quantum computers to
process and encode information in ways that are fundamentally different from classical
computers, enabling them to perform complex calculations more efficiently.

In traditional computing, gates are fundamental building blocks that process binary
information, operating on bits that exist in one of two states: 0 or 1. Common logic
gates include AND, OR, NOT, and XOR, each performing a specific logical operation for
computational tasks.

Similarly, quantum computing has quantum gates, which manipulate qubits, such
as the Hadamard, Pauli-X, Y, Z, and Controlled-NOT (CNOT) gates, operating on these
qubits, enabling complex operations that can entangle qubits, and creating correlations
between them that are essential for quantum computation’s power. These gates are unitary,
meaning they are reversible, a property that contrasts with some irreversible classical gates.

Here, we introduce one of the fundamental gates in quantum computing, the Hadamard
gate, often used to create a superposition of states. The Hadamard gate acts on a single
qubit and transforms it into a superposition of its basis states.

The Hadamard gate is represented by the following matrix:

H =
1√
2

(
1 1
1 −1

)
. (4)

This matrix operates on a qubit state vector, transforming it from a definite state (|0⟩
or |1⟩) into a superposition. When the Hadamard gate acts on the state |0⟩ (represented by

the vector
(

1
0

)
), the resulting state is:

H|0⟩ = 1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
=

|0⟩+ |1⟩√
2

. (5)

Similarly, when it acts on the state |1⟩ (represented by the vector
(

0
1

)
), the output is:

H|1⟩ = 1√
2

(
1 1
1 −1

)(
0
1

)
=

1√
2

(
1
−1

)
=

|0⟩ − |1⟩√
2

. (6)

The Hadamard gate, therefore, creates an equal superposition of the |0⟩ and |1⟩ states.

2.3. Quantum Entanglement

Quantum entanglement is a phenomenon in which multiple qubits become intercon-
nected in such a way that the state of one qubit cannot be described independently of the
state of the other qubits, even when the qubits are separated by large distances.

To explain the significance of entanglement in this study, consider an analogy involv-
ing the conventional method of information exchange between two individuals. The most
traditional method of information exchange involves one individual physically moving
within audible distance to relay news to another person. This method, while effective, is
indeed time-consuming and limits the speed of information transfer. However, by incor-
porating quantum entanglement into our framework to enable instantaneous information
exchange between two entangled parties we significantly enhance the efficiency and speed
of learning. This quantum advantage mirrors the leap from having to physically move
towards someone to share information, to an immediate and direct exchange of knowledge.

Algorithms 2024, 17, 163 5 of 24

Entanglement can be achieved using certain quantum gates. For instance, the combi-
nation of a Hadamard gate followed by a Controlled-NOT (CNOT) gate is commonly used
to entangle two qubits.

First, the Hadamard gate is applied to one of the qubits to create a superposition, as
previously discussed. Then, the CNOT gate, which flips the state of the second qubit if the
first qubit is in the |1⟩ state, is applied. The operation of the CNOT gate can be described
by the following matrix:

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

. (7)

This operation creates entanglement between the two qubits.
Consider two qubits, initially in the state |00⟩. Applying a Hadamard gate to the first

qubit creates the superposition |0⟩+|1⟩√
2

for the first qubit. Now, the combined state of the

two qubits is |00⟩+|10⟩√
2

. Applying a CNOT gate afterward results in the entangled state
|00⟩+|11⟩√

2
, where the state of each qubit cannot be described independently of the other.

3. Methodology
3.1. Variational Quantum Circuits (VQCs)

Variational Quantum Circuits (VQCs) are the unique part of the architecture of quan-
tum recurrent neural networks. The specific VQC components used in this context are
structured in three main parts: an encoding layer, a variational layer, and a quantum
measurement layer. Figure 1 shows an example of a VQC.

Figure 1. An example of VQC architecture with two layers of entanglements for QLSTM and QGRU.

The left-hand part of the figure is the encoding layer, which contains a Hadamard
gate, two angle embedding layers working as Ry and Rz gates in the quantum concept.
The middle part is the variational layer (entanglement layer). It is worth mentioning that
the number of qubits (in this example is 4), and the number of variational layers (in this
example is 2), can be modified to increase the capability to learn the data.

3.1.1. Encoding Layer

The encoding layer’s primary function is to map classical data values into quantum
amplitudes. It starts with initializing the circuit in the ground state and applying Hadamard
gates to create an unbiased initial state. The state of an N-qubit quantum system can be
represented as:

|ψ⟩ = ∑
(q1,q2,...,qN)∈{0,1}N

cq1,q2,...,qN |q1⟩ ⊗ |q2⟩ ⊗ . . . ⊗ |qN⟩, (8)

where cq1,...,qN ∈ C is the complex amplitude for each basis state and ⊗ stands for tensor
product. Again, by the Born’s rule, we know that:

∑
(q1,q2,...,qN)∈{0,1}N

∥cq1,...,qN∥
2 = 1. (9)

Algorithms 2024, 17, 163 6 of 24

The encoding layer first transforms the input data into rotation angles to the rotation
of each single qubit. We apply the Hadamard gate here and transform the initial state into
a superposition, also called the unbiased state. After applying the Hadamard gate H N
times (once to each qubit), we will obtain:

(H|0⟩)⊗N =

(
1√
2
(|0⟩+ |1⟩)

)⊗N
. (10)

The resulting state after applying the Hadamard gate N times is a uniform superposi-
tion of all possible states of N qubits, which can be expressed as:

1√
2N

(
|0⟩⊗N + · · ·+ |1⟩⊗N

)
. (11)

Hence,

1√
2N

2N−1

∑
i=0

|i⟩. (12)

Here, i is used as an index to sum over all possible states, where i represents the
decimal equivalent of the binary numbers formed by the qubits. For example, for N = 2,
the sum would run over |00⟩, |01⟩, |10⟩, and |11⟩, which correspond to decimal 0, 1, 2, and
3, respectively.

The encoding process involves using two-angle encoding, where each data value is
encoded to a qubit with a series of two gates, Ry and Rz. In this study, a template named
qml.templates.AngleEmbedding is used to play the role of Ry and Rz.

The qml.templates.AngleEmbedding template effectively maps classical information
onto the quantum states by applying specific rotation gates to each qubit in the system.
This template can be customized for various aspects of the embedding, including selecting
the axis of rotation Rx, Ry, or Rz. This adaptability makes the template well-suited for a
broad spectrum of applications within the domain of quantum neural networks and other
machine learning models.

After transforming the initial states into unbiased states, we will use 2N rotational
angles from an N-dimensional input vector, v⃗ = (x1, x2, . . . , xN). For each component xi
of v⃗, in Chen’s original paper, the two angles are calculated: θi,1 = arctan(xi) for y-axis
rotation and θi,2 = arctan(x2

i) for z-axis rotation, where the rotations are effected through
Ry(θi,1) and Rz(θi,2) gates, respectively.

Despite normalizing the input data before the encoding layer, this work introduces a
distinct methodology. Rather than employing arctan functions, we select the sin and cos
functions for the Ry(θi,1) and Rz(θi,2) gates, respectively. This entails setting θi,1 = sin(xi)
for the Ry gate and θi,2 = cos(x2

i) for the Rz gate, diverging from conventional arctan
applications. This method represents a preliminary attempt in practice and it can be
improved in future work, which is not covered within this paper. More studies related to
this aspect can be found in Mitarai’s paper [34].

3.1.2. Variational Circuit

The variational circuit is the trainable part of the VQC, consisting of parameterized
unitary transformations. This section of the circuit includes multiple CNOT gates for qubit
entanglement and unitary rotation gates controlled by learnable parameters α, β, and γ.
It is worth mentioning that the variational circuit can be repeated more than one time in
practice to increase the number of parameters and the model’s expressive capacity.

Algorithms 2024, 17, 163 7 of 24

3.1.3. Quantum Measurement

Quantum measurement is used for extracting classical information from the quantum
circuit. It involves measuring the qubits, which, due to the probabilistic nature of quantum
systems, yield varying bit strings upon each measurement. The expectation value of an
operator Ô for a state |ψ⟩ is given by:

E[Ô] = ⟨ψ|Ô|ψ⟩. (13)

The expectation values can be either calculated analytically in a quantum simulation or ob-
tained through multiple samplings in practical quantum devices with specific noise models.

The VQC architecture described here is pivotal in the QLSTM and QGRU, as a
quantum-enhanced approach to processing and learning from data.

3.2. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network
(RNN) particularly adept at learning from sequences of data. LSTMs are designed to
overcome the limitations of traditional RNNs, especially issues related to long-term depen-
dencies in data sequences. Figure 2 shows the structure of a single LSTM unit.

Figure 2. Structure of a single unit of classical LSTM.

An LSTM unit is composed of a cell, an input gate, an output gate, and a forget gate.
These components work together to regulate the flow of information into and out of the
cell, and to decide which information to store and which to discard.

The key equations governing the operations within an LSTM unit are as follows:

ft = σ(W f · [ht−1, xt] + b f), (14)

it = σ(Wi · [ht−1, xt] + bi), (15)

C̃t = tanh(WC · [ht−1, xt] + bC), (16)

Ct = ft ∗ Ct−1 + it ∗ C̃t, (17)

ot = σ(Wo · [ht−1, xt] + bo), (18)

ht = ot ∗ tanh(Ct). (19)

Algorithms 2024, 17, 163 8 of 24

Here, ft, it, and ot represent the activations of the forget, input, and output gates,
respectively, at time t. σ denotes the sigmoid function, and ∗ represents element-wise
multiplication. Ct is the cell state at time t, and ht is the hidden state. W and b are the
weights and biases associated with the respective gates and cell state updates.

3.3. Gated Recurrent Units (GRU)

Gated Recurrent Unit (GRU) is a variation of recurrent neural networks that aims to
solve the vanishing gradient problem, similar to LSTM. GRUs simplify the architecture
seen in LSTM by combining certain gates and states, which often results in more efficient
training for certain types of problems. The structure of a single GRU is shown in Figure 3.

Figure 3. Structure of a single unit of classical GRU.

The GRU architecture is built around two gates: the update gate and the reset gate.
These gates determine how much of the past information needs to be passed along to the
future. The key equations defining a GRU are:

zt = σ(Wz · [ht−1, xt] + bz), (20)

rt = σ(Wr · [ht−1, xt] + br), (21)

h̃t = tanh(W · [rt ∗ ht−1, xt] + b), (22)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t. (23)

In Equations (20)–(23), zt and rt represent the activations of the update and reset gates
at time t, respectively. ht is the hidden state at time t, and h̃t is the candidate hidden state.
W and b are the weights and biases associated with the respective gates and hidden state
updates. The symbol ∗ denotes element-wise multiplication, and σ represents the sigmoid
activation function.

GRUs provide an efficient alternative to LSTM and are particularly useful in modeling
sequences where LSTM’s complex structure may not be necessary.

We need to consider the hardware realization of two activation functions here, which
are the tanh and sigmoid functions. On classical hardware, tanh and sigmoid functions
are computed directly, introducing nonlinearity in neural networks crucial for learning
complex patterns:

Algorithms 2024, 17, 163 9 of 24

tanh(x) =
e2x − 1
e2x + 1

, (24)

σ(x) =
1

1 + e−x . (25)

Classical computers execute these operations efficiently using their processing ca-
pabilities. However, quantum hardware employs a different approach due to its linear
operation nature, making direct computation of tanh and sigmoid functions non-trivial. The
encoding and variational layers in the VQCs allow the quantum-based models to catch the
nonlinear trends across data inputs. Additionally, the measurement layer outputs values
within the range of [−1, 1], which can then be processed classically to implement these
nonlinear functions.

3.4. Quantum Long Short-Term Memory (QLSTM)

Quantum Long Short-Term Memory (QLSTM) is a quantum-enhanced version of the
traditional LSTM networks. QLSTM integrates VQCs into the LSTM architecture, aiming
to leverage the computational advantages of quantum mechanics. The structure of a single
QLSTM unit is shown in Figure 4.

Figure 4. Structure of a single unit of QLSTM.

In a QLSTM, two key memory components are present: the hidden state ht and the
cell or internal state ct. The functioning of a QLSTM cell can be mathematically described
by the following equations:

ft = σ(VQC1(vt)), (26)

it = σ(VQC2(vt)), (27)

C̃t = tanh(VQC3(vt)), (28)

ct = ft ∗ ct−1 + it ∗ C̃t, (29)

ot = σ(VQC4(vt)), (30)

ht = VQC5(ot ∗ tanh(ct)), (31)

ỹt = VQC6(ot ∗ tanh(ct)), (32)

yt = NN(ỹt). (33)

In Equations (26)–(33), σ represents the sigmoid function, and ∗ denotes element-wise
multiplication. The input to the QLSTM cell at each time step is the concatenation vt of the

Algorithms 2024, 17, 163 10 of 24

previous hidden state ht−1 and the current input vector xt. The VQCs mentioned in the
equations refer to Variational Quantum Circuits.

3.5. Quantum Gated Recurrent Unit (QGRU)

Quantum Gated Recurrent Unit (QGRU) represents an evolution of traditional GRU
networks, integrating with VQCs. The structure of a single QGRU unit is shown in Figure 5.

Figure 5. Structure of a single unit of QGRU.

A QGRU cell operates based on the following equations:

rt = σ(VQC1(vt)), (34)

zt = σ(VQC2(vt)), (35)

ot = cat(xt, rt ∗ Ht−1), (36)

H̃t = tanh(VQC3(ot)), (37)

Ht = zt ∗ Ht−1 + (1 − zt) ∗ H̃t, (38)

yt = NN(Ht). (39)

In Equations (34)–(39), rt and zt represent the reset and update gates of the QGRU at
time t, respectively. Ht denotes the hidden state, and H̃t is the candidate hidden state. The
input to the QGRU cell, vt, is the concatenation of the previous hidden state Ht−1 and the
current input vector xt. The VQCs are used to process the quantum aspects of the data.

4. Numerical Experiments
4.1. Hyperparameter Configuration

For the numerical experiments conducted in this study, specific hyperparameters were
chosen to optimize the performance of the quantum models. Table 1 outlines the hyperpa-
rameter configuration used in the Van der Pol oscillator simulation and the simulation of
two coupled damped harmonic oscillators:

More specifically, we are using a single-layer model with hidden size 4, and the models
are evaluating over 100 epochs. We are using the backend de f ault.qubit by PennyLane [16].

Algorithms 2024, 17, 163 11 of 24

Table 1. Hyperparameter configuration.

Hyperparameter QRNNs Value RNNs Value

Optimizer RMSprop Adam
Loss Function MSE MSE

Backend default.qubit -
Number of Qubits 4 -

Layer of Entanglements 4 -
Number of Data Points 250 250
Percentage of Train Set 67% 67%
Percentage of Test Set 33% 33%

Learning Rate 0.01 0.01

4.2. Van der Pol Oscillator Simulation

In the first experiment, we consider the Van der Pol oscillator, a classical example of
a non-conservative oscillator with nonlinear damping. The oscillator is modeled by the
following second-order differential equation:

d2x
dt2 − µ(1 − x2)

dx
dt

+ x = 0. (40)

The parameter µ, representing the nonlinearity and strength of the damping, is set
to 1.0 in our simulations. This choice of µ provides a balance between linear and non-
linear dynamical behaviors, also making the system ideal for predicting a wide range of
oscillatory patterns.

The initial conditions for the oscillator are chosen as x0 = 2.0 and y0 = 0.0, where x0
and y0 represent the initial position and velocity, respectively.

To numerically solve the Van der Pol differential equation, we convert it into a system
of first-order equations:

dx
dt

= y,

dy
dt

= µ(1 − x2)y − x.
(41)

The numerical solution is obtained over a time span of 0 to 50 s, discretized into
250 time steps.

Following the numerical solution of the differential equations, the resultant time
series data of x and y are normalized and prepared for analysis. The data are reshaped
to fit the input requirements of RNN models, enabling us to predict the Van der Pol
oscillator’s dynamics.

Simulation Results for the Van der Pol Oscillator

The behavior of the Van der Pol oscillator was examined through the LSTM, QLSTM,
GRU, and QGRU models by evaluating their performance on the Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) metrics.

Mean Absolute Error (MAE) is a measure of errors between paired observations. It is
calculated as the average of the absolute differences between the predicted values and the
actual values, disregarding the direction of the error. The MAE is given by the formula:

MAE =
1
n

n

∑
i=1

|yi − ŷi|. (42)

Root Mean Square Error (RMSE) is a quadratic scoring rule that also measures the
average magnitude of the error. It is the square root of the average of squared differences
between prediction and actual observation. The RMSE is given by the formula:

Algorithms 2024, 17, 163 12 of 24

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (43)

where:

• n is the number of observations;
• yi is the actual value of the ith observation;
• ŷi is the predicted value of the ith observation.

Data from the numerical solution of the Van der Pol differential equations formed
the basis for training and testing these models. A comparative analysis of the models’
performance is summarized in Tables 2 and 3.

Table 2. Comparison of train and test MAE and RMSE for the state of x.

Model Train MAE Test MAE Train RMSE Test RMSE

LSTM 0.2601 0.2585 0.3002 0.2986
QLSTM 0.1411 0.1397 0.1648 0.1641

GRU 0.1597 0.1591 0.1845 0.1850
QGRU 0.0868 0.0902 0.1013 0.1031

Table 3. Comparison of train and test MAE and RMSE for the state of y.

Model Train MAE Test MAE Train RMSE Test RMSE

LSTM 0.3224 0.3294 0.3737 0.3828
QLSTM 0.1959 0.1851 0.2498 0.2384

GRU 0.3336 0.3375 0.4319 0.4384
QGRU 0.1473 0.1500 0.1931 0.1943

Table 2 shows that quantum-based models exhibit superior predictive performance on
x value over classical models. Among the models compared, the GRU models also outshine
the LSTM models in accuracy and QGRU model gives us the most accurate predictions.

Table 3 compares model performances on the y value. It is very interesting to see that
the models produced more error on the prediction of the y values compared to the x values.
Moreover, GRU models surpass LSTM models in terms of results, with the QGRU model
achieving the highest accuracy among the evaluated models.

The example predictive results over epochs by the different models are shown in
Figures 6–10.

Figure 6. LSTM predictions over 100 epochs for the Van der Pol oscillator. Up: x; down: y; epoch:
5, 50, 70, 100; green dashed line: actual values; blue solid line: training predictions; red solid line:
testing predictions.

Algorithms 2024, 17, 163 13 of 24

Figure 7. QLSTM predictions over 100 Epochs for the Van der Pol oscillator. Up: x; down: y; epoch:
5, 50, 70, 100; green dashed line: actual values; blue solid line: training predictions; red solid line:
testing predictions.

Figure 8. GRU predictions over 100 Epochs for the Van der Pol oscillator. Up: x; down: y; epoch:
5, 50, 70, 100; green dashed line: actual values; blue solid line: training predictions; red solid line:
testing predictions.

Figure 9. QGRU predictions over 100 Epochs for the Van der Pol oscillator. Up: x; down: y; epoch:
5, 50, 70, 100; green dashed line: actual values; blue solid line: training predictions; red solid line:
testing predictions.

Figure 10. Experiment 1: Train and test losses for the models over 100 epochs. From left to right:
LSTM, QLSTM, GRU, QGRU.

Algorithms 2024, 17, 163 14 of 24

It is observable that the Van der Pol oscillator exhibits periodic behavior. It can be seen
that all the models caught the patterns well. It can be observed that the QRNN models,
especially, learn significantly faster than the classical RNN models from the comparison
through epoch 5. Again, the QGRU model shows great capability in learning the dynamics.

By comparing the training and test loss over the epochs, the QRNN models show
more stable decrease than the classical RNN models and the QGRU converges faster
than QLSTM.

4.3. Two Coupled Damped Harmonic Oscillators Simulation

In this experiment, we study the capability the QRNN in learning the patterns in
the system of two coupled harmonic oscillators. It is worth pointing out that this experi-
ment actually is an extension of the prediction on a single damped harmonic oscillator by
Chen [34,35]. This experiment extends our understanding not only from a single oscillator,
but physical systems by introducing interactions between oscillatory motions. Such systems
are paramount in numerous fields, including physics and engineering. The governing dif-
ferential equations for two coupled damped harmonic oscillators, representing an extended
model of the single oscillator, are as follows:

d2θ1

dt2 = − b1

m1

dθ1

dt
− g

l1
sin(θ1) +

kc

m1
(θ2 − θ1),

d2θ2

dt2 = − b2

m2

dθ2

dt
− g

l2
sin(θ2) +

kc

m2
(θ1 − θ2).

(44)

Here, θ1 and θ2 represent the angular displacements of the first and second pendulums,
respectively. The constants g = 9.81 m/s2 (gravitational acceleration), b1 = b2 = 0.15
(damping factors), l1 = l2 = 1.0 m (lengths of the pendulums), m1 = m2 = 1.0 kg (masses
of the pendulums), and kc = 0.05 (coupling constant) define the system’s characteristics.
The initial conditions are set with angular displacements θ1 = θ2 = 0 and angular velocities
θ̇1 = 3.0, θ̇2 = 0.0 rad/s.

Simulation Results for the Two Coupled Damped Harmonic Oscillators

Just like the Van der Pol example, we present a comparative analysis of the models’
performance in predicting the dynamic behavior of both oscillators (again, with MAE and
RMSE), which are summarized in Tables 4 and 5.

Table 4. Comparison of train and test MAE and RMSE for Oscillator 1.

Model Train MAE Test MAE Train RMSE Test RMSE

LSTM 0.5467 0.4371 0.7761 0.4922
QLSTM 0.5284 0.4763 0.6987 0.5374

GRU 0.3648 0.4396 0.4499 0.4941
QGRU 0.2585 0.2411 0.3587 0.2701

Table 5. Comparison of train and test MAE and RMSE for Oscillator 2.

Model Train MAE Test MAE Train RMSE Test RMSE

LSTM 0.2190 0.3597 0.2814 0.4248
QLSTM 0.1244 0.2591 0.1607 0.2885

GRU 0.1160 0.0858 0.1483 0.1006
QGRU 0.0794 0.0482 0.0949 0.0602

Like the results from the first experiment, in Tables 4 and 5 all the models successfully
learn the dynamics, but the QGRU shows excellent predictive results, especially on the
prediction of Oscillator 2. We noticed, first, that the predictions on Oscillator 2 are more
accurate than Oscillator 1. Second, we noticed that the GRU models outshine LSTM models
in general.

Algorithms 2024, 17, 163 15 of 24

The example predictive results over the 100 epochs by the different models are shown
in Figures 11–15.

Figure 11. LSTM predictions over 10 epochs. Up: Oscillator 1; down: Oscillator 2; epoch: 5,
50, 70, 100; green dashed line: actual values; blue solid line: training predictions; red solid line:
testing predictions.

Figure 12. QLSTM Predictions over 10 epochs. Up: Oscillator 1; down: Oscillator 2; epoch: 5,
50, 70, 100; green dashed line: actual values; blue solid line: training predictions; red solid line:
testing predictions.

Figure 13. GRU Predictions over 10 epochs. Up: Oscillator 1; down: Oscillator 2; epoch: 5,
50, 70, 100; green dashed line: actual values; blue solid line: training predictions; red solid line:
testing predictions.

Algorithms 2024, 17, 163 16 of 24

Figure 14. QGRU Predictions over 10 epochs. Up: Oscillator 1, down: Oscillator 2 epoch: 5,
50, 70, 100; green dashed line: actual values; blue solid line: training predictions; red solid line:
testing predictions.

Figure 15. Experiment 2: train and test losses for the models over 100 epochs. From left to right:
LSTM, QLSTM, GRU, QGRU.

Similar to the Van der Pol case, the GRU models converge faster than the LSTM models
and the quantum-based models learn the pattern faster than the classical models (which
can be seen by the comparison on the results on epoch 5). The quantum-based RNNs also
show stabler decrease in loss. Here, we observe several points of interest: Firstly, there is a
minor increase in the test loss in LSTM models from epoch 80 to 100, potentially indicative
of mild overfitting. Although adjusting the learning rate could mitigate this, we maintain
a constant learning rate to achieve a straightforward comparison between the models.
Secondly, spikes are observed in the LSTM model’s test loss. Furthermore, at epoch 5, the
LSTM model exhibits an undershot in performance, which is not seen in the results of the
other models.

From the previous two numerical experiments, the QRNN models demonstrate excep-
tional capability in learning patterns by system dynamics. In the last experiment, we apply
the models to chaotic systems using a different approach.

4.4. System of Lorenz Equations

The Lorenz equations, fundamental in chaos theory, model the dynamics of atmo-
spheric convection and are characterized by their chaotic nature for certain parameter
values. The system is described by the following set of differential equations:

dx
dt

= σ(y − x),

dy
dt

= x(ρ − z)− y,

dz
dt

= xy − βz.

(45)

In Equation (45), x, y, and z represent the system states, and the parameters σ, ρ, and
β are crucial for the system’s behavior. The chosen values σ = 10.0, β = 8

3 , and ρ = 28.0
are known to induce chaotic dynamics in the Lorenz system. These parameters represent
the Prandtl number, normalized Rayleigh number, and certain physical dimensions of the
convective cells, respectively. Their specific values make the system a classic example of

Algorithms 2024, 17, 163 17 of 24

chaos, making it a compelling subject for studying the predictive capabilities of quantum-
enhanced and classical neural networks. Particularly, the research on the utilization of
classical neural networks is discussed in [49].

Data Preparation and Hyperparameter Configuration

Unlike the previous two experiments, we generated the data differently in the applica-
tion of RNN models on Lorenz equations. We first randomly generated 10 datasets; we
used 67% of them for training and the remaining 33% for testing. The shapes of the training
and test datasets are as follows:

• Training dataset shapes:

– Features: torch.Size([3120, 10, 3]);
– Labels: torch.Size([3120, 3]).

• Testing dataset shapes:

– Features: torch.Size([780, 10, 3]);
– Labels: torch.Size([780, 3]).

Regarding the hyperparameter aspect, the previous two experiments demonstrate
that QRNN models rapidly catch the trend of the dataset. Consequently, we aim to explore
more about these models’ proficiency in learning features with shorter sequence lengths,
reduced data points, and fewer epochs.

We pick sequence length 10 for all the models and all the models will be running over
20 epochs instead of the 100 epochs in the previous two experiments.

Hyperparameter configurations for LSTM, QLSTM, GRU, and QGRU models are
presented in Table 6:

Table 6. Hyperparameter configuration for classic models and quantum models.

Hyperparameter Quantum Classic

Optimizer RMSprop Adam
Loss Function MSE MSE

Backend default.qubit -
Number of Qubits 4 -

VQC Layer 4 -
Percentage of Train Set 67% 67%
Percentage of Test Set 33% 33%

Epochs 20 20
Learning Rate 0.01 0.01

4.5. Results Analysis

The performances of each model on the Lorenz system data are summarized in
Tables 7 and 8. These tables detail the Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) for training and testing datasets across three dimensions.

According to the error metrics, quantum-based RNNs exhibit a marked increase in
accuracy, particularly the QGRU model in comparison to the classical GRU. Moreover, the
LSTM model demonstrates notably poorer performance compared to the other models,
potentially caused by its slower rate of convergence across epochs (again, only 20 epochs
were used in this case).

Table 7. Mean Absolute Error (MAE) for each model on test set.

Model X Y Z

LSTM 2.0361 2.1232 2.2119
QLSTM 0.8820 0.9473 1.0206

GRU 1.1684 1.1719 1.1710
QGRU 0.4864 0.4723 0.4555

Algorithms 2024, 17, 163 18 of 24

Table 8. Root Mean Square Error (RMSE) for each model on test set.

Model X Y Z

LSTM 2.1736 2.2718 2.3714
QLSTM 1.2234 1.2723 1.3348

GRU 1.1783 1.1748 1.1740
QGRU 0.4971 0.4846 0.4745

To further present the models’ predictions, we visualize their predictive outcomes
across three dimensions, the trajectories and the losses over the epochs, in Figures 16–24.

Figure 16. LSTM predictions for dimensions X (up), Y (middle), and Z (bottom).

Figure 17. QLSTM predictions for dimensions X (up), Y (middle), and Z (bottom).

Algorithms 2024, 17, 163 19 of 24

Figure 18. GRU predictions for dimensions X (up), Y (middle), and Z (bottom).

Figure 19. QGRU predictions for dimensions X (up), Y (middle), and Z (bottom).

Firstly, regarding to the three-dimensional predictions, it is evident that all models
correctly capture the dataset’s trend. Nonetheless, a closer look at the figure scales reveals
difficulties in predicting the spike at the figure’s center for all the models (for LSTM in y
and z dimensions, QLSTM in z, GRU in y and z, and QGRU in z). We believe this challenge
could be solved by increasing the number of epochs, though the performance is deemed
satisfactory for the current study.

Furthermore, the QGRU outperforms other models in trajectory plotting, showing a
consistent decline in both training and test losses across epochs. In contrast, the classical
RNNs display slight fluctuations in their loss plots. Although a spike is observed in the

Algorithms 2024, 17, 163 20 of 24

QLSTM’s loss plot, quantum-based RNNs, in general, tend to show a smoother and more
rapid reduction in losses than the classical models.

Figure 20. Predicted Lorenz system trajectory by LSTM model.

Figure 21. Predicted Lorenz system trajectory by QLSTM model.

Figure 22. Predicted Lorenz system trajectory by GRU model.

Algorithms 2024, 17, 163 21 of 24

Figure 23. Predicted Lorenz system trajectory by QGRU model.

Figure 24. Experiment 3: Train and test losses for the models over 20 epochs. From left to right:
LSTM, QLSTM, GRU, QGRU.

5. Discussion

This study explores the efficacy of quantum-enhanced models, specifically the quan-
tum Long Short-Term Memory (QLSTM) and the Quantum Gated Recurrent Unit (QGRU),
in predicting the dynamics of systems governed by ordinary differential equations. These
systems include Van der Pol oscillators, two damped coupled oscillators, and the Lorenz
system. We benchmarked the performance of these quantum models against traditional
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models by evaluating
their accuracy through MAE and RMSE, alongside observing their training and testing loss
trajectories over epochs.

The results from the three numerical experiments showcase that quantum-based mod-
els, particularly the QGRU, significantly outperform their classical counterparts in terms
of predictive accuracy. This discovery highlights the capability of quantum computing
techniques to improve the predictive performance of recurrent neural networks, particu-
larly in the complex dynamics of systems represented by ordinary differential equations.
However, it is important to recognize that these quantum-based models require greater
computational resources, primarily because the operations of the Variational Quantum Cir-
cuit (VQC) are simulated on classical computing hardware. The same challenge is observed
across numerous studies in the QRNN field, as highlighted in [50,51]. To address these
computational challenges and enhance efficiency, we implemented batch sizes of 64 in this
study, which significantly accelerated the processing time. Additionally, a critical aim of our
ongoing research is to test the performance of these models on actual quantum hardware.
This will not only confirm their theoretical benefits but also evaluate their practical utility
and efficiency within a real quantum computing context.

The example code for classQLSTM and classQGRU can be found in the follow-
ing Github link: https://github.com/YuanChenmt/QRNN-Examples (accessed on 16
April 2024).

https://github.com/YuanChenmt/QRNN-Examples

Algorithms 2024, 17, 163 22 of 24

6. Conclusions

We have validated the superior performance of quantum-based recurrent neural net-
works (QRNNs), particularly the Quantum Gated Recurrent Unit (QGRU), over traditional
RNN models in predicting the outcomes of systems described by ordinary differential
equations in terms of model accuracy, efficiency, and stability. This study aims to contribute
to the understanding of QRNNs’ predictive capabilities, suggesting potential pathways for
their application in complex, real-world scenarios. It modestly seeks to add to the ongoing
discourse in computational science, hoping to inspire further research and exploration in
the field.

Author Contributions: Conceptualization, Y.C.; methodology, Y.C. and A.K.; software, Y.C.; val-
idation, A.K.; formal analysis, Y.C. and A.K.; investigation, A.K.; resources, A.K.; data curation,
Y.C.; writing—original draft preparation, Y.C.; writing—review and editing, A.K.; visualization, Y.C.;
supervision, A.K.; project administration, A.K.; funding acquisition, A.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: This paper used manual data, no new data were created.

Acknowledgments: We would like to express our sincere gratitude to the reviewers for their insightful
comments and constructive feedback, which significantly improved the quality and clarity of this
manuscript. Their expertise and valuable insights have been invaluable in shaping the direction of
our research and enhancing the overall impact of our work.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zakwan, M.; Di Natale, L.; Svetozarevic, B.; Heer, P.; Jones, C.N.; Ferrari Trecate, G. Physically Consistent Neural ODEs for

Learning Multi-Physics Systems. arXiv 2022, arXiv:2211.06130.
2. Städter, P.; Schälte, Y.; Schmiester, L.; Hasenauer, J.; Stapor, P.L. Benchmarking of numerical integration methods for ODE models

of biological systems. Sci. Rep. 2021, 11, 2696. [CrossRef] [PubMed]
3. Yazdani, A.; Lu, L.; Raissi, M.; Karniadakis, G.E. Systems biology informed deep learning for inferring parameters and hidden

dynamics. PLoS Comput. Biol. 2020, 16, e1007575. [CrossRef] [PubMed]
4. Jorge, M. An Application of Ordinary Differential Equations in Economics: Modeling Consumer’s Preferences Using Marginal

Rates of Substitution. Math. Methods Sci. Mech. 2014, 33. [CrossRef]
5. Bashforth, F.; Adams, J.C. An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops

of Fluid; University Press: Cambridge, MA, USA, 17 October 2007; (1883) Paperback.
6. Dahlquist, G. A special stability problem for linear multistep methods. BIT 1963, 3, 27–43. [CrossRef]
7. Runge, C. Über die numerische Auflösung von Differentialgleichungen. Math. Ann. 1895, 46, 167–178. [CrossRef]
8. Wilhelm, K. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Zeitschrift für Mathematik und Physik 1901,

46, 435–453.
9. Sottas, G. Rational Runge-Kutta Methods Are Not Suitable for Stiff Systems of ODE’s; Report SFB 123, Number 215; University of

Heidelberg: Heidelberg, Germany, 1983.
10. Ahmed, D.M.; Hassan, M.M.; Mstafa, R.J. A Review on Deep Sequential Models for Forecasting Time Series Data. Appl. Comput.

Intell. Soft Comput. 2022, 2022, 6596397. [CrossRef]
11. Lindemann, B.; Müller, T.; Vietz, H.; Jazdi, N.; Weyrich, M. A survey on long short-term memory networks for time series

prediction. Procedia CIRP 2021, 99. [CrossRef]
12. Weerakody, P.B.; Wong, K.W.; Wang, G.; Ela, W. A review of irregular time series data handling with gated recurrent neural

networks. Neurocomputing 2021, 441, 161–178. [CrossRef]
13. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the Advances in Neural

Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, QC, Canada,
8–13 December 2014; pp. 3104–3112.

14. Graves, A.; Jaitly, N.; Mohamed, A.-R. Hybrid speech recognition with deep bidirectional LSTM. In Proceedings of the 2013 IEEE
Workshop on Automatic Speech Recognition and Understanding, Olomouc, Czech Republic, 8–12 December 2013; pp. 273–278.

15. Flurin, E.; Martin, L.S.; Hacohen-Gourgy, S.; Siddiqi, I. Using a recurrent neural network to reconstruct quantum dynamics of a
superconducting qubit from physical observations. Phys. Rev. X 2020, 10, 011006. [CrossRef]

http://doi.org/10.1038/s41598-021-82196-2
http://www.ncbi.nlm.nih.gov/pubmed/33514831
http://dx.doi.org/10.1371/journal.pcbi.1007575
http://www.ncbi.nlm.nih.gov/pubmed/33206658
http://dx.doi.org/10.13140/2.1.1144.9288
http://dx.doi.org/10.1007/BF01963532
http://dx.doi.org/10.1007/BF01446807
http://dx.doi.org/10.1155/2022/6596397
http://dx.doi.org/10.1016/j.procir.2021.03.088
http://dx.doi.org/10.1016/j.neucom.2021.02.046
http://dx.doi.org/10.1103/PhysRevX.10.011006

Algorithms 2024, 17, 163 23 of 24

16. August, M.; Ni, X. Using recurrent neural networks to optimize dynamical decoupling for quantum memory. Phys. Rev. A 2017,
95, 012335. [CrossRef]

17. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
18. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv

2014, arXiv:1412.3555.
19. Gajamannage, K.; Jayathilake, D.I.; Park, Y.; Bollt, E.M. Recurrent neural networks for dynamical systems: Applications to

ordinary differential equations, collective motion, and hydrological modeling. Chaos 2023, 33, 013109. [CrossRef] [PubMed]
20. Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling.

arXiv 2018, arXiv:1803.01271.
21. Fu, Y.; Saab, S., Jr.; Ray, A.; Hauser, M. A Dynamically Controlled Recurrent Neural Network for Modeling Dynamical Systems.

arXiv 2019, arXiv:1911.00089.
22. Niu, M.Y.; Horesh, L.; Chuang, I. Recurrent Neural Networks in the Eye of Differential Equations. arXiv 2019, arXiv:1904.12933.
23. de la Fraga, L.G.; Ovilla-Martínez, B.; Tlelo-Cuautle, E. Echo state network implementation for chaotic time series prediction.

Microprocess. Microsyst. 2023, 103, 104950. [CrossRef]
24. Prokhorov, D. Echo state networks: Appeal and challenges. In Proceedings of the 2005 IEEE International Joint Conference on

Neural Networks, Montreal, QC, Canada, 31 July–4 August 2005; Volume 3, pp. 1463–1466. [CrossRef]
25. Vlachas, P.R.; Byeon, W.; Wan, Z.Y.; Sapsis, T.P.; Koumoutsakos, P. Data-driven forecasting of high-dimensional chaotic systems

with long short-term memory networks. Proc. R. Soc. A 2018, 474, 20170844. [CrossRef] [PubMed]
26. Meng, X.; Yang, T. Entanglement-Structured LSTM Boosts Chaotic Time Series Forecasting. Entropy 2021, 23, 1491. [CrossRef]

[PubMed]
27. Cross, A. The IBM Q experience and Qiskit open-source quantum computing software. APS Meet. Abstr. 2018, 2018, L58.
28. Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al.

Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [CrossRef] [PubMed]
29. Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.; Alam, M.S.; Alonso-Linaje, G.; Narayanan, B.A.; Asadi, A.; et

al. PennyLane: Automatic differentiation of hybrid quantum-classical computations. arXiv 2022, arXiv:1811.04968.
30. Lanting, T.; Przybysz, A.J.; Smirnov, A.Y.; Spedalieri, F.M.; Amin, M.H.; Berkley, A.J. Entanglement in a quantum annealing

processor. Phys. Rev. X 2014, 4, 021041. [CrossRef]
31. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [CrossRef]
32. Gottesman, D. Stabilizer codes and quantum error correction. arXiv 1997, arXiv:quant-ph/9705052.
33. Gottesman, D. Theory of fault-tolerant quantum computation. Phys. Rev. A 1998, 57, 127. [CrossRef]
34. Mitarai, K.; Negoro, M.; Kitagawa, M.; Fujii, K. Quantum circuit learning. Phys. Rev. A 2018, 98, 032309. [CrossRef]
35. Du, Y.; Hsieh, M.-H.; Liu, T.; Tao, D. The expressive power of parameterized quantum circuits. arXiv 2018, arXiv:1810.11922.
36. Qi, J.; Yang, C.-H.; Chen, P.-Y. QTN-VQC: An end-to-end learning framework for quantum neural networks. Phys. Scr. 2024, 99,

015111. [CrossRef]
37. Schuld, M.; Bocharov, A.; Svore, K.; Wiebe, N. Circuit-centric quantum classifiers. arXiv 2018, arXiv:1804.00633.
38. Havlíček, V.; Córcoles, A.D.; Temme, K.; Harrow, A.W.; Kandala, A.; Chow, J.M.; Gambetta, J.M. Supervised learning with

quantum-enhanced feature spaces. Nature 2019, 567, 209–212. [CrossRef] [PubMed]
39. Dallaire-Demers, P.-L.; Killoran, N. Quantum generative adversarial networks. Phys. Rev. A 2018, 98, 012324. [CrossRef]
40. Chen, S.Y.-C.; Yang, C.-H.H.; Qi, J.; Chen, P.-Y.; Ma, X.; Goan, H.-S. Variational quantum circuits for deep reinforcement learning.

IEEE Access 2020, 8, 141007–141024. [CrossRef]
41. Schuld, M.; Petruccione, F. Supervised Learning with Quantum Computers; Springer: Berlin/Heidelberg, Germany, 2018; Volume 17.
42. Chen, S.Y.-C.; Yoo, S. Federated Quantum Machine Learning. Entropy 2021, 23, 460. [CrossRef] [PubMed]
43. Wu, S.L.; Chan, J.; Guan, W.; Sun, S.; Wang, A.; Zhou, C.; Livny, M.; Carminati, F.; Di Meglio, A.; Li, A.C.Y. Application of

quantum machine learning using the quantum variational classifier method to high energy physics analysis at the LHC on IBM
quantum computer simulator and hardware with 10 qubits. J. Phys. Nucl. Part. Phys. 2021, 48, 12. [CrossRef]

44. Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum Machine Learning. Nature 2017, 549, 195–202.
[CrossRef] [PubMed]

45. Dunjko, V.; Briegel, H.J. Machine Learning & Artificial Intelligence in the Quantum Domain: A Review of Recent Progress. Rep.
Prog. Phys. 2018, 81, 074001. [PubMed]

46. Zaman, K.; Marchisio, A.; Hanif, M.A.; Shafique, M. A Survey on Quantum Machine Learning: Current Trends, Challenges,
Opportunities, and the Road Ahead. arXiv 2023, arXiv:2310.10315.

47. Chen, S.Y.-C.; Yoo, S.; Fang, Y.-L.L. Quantum Long Short-Term Memory; Computational Science Initiative, Brookhaven National
Laboratory: Upton, NY, USA, 2020.

48. Chen, S.Y.-C.; Fry, D.; Deshmukh, A.; Rastunkov, V.; Stefanski, C. Reservoir Computing via Quantum Recurrent Neural Networks.
arXiv 2020, arXiv:2211.02612v1.

49. Malvern, M.; Gibbons, T.E. Learning and Modeling Chaos Using LSTM Recurrent Neural Networks. 2018. Available online:
https://api.semanticscholar.org/CorpusID:212631658 (accessed on 3 March 2024).

http://dx.doi.org/10.1103/PhysRevA.95.012335
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1063/5.0088748
http://www.ncbi.nlm.nih.gov/pubmed/36725658
http://dx.doi.org/10.1016/j.micpro.2023.104950
http://dx.doi.org/10.1109/IJCNN.2005.1556091
http://dx.doi.org/10.1098/rspa.2017.0844
http://www.ncbi.nlm.nih.gov/pubmed/29887750
http://dx.doi.org/10.3390/e23111491
http://www.ncbi.nlm.nih.gov/pubmed/34828189
http://dx.doi.org/10.1038/s41586-019-1666-5
http://www.ncbi.nlm.nih.gov/pubmed/31645734
http://dx.doi.org/10.1103/PhysRevX.4.021041
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1103/PhysRevA.57.127
http://dx.doi.org/10.1103/PhysRevA.98.032309
http://dx.doi.org/10.1088/1402-4896/ad14d6
http://dx.doi.org/10.1038/s41586-019-0980-2
http://www.ncbi.nlm.nih.gov/pubmed/30867609
http://dx.doi.org/10.1103/PhysRevA.98.012324
http://dx.doi.org/10.1109/ACCESS.2020.3010470
http://dx.doi.org/10.3390/e23040460
http://www.ncbi.nlm.nih.gov/pubmed/33924721
http://dx.doi.org/10.1088/1361-6471/ac1391
http://dx.doi.org/10.1038/nature23474
http://www.ncbi.nlm.nih.gov/pubmed/28905917
http://www.ncbi.nlm.nih.gov/pubmed/29504942
https://api.semanticscholar.org/CorpusID:212631658

Algorithms 2024, 17, 163 24 of 24

50. Khan, S.Z.; Muzammil, N.; Zaidi, S.M.H.; Aljohani, A.J.; Khan, H.; Ghafoor, S. Quantum Long Short-Term Memory (QLSTM) vs
Classical LSTM in Time Series Forecasting: A Comparative Study in Solar Power Forecasting. arXiv 2023, arXiv:2310.17032v2.

51. Siemaszko, M.; Buraczewski, A.; Le Saux, B. Rapid training of quantum recurrent neural networks. Quantum Mach. Intell. 2023,
5, 31. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s42484-023-00117-0

	Introduction
	Fundamental Quantum Computing Concepts
	Qubits
	Superpositions
	Quantum Entanglement

	Methodology
	Variational Quantum Circuits (VQCs)
	Encoding Layer
	Variational Circuit
	Quantum Measurement

	Long Short-Term Memory (LSTM)
	Gated Recurrent Units (GRU)
	Quantum Long Short-Term Memory (QLSTM)
	Quantum Gated Recurrent Unit (QGRU)

	Numerical Experiments
	Hyperparameter Configuration
	Van der Pol Oscillator Simulation
	Two Coupled Damped Harmonic Oscillators Simulation
	System of Lorenz Equations
	Results Analysis

	Discussion
	Conclusions
	References

