
Citation: Javed, K.; Shengbing, R.;

Asim, M.; Wani, M.A. Cross-Project

Defect Prediction Based on Domain

Adaptation and LSTM Optimization.

Algorithms 2024, 17, 175. https://

doi.org/10.3390/a17050175

Academic Editor: Piotr Kosiuczenko

Received: 10 April 2024

Revised: 20 April 2024

Accepted: 23 April 2024

Published: 24 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Cross-Project Defect Prediction Based on Domain Adaptation
and LSTM Optimization
Khadija Javed 1, Ren Shengbing 1,* , Muhammad Asim 2,3,* and Mudasir Ahmad Wani 2

1 School of Computer Science and Engineering, Central South University, Changsha 410083, China;
khadijajaved422@csu.edu.cn

2 EIAS Data Science and Blockchain Lab, College of Computer and Information Sciences, Prince Sultan
University, Riyadh 11586, Saudi Arabia; mwani@psu.edu.sa

3 School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
* Correspondence: rsb@csu.edu.cn (R.S.); masim@psu.edu.sa or asimpk@gdut.edu.cn (M.A.)

Abstract: Cross-project defect prediction (CPDP) aims to predict software defects in a target project
domain by leveraging information from different source project domains, allowing testers to identify
defective modules quickly. However, CPDP models often underperform due to different data
distributions between source and target domains, class imbalances, and the presence of noisy and
irrelevant instances in both source and target projects. Additionally, standard features often fail
to capture sufficient semantic and contextual information from the source project, leading to poor
prediction performance in the target project. To address these challenges, this research proposes
Smote Correlation and Attention Gated recurrent unit based Long Short-Term Memory optimization
(SCAG-LSTM), which first employs a novel hybrid technique that extends the synthetic minority over-
sampling technique (SMOTE) with edited nearest neighbors (ENN) to rebalance class distributions
and mitigate the issues caused by noisy and irrelevant instances in both source and target domains.
Furthermore, correlation-based feature selection (CFS) with best-first search (BFS) is utilized to
identify and select the most important features, aiming to reduce the differences in data distribution
among projects. Additionally, SCAG-LSTM integrates bidirectional gated recurrent unit (Bi-GRU) and
bidirectional long short-term memory (Bi-LSTM) networks to enhance the effectiveness of the long
short-term memory (LSTM) model. These components efficiently capture semantic and contextual
information as well as dependencies within the data, leading to more accurate predictions. Moreover,
an attention mechanism is incorporated into the model to focus on key features, further improving
prediction performance. Experiments are conducted on apache_lucene, equinox, eclipse_jdt_core,
eclipse_pde_ui, and mylyn (AEEEM) and predictor models in software engineering (PROMISE)
datasets and compared with active learning-based method (ALTRA), multi-source-based cross-
project defect prediction method (MSCPDP), the two-phase feature importance amplification method
(TFIA) on AEEEM and the two-phase transfer learning method (TPTL), domain adaptive kernel
twin support vector machines method (DA-KTSVMO), and generative adversarial long-short term
memory neural networks method (GB-CPDP) on PROMISE datasets. The results demonstrate that
the proposed SCAG-LSTM model enhances the baseline models by 33.03%, 29.15% and 1.48% in
terms of F1-measure and by 16.32%, 34.41% and 3.59% in terms of Area Under the Curve (AUC) on
the AEEEM dataset, while on the PROMISE dataset it enhances the baseline models’ F1-measure by
42.60%, 32.00% and 25.10% and AUC by 34.90%, 27.80% and 12.96%. These findings suggest that the
proposed model exhibits strong predictive performance.

Keywords: cross project defect prediction; domain adaptation; bidirectional-gated recurrent units;
bidirectional long short-term memory; attention mechanism

1. Introduction

People are depending more and more on software systems in their daily lives due
to the growth of computer science, software development technology, and digital infor-

Algorithms 2024, 17, 175. https://doi.org/10.3390/a17050175 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17050175
https://doi.org/10.3390/a17050175
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-7709-4234
https://orcid.org/0000-0002-6423-9809
https://orcid.org/0000-0002-6947-3717
https://doi.org/10.3390/a17050175
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17050175?type=check_update&version=2

Algorithms 2024, 17, 175 2 of 25

mation technology, which raise the standards for software quality [1–3]. Software system
failure results from defects in the system, which puts the security of the system in grave
danger [4,5]. Software defect prediction (SDP) technology, however, can make it easier
for testers and software system developers to find bugs in software. As a result, in this
context, comprehensive study of SDP technology is becoming increasingly crucial. SDP
aims to assist software engineers in allocating scarce resources to enhance the quality of
software products by devising an efficient method for predicting the errors in a particular
software project [6–8]. Over time, numerous methods have been put forth and used in
software development, assisting practitioners in allocating limited testing resources to
modules that frequently exhibit defects. Early studies concentrated on within-project defect
prediction (WPDP), which learned the SDP model from previous data from the same project
and then used it to predict defects in the releases that were coming soon [9–11]. The SDP
model’s preliminary research indicates that, if there are adequate sample data from the
same project, learning-derived prediction performance will be effective in the same project.
Numerous software projects with adequate sample data have been kept for long-term
software development and research. As a result, researchers naturally consider using the
sample data from well-known software projects in order to learn the model and apply it
to predict defects in other software projects, which is the cross-project defect prediction
(CPDP) model’s design principle [12–15].

Several CPDP models have been presented recently, and many academics have taken
an interest in them [16–18]. In the realm of software defect prediction, machine learning
approaches, such as decision trees and neural networks, have been successful, as evidenced
by the literature, which also found that these models performed well [19–21]. However,
there is still room for improvement in CPDP’s predictive accuracy by minimizing distri-
bution differences and class imbalance difficulties. There is a problem of class imbalance
if there is a tendency towards considerably fewer modules with defects than there are
modules without defects [22]. Because CPDP models may favor the majority while classify-
ing, the class imbalance issue may have an impact on their performance [23]. As a result,
creating strategies to successfully address the class imbalance issue in software projects
is a common area of study in CPDP. Numerous studies [24–26] have either suggested or
assessed various strategies. When there is imbalance and overlap in the data, the prediction
power decreases. However, the existence of noisy and irrelevant instances among source
and target projects has a bigger impact on the prediction performance of the CPDP models
than class imbalance, which is not inherently problematic.

On the other hand, when projecting the target project, the prediction model constructed
using the pertinent data from the source project is unable to produce the best possible
prediction performance. The primary cause is the significant difference in data distribution
between the target and source projects. The distribution of features between projects and
variations between instances account for the majority of the variation in data distribution.
In the past, academics believed that the distributions of the source and target projects
would be the same. In actuality, the source data for these projects are inherently distributed
differently, since the projects created by various teams and businesses are invariably distinct
in terms of scope, function, and coding standards. In other words, the distribution of data
may vary throughout projects. Thus, the efficacy of CPDP models depends on how to
minimize these distribution differences between source and target projects [27]. When
creating a classifier model, including redundant and unnecessary features can make the
final model perform worse [28]. Consequently, a feature selection process must be used to
remove these superfluous or unnecessary characteristics [29].

In previous CPDP studies, class imbalance and data distribution difference problems
are present. Therefore, a number of factors drive our use of the data balancing method to
handle the noisy imbalance nature of the dataset and feature selection technique in order to
mitigate distribution differences in software prediction of defects:

Improve the performance of the model: Unbalanced, noisy datasets and different data
distributions can negatively affect the CPDP model’s performance by introducing bias,

Algorithms 2024, 17, 175 3 of 25

which can cause overfitting and a reduction in generalization, which can un turn lead to
incorrect predictions. The synthetic minority oversampling technique with edited nearest
neighbors (SMOTE-ENN) can help improve an imbalanced dataset and eliminate noisy and
irrelevant instances, and a feature selection approach, such as CFS, can help to minimize
data distribution differences and enhance the performance of the model.

1. Better feature representation: Minimizing noise and balancing the dataset to maintain
the significant characteristics of the original data and reduce data distribution differ-
ences can help to find and choose the most relevant features. This can help the model
learn more accurate feature representations and enhance model performance.

2. Reduce overfitting: Imbalanced datasets and different data distribution can lead to
overfitting of the model. When data are imbalanced, the model prioritizes the majority
class and overlooks the minority class and, when data are distributed differently, the
prediction of target data becomes ineffective. Balancing data and reducing noise from
the dataset can help overcome the overfitting problem, simplifying the model ij order
to learn from the minority class, and feature selection can help in minimizing data
distribution differences to prevent model overfitting.

This paper presents a unique supervised domain adaptive cross project defect pre-
diction (CPDP) framework termed SCAG-LSTM, which is based on feature selection and
class imbalance techniques, to overcome the aforementioned issues. The fundamental goal
of SCAG-LSTM is to lessen the problems of distribution differences, class imbalance, and
the existence of noisy and irrelevant instances in order to increase the CPDP’s predictive
performance. To determine the efficacy of the SCAG-LSTM, experiments are carried out on
the AEEEM and PROMISE datasets using the widely-used evaluation metrics F1-measure
and AUC. Based on the experimental data, the SCAG-LSTM performs better than the
benchmark techniques.

The key contributions of this work are as follows:

1. In this research, we propose a novel CPDP model, SCAG-LSTM, that integrates
SMOTE-ENN, CFS-BFS and Bi-LSTM with Bi-GRU and Attention Mechanism to con-
struct a cross project defect prediction model that enhances software defect prediction
performance.

2. We demonstrate that the proposed novel domain adaptive framework reduces the
effect of data distribution and class imbalance problems.

3. We optimize the LSTM model with Bi-GRU and Attention Mechanism to efficiently
capture semantic and contextual information and dependencies.

4. To verify the efficiency of the proposed approach, we conducted experiments on
PROMISE and AEEEM datasets to compare the proposed approach with the existing
CPDP methodologies.

This paper follows the following structure. Section 2 provides an overview of the
relevant CPDP work. The presentation of our research methodology follows in Section 3.
The experimental setups are shown in Section 4. The experimental results are presented in
Section 5. The threats to internal, external, construct and conclusion validity are presented
in Section 6, and conclusions and future work are covered in Section 7.

2. Related Work

In this section we briefly review related work on cross project defect prediction and
domain adaptation. The key data processing techniques that address domain adaptation
include feature selection, data balancing, and removing noisy and irrelevant instances from
the dataset.

2.1. Cross-Project Defect Prediction

Software defect prediction (SDP) plays an essential role in software engineering as
it helps in identifying possible flaws and vulnerabilities in software systems [6]. A large
amount of research has been done over time to improve software defect prediction methods’

Algorithms 2024, 17, 175 4 of 25

efficacy. To create reliable models that can spot flaws early in the software development
lifecycle, researchers have looked into a number of techniques, such as machine learning,
data mining, and statistical analysis. With regard to within-project defect prediction, the
majority of the earlier SDP models relied on WPDP. The data used in WPDP come from
the training and evaluation stages of the same project. Scholars have recently paid greater
attention to the CPDP model [27,30]. The goal of cross project defect prediction models
is to leverage training data from other projects. Newly established project defects can be
predicted using the prediction models. For cross project defect prediction, Liu et al. [31]
proposed a two-phase transfer learning model (TPTL) that builds two defect predictors
based on the two selected projects independently using TCA+ and combines their prediction
probabilities to improve performance. The two closest source projects are chosen using a
source project estimator. Zhou et al. [32] addressed the issue by performing a large-scale
empirical analysis of 40 unsupervised systems. Three types of feature and 27 application
variations were included in the free-source dataset used in the experiment. Models in
the occurrence-violation-value based clustering family significantly outperformed models
in the hierarchy, density, grid, sequence, and hybrid-oriented clustering, according to
the experiment’s findings. A cluster-based feature selection technique was used by Ni
et al. [33] to choose the important characteristics from the reference data and enhance its
quality. Their experiments on eight datasets demonstrated that their proposed technique
outperformed WPDP, standard CPDP, and TCA+ in terms of AUC and F-measure. Abdu
et al. [34] presented GB-CPDP, a graph-based feature learning model for CPDP that uses
Long Short-Term Memory (LSTM) networks to develop predictive models and Node2Vec
to convert CFGs and DDGs into numerical vectors.

2.2. Domain Adaptation

In cross project defect prediction, one typical challenge deals with the problem of
imbalanced datasets and the existence of noisy and irrelevant instances among source and
target projects. The issue of class imbalance has been noted in a number of fields [35] and
significantly impairs prediction model performance in SDP. A number of methods, includ-
ing undersampling, oversampling, and the synthetic minority oversampling technique
(SMOTE), have been developed by researchers to lessen the effects of data imbalance and
enhance prediction ability. For two reasons, undersampling strategies are widely utilized
to address class imbalance among all approaches: one, they are faster [36], and second,
they do not experience overfitting as oversampling techniques do [37]. Elyan et al. [38]
suggested an undersampling method based on neighborhoods to address the classification
dataset’s class imbalance. The outcomes of the trial verified that it is quick and effectively
addresses problems with class overlaps and imbalance. In order to create growing training
datasets with balanced data, Gong et al. [39] presented a class-imbalance learning strategy
that makes use of the stratification embedded in the nearest neighbor (STr-NN) concept.
They first leverage TCA and then the STr-NN technique is applied on the data to lessen the
data distribution difference between the source and target datasets. In this area, managing
the different data distributions across projects is another challenge. Using a variety of strate-
gies, including feature selection, feature extraction, ensemble approaches, data preparation,
and sophisticated machine learning algorithms, researchers have achieved great progress
in this field. These methods seek to maximize computational efficiency and prediction
performance while identifying the most relevant features. Results of an appropriate feature
selection can shorten learning times, increase learning efficiency, and simplify learning
outcomes. To enhance the effectiveness of cross project defect prediction, by employing a
technique known as kernel twin support vector machine (DA-KTSVM) to learn the domain
adaptation model, Jin et al. [27] attempted to maximize the similarity between the feature
distributions of the source and target projects. Assuming that target features were success-
fully classified by the defect predictor, since they were matched to source instances, he
trained the feature generator with the goal of matching distributions between two distinct
projects. Kumar et al. [40] proposed a novel feature-selection approach that combines

Algorithms 2024, 17, 175 5 of 25

filter and wrapper techniques to select optimal features using Mutual Information with the
Sequential Forward Method and 10-fold cross-validation. They carried out dimensionality
reduction using a feature selection technique to enhance accuracy.

In the existing CPDP research, although many related issues have been discussed,
including class imbalance learning, data distribution difference, features transformation,
etc., the issue of noisy and irrelevant occurrences in the source and target domains, which
can affect the CPDP performance, has only been briefly examined [26,27]. Therefore, in
order to enhance the effectiveness of cross project defect prediction, we propose a novel
supervised domain adaptive framework called SCAG-LSTM. A summary of the related
work discussed above is presented in Table 1, listing the datasets, techniques, and evaluation
measures used, along with their advantages and limitations.

Table 1. Summary of Related Work.

Reference Proposed Techniques Datasets Advantages Limitation

Abdu et al.,
(2023) [34]

Learns representations of
program items and extracts
features from control flow
graphs (CFGs) and data

dependency graphs
(DDGs) using NetworkX.

PROMISE
datasets

Provides a methodical
approach by utilizing

graph elements from CFG
and DDG to create a

predictive model
using LSTM.

Strictly depending on CFG and
DDG as graph characteristics

would not be able to collect all
the context-relevant

information required for
defect prediction.

Liu et al.,
(2019) [31]

Built and assessed a
two-phase CPDP transfer
learning model (TPTL).

PROMISE
datasets

Discovered that the model
effectively lessened the
TCA+ instability issue.

The study was an attempt to
provide a process for choosing
quality source projects. There
are no suggestions for feature

engineering, preprocessing
techniques, or random datasets

lacking comparable metrics.

Zhou Xu et al.,
(2021) [32]

Extensive empirical
analysis on forty

unsupervised models.

Open-source
dataset with

27 project
versions

The performance of the
various clustering-based

models varied significantly,
and the clustering-based

unsupervised systems did
not always perform better
on defect data when the
three types of features

were combined.

The feature engineering
improvements and time/cost

improvements required for the
chosen DP unsupervised

models were not included in
the study.

Ni et al., (2020)
[33]

Training data
selection for CPDP

Relink and
AEEEM

Better outcomes compared
to WPDP, conventional

CPDP, and TCA+ in terms
of AUC and F-measure.

Limited emphasis was placed
on feature selection in favor of
instance selection in order to

minimize the distribution
divergence between the target

and reference data.

Elyan et al.,
(2019) [37]

Undersampling to
eliminate any overlapped

data points in order to
address class imbalance in

binary datasets.

Simulated and
real-world

datasets

We offer four approaches
based on neighborhood
searching with various

criteria to find and remove
instances of the
majority class.

Processing times are
lengthened when the

application is limited to one
minority class at a time.

Jin et al.,
(2021) [27]

Domain adaptation
(DA)was implemented

with kernel twin support
vector machines (KTSVMs).

KTSVMs with DA
functions, or DA-KTSVM,
were also employed as the
CPDP model in this study.

Open-source
datasets

According to their research,
DA-KTSVMO was able to
outperform WPDP models

in terms of prediction
accuracy as well as
outperform other

CPDP models.

The study recommended that
the best use of the sufficient
data already in existence be
made, with consideration

given to the reuse of data that
are deficient.

Algorithms 2024, 17, 175 6 of 25

Table 1. Cont.

Reference Proposed Techniques Datasets Advantages Limitation

Gong et al., (2019)
[38]

ITrAda-Boost, or transfer
adaptive boosting, is a

technique for handling small
amounts of labeled data.

open source four
datasets

Set to work the idea of
stratification integrated in

closest neighbor (STr-NN). To
reduce the data distribution

difference between the source
and target datasets, first utilize
the TCA technique and then

the STr-NN technique.

Needs to be examined in light of
its viability in comparison to other

relevant models.

Kumar et al.,
(2023) [40]

K-Nearest Neighbor with
10-fold cross-validation

for Sequential
Forward Selection.

UCI repository

Combined filter and wrapper
methods with Mutual

Information, the Sequential
Forward Method, and 10-fold
cross-validation were used to

choose the best features.

To validate the system, the model’s
performance feasibility should be

assessed.

3. Methodology

In this section, we first present the framework of our proposed approach SCAG-LSTM.
A sequence of actions, including feature selection, dataset balance, noisy instance removal,
and model building, are then explained as part of our proposed methodology.

3.1. Proposed Approach Framework

We illustrate our proposed approach for CPDP employing machine learning models
(Bi-LSTM, Bi-GRU and Attention mechanism) combined with a feature selection method
(CFS with best-first-search) and data sampling method (SMOTE-ENN) in this section.
The datasets were obtained from the AEEEM and PROMISE as source (S) and target (T)
projects. In order to select the features that are more relevant to the target class, feature
selection is employed. Then a data balancing method is applied to balance the training
dataset and remove noisy and irrelevant instances in source and target domains. Selected
balanced source project (Ss) is then used to train the model. Finally, the trained model is
utilized to predict the label of the selected balanced target project (Ts), and the result is then
compared based on AUC and F1-measure performance metrics. Figure 1 demonstrates the
full workflow of the proposed approach.

Algorithms 2024, 17, 175 7 of 27

Figure 1. Overview of the proposed methodology for CPDP.

3.2. Proposed Features Selection Approach
The prediction performance of CPDP models might be lowered by the presence of

redundant or irrelevant features. By focusing on the most relevant features, the model
may better capture the underlying patterns in the data and produce more accurate fore-
casts of defects in new projects [41]. We employ correlation-based feature selection (CFS)
in the proposed framework, which chooses a subset of characteristics by taking into con-
sideration each feature’s unique predictive capacity, as well as the degree of redundancy
among them. The best-first search technique is employed to discover a feature subset in
which these features have a strong correlation with regard to the target class labels, while
having a low correlation within each other (Figure 2).

Figure 2. Workflow of CFS.

Figure 1. Overview of the proposed methodology for CPDP.

3.2. Proposed Features Selection Approach

The prediction performance of CPDP models might be lowered by the presence of
redundant or irrelevant features. By focusing on the most relevant features, the model may
better capture the underlying patterns in the data and produce more accurate forecasts of

Algorithms 2024, 17, 175 7 of 25

defects in new projects [41]. We employ correlation-based feature selection (CFS) in the
proposed framework, which chooses a subset of characteristics by taking into consideration
each feature’s unique predictive capacity, as well as the degree of redundancy among them.
The best-first search technique is employed to discover a feature subset in which these
features have a strong correlation with regard to the target class labels, while having a low
correlation within each other (Figure 2).

Algorithms 2024, 17, 175 7 of 27

Figure 1. Overview of the proposed methodology for CPDP.

3.2. Proposed Features Selection Approach
The prediction performance of CPDP models might be lowered by the presence of

redundant or irrelevant features. By focusing on the most relevant features, the model
may better capture the underlying patterns in the data and produce more accurate fore-
casts of defects in new projects [41]. We employ correlation-based feature selection (CFS)
in the proposed framework, which chooses a subset of characteristics by taking into con-
sideration each feature’s unique predictive capacity, as well as the degree of redundancy
among them. The best-first search technique is employed to discover a feature subset in
which these features have a strong correlation with regard to the target class labels, while
having a low correlation within each other (Figure 2).

Figure 2. Workflow of CFS. Figure 2. Workflow of CFS.

CFS begins by employing a correlation metric to determine the value of each individual
feature F and each feature set f1, f2, . . ., fn, as illustrated in Algorithm 1. It initializes each
feature as fi with the empty set S. Then, it selects the feature with the highest merits
and adds it to the selected subset, while removing it from the remaining features. The
process continues until the merit no longer changes considerably. Eventually, the algorithm
returns the chosen subset S, which includes the most informative information for CPDP
defect prediction.

Algorithm 1. Pseudocode of CFS

Input:

- F, Feature set with n features, = f1, f2, . . ., fn

Output:

- S, selected features

1. Initialize an empty set S and sets f1, f2, . . ., fn with each feature fi
2. Compute the merit of each feature fi in F. Compute the weight of each individual feature set (f1, f2, . . .,

fn) using a suitable metric (e.g., correlation).
3. Select the feature with the highest weight from F, add it to S, and remove it from F
4. Compute the weight of the current subset S
5. Select the new feature from F with the highest merit, compute the merit of the updated subset, and

compare it with the previous merit
6. If the merit of the new subset is not better than the previous subset,
7. Remove the selected feature from S
8. Else,
9. Update S, remove the selected feature from F
10. Repeat steps 5–9 until the merit does not change significantly

Return the selected features S

Algorithms 2024, 17, 175 8 of 25

3.3. Proposed Imbalanced Learning Approach

The term “class imbalance” refers to circumstances in which there are significantly
fewer examples of one class than of others. Models trained on imbalanced datasets tend to
exhibit a bias towards the majority class, leading to significant false negative rates, when real
defects are neglected or misclassified as non-defective cases. Moreover, the addition of noisy
and irrelevant occurrences among source and target projects also influences the prediction
performance of CPDP models. A number of data balancing techniques have been developed
to address the issue of imbalanced classes. Data sampling is the most widely used balancing
approach. While undersampling approaches can lower the number of instances from the
majority class [42], oversampling strategies can boost the representation of the minority
class [43]. Our proposed approach uses the Synthetic Minority Oversampling Technique
(SMOTE) [44] with Edited Nearest Neighbor (ENN) [45], which combines the ability of
Edited Nearest Neighbor to clean data and the ability of SMOTE to generate synthetic data
in order to produce a dataset that is more representative and balanced. As seen in Figure 3,
the SMOTE-ENN approach consists of two basic steps: oversampling the minority class
using SMOTE and cleaning the generated dataset using Edited Nearest Neighbor.

Algorithms 2024, 17, 175 9 of 27

Figure 3. Flowchart of SMOTE-ENN.

The pseudocode of SMOTE-ENN is demonstrated in Algorithm 2. The SMOTE algo-
rithm first separates minority 𝑚_𝑖 and majority 𝑚_𝑎 samples based on 𝑦 class labels
and then determines the 𝑘 closest neighbors from the same class for each instance in the
minority class 𝑚_𝑖. Then randomly choose one of the k nearest neighbors 𝑥 and compute
the difference between the feature vectors of the instance and the selected neighbor (𝑥 − 𝑥). Multiply this difference by a random value 𝛿 between 0 and 1 and add it to the
feature vector of the instance 𝑥 . This builds a synthetic instance 𝑥 . After oversampling
the minority class 𝑚_𝑖, the final dataset may still contain noisy and irrelevant instances.
This is when the Edited Nearest Neighbor (ENN) algorithm comes into play. The ENN algo-
rithm finds three nearest neighbors for each instance 𝑥 and removes instances 𝑥 that are
misclassified by their nearest neighbors, hence improving the quality of the dataset.

Figure 3. Flowchart of SMOTE-ENN.

Algorithms 2024, 17, 175 9 of 25

The pseudocode of SMOTE-ENN is demonstrated in Algorithm 2. The SMOTE al-
gorithm first separates minority m_i and majority m_a samples based on y class labels
and then determines the k closest neighbors from the same class for each instance in the
minority class m_i. Then randomly choose one of the k nearest neighbors x̂ and compute
the difference between the feature vectors of the instance and the selected neighbor (x̂− xi).
Multiply this difference by a random value δ between 0 and 1 and add it to the feature
vector of the instance xi. This builds a synthetic instance xnew. After oversampling the
minority class m_i, the final dataset may still contain noisy and irrelevant instances. This
is when the Edited Nearest Neighbor (ENN) algorithm comes into play. The ENN algo-
rithm finds three nearest neighbors for each instance xj and removes instances xj that are
misclassified by their nearest neighbors, hence improving the quality of the dataset.

Algorithm 2. Pseudocode of SMOTE Edited Nearest Neighbor (SMOTE-ENN)

Input:

- X: Feature (samples(n) X features[n]) for both majority and minority classes
- Y: Target variable (samples(n)) indicating class labels

Output:

- X_resampled: Resampled feature matrix after applying SMOTE-ENN
- Y_resampled: Resampled target variable after applying SMOTE-ENN

1. Separate minority and majority class as m_i and m_a
2. Identify m_i and m_a samples based on class labels in y
3. For each m_i sample xi , calculate, k-nearest neighbors.
4. Select one of the random nearest neighbors x̂
5. Generate a new synthetic sample xnew = xi + δ(x̂− xi) where δϵ[1]
6. Repeat the above steps until the desired balance ratio is achieved
7. For each instance xj in the augmented dataset:
8. Find the three nearest neighbors of xj

9. If xj is misclassified by its three nearest neighbors, delete xj

Return Resampled Dataset

3.4. Model Building

Our learning model architecture comprises four layers, starting with the Bi-LSTM
layer which consists of 220 nodes. The second and third layers are Bi-GRU and LSTM,
having 220 nodes each. For acquiring important features, we used the attention layer. All
dense layers utilize the tanh as their activation function. The activation function applied
in the last layer is softmax. The term “dropout” describes the possibility that any given
node will be eliminated or dropped out, as seen in Figure 4. Algorithm 3 illustrates our
model’s detail processing. In the proposed approach, for each source dataset S[n], the
CFS algorithm:

(1) Calculates the merit of each feature and selects the top features based on the highest merit.
(2) Selects the top k features based on the highest merit and creates the S_selected dataset.

Algorithms 2024, 17, 175 10 of 27

Algorithm 2. Pseudocode of SMOTE Edited Nearest Neighbor (SMOTE-ENN)
Input:
- X: Feature (samples(n) X features[n]) for both majority and minority classes
- Y: Target variable (samples(n)) indicating class labels
Output:
- X_resampled: Resampled feature matrix after applying SMOTE-ENN
- Y_resampled: Resampled target variable after applying SMOTE-ENN
1. Separate minority and majority class as 𝑚_𝑖 and 𝑚_𝑎
2. Identify 𝑚_𝑖 and 𝑚_𝑎 samples based on class labels in 𝑦
3. For each 𝑚_𝑖 sample 𝑥 , calculate, k-nearest neighbors.
4. Select one of the random nearest neighbors 𝑥
5. Generate a new synthetic sample 𝑥 = 𝑥 + 𝛿 (𝑥 − 𝑥) 𝑤ℎ𝑒𝑟𝑒 𝛿𝜖 1
6. Repeat the above steps until the desired balance ratio is achieved
7. For each instance 𝑥 in the augmented dataset:
8. Find the three nearest neighbors of 𝑥
9. If 𝑥 is misclassified by its three nearest neighbors, delete 𝑥
Return Resampled Dataset

3.4. Model Building
Our learning model architecture comprises four layers, starting with the Bi-LSTM

layer which consists of 220 nodes. The second and third layers are Bi-GRU and LSTM,
having 220 nodes each. For acquiring important features, we used the attention layer. All
dense layers utilize the tanh as their activation function. The activation function applied
in the last layer is softmax. The term “dropout” describes the possibility that any given
node will be eliminated or dropped out, as seen in Figure 4. Algorithm 3 illustrates our
model’s detail processing. In the proposed approach, for each source dataset 𝑆 𝑛], the CFS
algorithm:
(1) Calculates the merit of each feature and selects the top features based on the highest merit.
(2) Selects the top k features based on the highest merit and creates the 𝑆_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 dataset.

The top k features are selected based on the highest merit values, and the 𝑆_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
dataset is created by combining the selected features from all source datasets. The merit
of a feature f in a dataset 𝑆 can be calculated using the following Equation (1): 𝑚𝑒𝑟𝑖𝑡(𝑓, 𝑆) = 𝑀𝑒𝑡𝑟𝑖𝑐(𝑓, 𝑆), (1)

where 𝑀𝑒𝑡𝑟𝑖𝑐(𝑓, 𝑆) is a feature selection correlation metric.

Figure 4. Architecture of the proposed model.

The selected features from all source datasets are combined to create the 𝑆_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
dataset. Then the CFS algorithm selects the features from the target dataset 𝑇 that corre-
spond to the features selected for the source dataset 𝑆 𝑛 . The selected features from all
target datasets are combined to create the 𝑇_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 dataset. The 𝑇_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 dataset is
created as in Equation (2):

Figure 4. Architecture of the proposed model.

Algorithms 2024, 17, 175 10 of 25

The top k features are selected based on the highest merit values, and the S_selected
dataset is created by combining the selected features from all source datasets. The merit of
a feature f in a dataset S can be calculated using the following Equation (1):

merit(f , S) = Metric(f , S), (1)

where Metric(f , S) is a feature selection correlation metric.
The selected features from all source datasets are combined to create the S_selected

dataset. Then the CFS algorithm selects the features from the target dataset T that cor-
respond to the features selected for the source dataset S[n]. The selected features from
all target datasets are combined to create the T_selected dataset. The T_selected dataset is
created as in Equation (2):

T_selected = { f | f ∈ T and f ∈ S_selected}, (2)

where f is a feature that exists in both the target dataset T and the S_selected dataset.
To address class imbalance issues and remove noisy and irrelevant instances in

the source and target datasets, the SMOTE-ENN (Synthetic Minority Over-sampling
Technique—Edited Nearest Neighbors) technique is applied. SMOTE-ENN works by:

(1) Generating synthetic samples of the minority class using the k-nearest neighbors’ algorithm.
(2) Removing any noisy or redundant samples from the resampled dataset using the

Edited Nearest Neighbors (ENN) algorithm.

The resampled datasets are denoted as S_resampled and T_resampled. Then split the
resampled source and target datasets into training and testing sets. The split is carried
out using an 80:20 ratio, where 80% of the data are used for training, and 20% is used for
testing. The training and testing sets are denoted as:

S_x, S_y (Source dataset)

T_x, T_y (Target dataset)

The algorithm builds a Sequential Neural Network model with the following layers:

(1) Bi-LSTM (Bidirectional Long Short-Term Memory) with 220 nodes
(2) Bi-GRU (Bidirectional Gated Recurrent Unit) with 220 nodes
(3) LSTM with 220 nodes
(4) Attention Layer

The Bi-LSTM and Bi-GRU layers are combined to optimize LSTM to capture the
sequential and contextual information in the data. The attention layer is added to allow the
model to focus on the most relevant parts of the input data when making predictions. Then,
it trains the model using the T_resampled dataset. The training process can be represented
by the following Equation (3):

Model. f it(T_resampled), (3)

where model is the sequential neural network model built in the previous step, and
T_resampled is the resampled target dataset. Then, it uses the trained model to predict the
defects in the T_y (testing) dataset. The prediction can be represented by the following
Equation (4):

Result = Model.predict(T_y), (4)

where Result is the predicted defects for the T_y dataset. The algorithm returns the Result
as the final output, which represents the predicted defects for the target dataset T_y.

The Bi-directional Long Short-Term Memory (LSTM) and Gated Recurrent (GRU)
Layer: The suggested model first leverages a bi-directional LSTM network to learn the
contextual and semantic features. Due to its ability to ease the vanishing gradient problem
and depict long-term dependency, this model has been selected [46]. Bi-LSTM is an

Algorithms 2024, 17, 175 11 of 25

expansion of LSTMm which comprises two LSTM layers, one processing the sequence
in the forward direction and the other in the backward. The sequence is processed in
reverse order by the backward LSTM layer, whereas the sequence is processed from start
to finish by the forward LSTM layer. To create the final output, the hidden states from

both layers are concatenated [47]. The bi-LSTM is defined by Equations (5)–(7), where
→
ht is

the state of the forward LSTM,
→
ht is the state of the backward LSTM, and ⊕ signifies the

operation of concatenating two vectors. To generate the final hidden state ht = [
→
ht,
←
ht] at

time step t, the forward layer’s
→
ht final output and the

←
ht backward layer’s reverse output

are merged. The Bi-directional Gated Recurrent Unit (Bi-GRU) has the ability to learn
knowledge from prior and subsequent data when dealing with the present data. Two
unidirectional GRUs pointing in different directions are used to determine the state of the
bi-GRU model. One GRU starts at the beginning of the data series and goes forward, and
another GRU starts at the end and moves backward. This makes it possible for information
from the past and the future to affect the states that are currently in effect now. The bi-GRU

is defined by Equations (8)–(10), where
→
ht is the state of the forward GRU,

←
ht is the state of

the backward GRU, and ⊕ signifies the operation of concatenating two vectors. The model
is able to produce more precise predictions because of this bi-directional representation,
which records contextual information from both the past and the future.

→
ht = LSTM f wd(xt,

→
ht−1), (5)

←
ht = LSTMbwd(xt,

←
ht+1), (6)

ht =
→
ht ⊕

←
ht , (7)

→
ht = GRU f wd(xt,

→
ht−1), (8)

←
ht = GRUbwd(xt,

←
ht+1), (9)

ht =
→
ht ⊕

←
ht, (10)

Attention Layer: We embed the attention layer solely in order to amplify the influence
of features and focus more on key features, as shown in Equation (11). First, we input the
values uit representing the hidden states to be scaled.

uit = tanh(Wn ∗ hit + bn), (11)

Then, to identify the important sequence’s properties, un is employed. The normalized
adaptive weights are then produced by the model using a softmax process by computing
the dot product between uit and un, as shown in Equation (12).

αit = So f tmax
exp

(
uT

it ∗ un
)

∑t=1 exp
(
uT

it ∗ un
) , (12)

Ultimately, the sequence vector is generated by the weighted summation of each node,
as shown in Equation (13).

Si = ∑
t=1

αit ∗ hit (13)

Algorithms 2024, 17, 175 12 of 25

Algorithm 3. Proposed Approach.

Input:
- Source Datasets: {S1, S2, . . ., Sn}
-Target Dataset: T
Output:
- Predicted Defects for T
1: Feature Selection
for each source dataset (n):
Calculate the merit (S_selected) for each feature in S(n)
Select the top features based on highest merit and create S_selected
end for
2: Select Features for Target Dataset
T_selected = Features selected from T using the features selected in step 1
3: Handle Class Imbalance (SMOTE-ENN)
S_resampled = Apply SMOTE-ENN to S_selected to handle class imbalance
T_resampled = Apply SMOTE-ENN to T_selected to handle class imbalance
4: Split the Target Dataset
S_x, S_y = Split (S_resampled, Size = 0.2)
T_x, T_y = Split (T_resampled, Size = 0.2)
5: Build a Classifier
Model = Sequential Neural Network
- Layer 1: Bi-LSTM with 220 nodes
- Layer 2: Bi-GRU with 220 nodes
- Layer 3: LSTM with 220 nodes
- Layer 4: Attention Layer
6: Train the Classifier
Model.fit (T_resampled)
7: Predict Defects for T_y
Result = Model.predict (T_y)
8: Output
Return Result as Predicted Defects for T_y
End

4. Experimental Setups

We provide a detailed description of our experimental setup in this part, together with
benchmark datasets, evaluation metrics, baseline methods and research questions.

4.1. Benchmark Datasets

The experiments were conducted on 10 open-source software projects from AEEEM
(five JAVA open-source projects) and PROMISE (five projects randomly picked from
PROMISE). The difficulty of the software development process and the complexity of
the software code is considered when assembling and gathering the AEEEM database by
Dambros [48]. The PROMISE dataset, which contains the most varied project features,
was created by Jureczko and Madeyski [49]. Table 2 presents the detailed information of
selected projects, including the projects names, numbers of instances and the percentage of
defective modules.

Table 2. Description of the datasets that we have chosen.

Dataset Project Number of Instances Defective Instances %

AEEEM

EQ 325 39.692
JDT 997 20.662
LC 399 16.040
ML 1862 13.158
PDE 1492 14.008

PROMISE

Ivy2.0 352 11.36
Poi3.0 442 64.09

Xerces1.4 508 76.81
Synapse1.2 256 33.63

Xalan2.6 875 53.13

Algorithms 2024, 17, 175 13 of 25

4.2. Evaluation Metrics

We analyze our suggested model performance based on two evaluation metrics, F1-
measure and AUC. The F1-measure is a typical evaluation metric used to evaluate the
performance of a classification model. It is the precision and recall harmonic mean that
balances the two metrics, as shown in Equation (14):

F1–Measure =
2(Precision× Recall)

Precision + Recall
(14)

Area Under the Receiver Operating Characteristic curve (AUC) is used to evaluate
the degree of differentiation obtained by the model. Decision thresholds, like recall and
precision, are insensitive to this. All potential classification thresholds are represented by
a graphic that shows the true positive rate on the y-axis and the false positive rate on the
x-axis, as shown in Equation (15). The higher the AUC, the better the prediction:

AUC =
Σinsi ϵ Positive Classrank(insi)−

M(M+1)
2

M.N
(15)

where the numbers of positive and negative cases are represented by M and N, and the
average positive samples rank is Σinsi ϵ Positive Classrank(insi).

4.3. Baseline Models

To test the efficacy of our SCAG-LSTM method, a comparative analysis is conducted
that evaluates its prediction performance against a total of six state-of-the-art CPDP ap-
proaches, three for AEEEM and three for PROMISE datasets. These approaches are detailed
succinctly in Table 3.

Table 3. Summary of the Baseline models for comparison.

Baseline Models Reference No. Advantages Disadvantages

TPTL [31] Liu et al., 2019
The two-phase transfer learning model

improves prediction accuracy and
efficiency by utilizing transfer learning.

Generalizability is limited because of the
concentration on a particular collection of

defect datasets.

ALTRA [41] Yuan et al., 2020

ALTRA employs utilization of active
learning to overcome the data

distribution differences across source and
target projects.

Limits the validation on different
datasets by just conducting empirical

research on the PROMISE dataset.

DAKTSVMO [27] Jin et al., 2021
Its ability to align the data distribution

across different software projects allows
for domain adaptation in CPDP.

Lack of comparison with different
domain adaption approaches.

MSCPDP [50] Zhao et al., 2022
Ability to leverage information from

multiple sources projects for enhanced
prediction accuracy.

Did not entirely outperform more
advanced single-source

single-target approaches.

TFIA [24] Xing et al., 2022
Feature-level filtering strategy to improve

data distribution differences
between projects.

Doesn’t investigate how changing certain
parameters affects the performance of

the model

GBCPDP [34] Abdu et al., 2023
Uses graph features taken from CFG and
DDG to build a predictive model using

LSTM, offering a systematic framework.

Relying exclusively on CFG and DDG as
graph features could fail to capture all

necessary context-relevant data for
defect prediction.

4.4. Research Questions

In this section, we will discuss the motivations, along with the research problems. This
work aims to address the following research questions.

Algorithms 2024, 17, 175 14 of 25

RQ1: Does balancing data and removing noisy instances from data improve the
performance of our proposed model SCAG-LSTM?

This research question investigates the effectiveness of our data-balancing method to
improve the performance of the proposed model in CPDP.

RQ2: Does the feature selection approach suggested in this paper have any impact on
the performance of the model SCAG-LSTM?

This research question analyzes the usefulness of our feature selection approach to
improve the performance of the proposed model in CPDP.

RQ3: How effective is our SCAG-LSTM model? How much improvement can SCAG-
LSTM achieve over the related models?

This research question seeks to determine how well the proposed method performs in
CPDP in comparison to existing state-of-the-art approaches.

The motivation for the above mentioned research questions is driven by the imple-
mentation of feature selection and data balancing approaches in CPDP studies. The most
recent CPDP research [22–24] indicates that, in order to make a model that can accurately
predict defects and prevent the model from being biased toward the majority class, it is
crucial to apply data balancing methods to handle the imbalanced nature of the dataset and
remove noisy and irrelevant instances. Rao et al. [42] integrated an undersampling method
to balance the imbalanced datasets. Sun et al. [51] explored undersampling techniques and
proved that undersampling easily handles the imbalanced nature of the data. Moreover,
feature selection methods reduce data distribution differences in order to increase the effi-
ciency and efficacy of defect prediction models [52]. Lei et al. [53] introduced a cross project
defect prediction technique based on feature selection and distance weight instance transfer.
They showed the efficiency of feature selection on the suggested method. Zhao et al. [50]
suggested a multi-source-based cross project defect prediction technique MSCPDP, which
can handle the problem of data distribution differences between source and target domains.

5. Experimental Results

In this section, we present the experimental results and provide the answers to the
research questions from Section 4.4.

5.1. Research Question—RQ1

In order to address RQ1, Table 4 reports the proposed model’s performance on the
AEEEM dataset with and without data balancing, and Table 5 reports the prediction model’s
performance on the PROMISE dataset. Our model averages for the unbalanced datasets
(F1-measure and AUC) are 0.503 and 0.466 for AEEEM and 0.380 and 0.510 for PROMISE.
The average value of our proposed model on the balanced datasets (F1-measure and AUC)
are 0.891 and 0.801 for AEEEM and 0.643 and 0.680 for PROMISE. From Tables 3 and 4,
it can be observed that the overall performance of the prediction model trained from the
data processed by data balancing is significantly improved, with an average F1-measure
improvement of about 77.34% and AUC improvement of about 71.98% on AEEEM and
F1-measure improvement of about 69.21% and AUC improvement of about 33.33% on
PROMISE, as compared to without data balancing. The Box plots of performance measures
for the AEEEM datasets are shown in Figures 5 and 6, displaying the performance mea-
sures for the PROMISE datasets with and without data balancing (F1-measure and AUC).
Compared to the data without data balancing, we can observe that the prediction models
trained using the data processed by data balancing have larger numerical intervals in the
overall distribution. As a result, we can conclude that the data balancing strategy put forth
in this study works well in enhancing the CPDP model’s performance across all datasets.

Algorithms 2024, 17, 175 15 of 25

Table 4. F1-measure and AUC of proposed model with and without data balancing method on AEEEM.

Source Target F1-Measure AUC

Without
SMOTE-ENN

With
SMOTE-ENN

Without
SMOTE-ENN

With
SMOTE-ENN

EQ JDT 0.580 0.900 0.447 0.875
EQ LC 0.588 0.917 0.416 0.750
EQ ML 0.563 0.895 0.413 0.731
EQ PDE 0.457 0.879 0.412 0.771
JDT EQ 0.578 0.892 0.602 0.900
JDT LC 0.494 0.879 0.510 0.810
JDT ML 0.489 0.887 0.427 0.762
JDT PDE 0.483 0.875 0.420 0.761
LC EQ 0.488 0.878 0.510 0.846
LC JDT 0.491 0.923 0.515 0.848
LC ML 0.481 0.869 0.422 0.738
LC PDE 0.478 0.871 0.429 0.760
ML EQ 0.480 0.893 0.513 0.848
ML JDT 0.466 0.899 0.509 0.823
ML LC 0.499 0.938 0.507 0.835
ML PDE 0.487 0.873 0.418 0.750
PDE EQ 0.489 0.908 0.514 0.883
PDE JDT 0.497 0.891 0.412 0.791
PDE LC 0.480 0.884 0.519 0.820
PDE ML 0.495 0.877 0.415 0.725

Average 0.503 0.891 0.466 0.801

Table 5. F1-measure and AUC of proposed model with and without data balancing method on PROMISE.

Source Target F1-Measure AUC

Without
SMOTE-ENN

With
SMOTE-ENN

Without
SMOTE-ENN

With
SMOTE-ENN

synapse_1.2 poi-2.5 0.390 0.651 0.502 0.674
synapse_1.2 xerces-1.2 0.378 0.602 0.519 0.712
camel-1.4 ant-1.6 0.381 0.656 0.514 0.669
camel-1.4 jedit_4.1 0.378 0.636 0.480 0.612
xerces-1.3 poi-2.5 0.332 0.595 0.499 0.633
xerces-1.3 synapse_1.1 0.328 0.588 0.501 0.602
xerces-1.2 xalan-2.5 0.330 0.571 0.513 0.722
lucene_2.2 xalan-2.5 0.393 0.612 0.520 0.733
synapse_1.1 poi-3.0 0.387 0.602 0.497 0.630

ant-1.6 poi-3.0 0.319 0.520 0.460 0.619
camel-1.4 ant-1.6 0.430 0.782 0.537 0.713
lucene_2.2 ant-1.6 0.417 0.772 0.522 0.729
log4j-1.1 ant-1.6 0.415 0.745 0.528 0.733
log4j-1.1 lucene_2.0 0.402 0.733 0.527 0.757

lucene_2.0 log4j-1.1 0.449 0.742 0.560 0.719
lucene_2.0 xalan-2.5 0.342 0.546 0.501 0.669
jedit_4.1 camel-1.4 0.401 0.678 0.498 0.644
jedit_4.1 xalan-2.4 0.376 0.552 0.517 0.680
Average 0.380 0.643 0.510 0.680

Algorithms 2024, 17, 175 16 of 25
Algorithms 2024, 17, 175 16 of 27

Figure 5. Boxplot of F1-measure and AUC of model with and without Smote-Enn on AEEEM.

Figure 6. Boxplot of F1-measure and AUC of model with and without Smote-Enn on PROMISE.

Figure 5. Boxplot of F1-measure and AUC of model with and without Smote-Enn on AEEEM.

Algorithms 2024, 17, 175 16 of 27

Figure 5. Boxplot of F1-measure and AUC of model with and without Smote-Enn on AEEEM.

Figure 6. Boxplot of F1-measure and AUC of model with and without Smote-Enn on PROMISE.

Figure 6. Boxplot of F1-measure and AUC of model with and without Smote-Enn on PROMISE.

5.2. Research Question—RQ2

In order to address RQ2, Tables 6 and 7 present the prediction model’s performance
on the AEEEM and PROMISE dataset with and without feature selection. The average
value of our model on the datasets without feature selection (F1-measure and AUC) are
0.678 and 0.637 on AEEEM and 0.443 and 0.496 on PROMISE. The average value of our
model on the feature selected datasets (F1-measure and AUC) are 0.891 and 0.801 on
AEEEM and 0.643 and 0.680 on PROMISE. From Tables 5 and 6, it can be observed that
the overall performance of the prediction model trained from the data processed by the
feature selection is significantly improved, with an average F1-measure improvement of

Algorithms 2024, 17, 175 17 of 25

about 31.41% and AUC improvement of about 25.74% on AEEEM, and an F1-measure
improvement of about 31.39% and AUC improvement of about 28.88% on PROMISE, as
compared to without feature selection. The Box plots of performance measures for the
AEEEM datasets are shown in Figure 7 and the Box plots of performance measures for the
PROMISE datasets are shown in Figure 8, with and without feature selection (F1-measure
and AUC). We observe that our proposed model shows good results on the feature-selected
datasets, indicating that the proposed model performs well and that the feature selection
method plays a significant role in enhancing prediction performance.

Table 6. F1-measure and AUC of proposed model with and without FS method on AEEEM.

Source Target F1-Measure AUC

Without FS With FS Without FS With FS

EQ JDT 0.737 0.900 0.681 0.875
EQ LC 0.742 0.917 0.590 0.750
EQ ML 0.677 0.895 0.589 0.731
EQ PDE 0.659 0.879 0.610 0.771
JDT EQ 0.668 0.892 0.719 0.900
JDT LC 0.652 0.879 0.670 0.810
JDT ML 0.661 0.887 0.680 0.762
JDT PDE 0.649 0.875 0.586 0.761
LC EQ 0.650 0.878 0.570 0.846
LC JDT 0.760 0.923 0.674 0.848
LC ML 0.643 0.869 0.571 0.738
LC PDE 0.651 0.871 0.592 0.760
ML EQ 0.665 0.893 0.688 0.848
ML JDT 0.669 0.899 0.660 0.823
ML LC 0.772 0.938 0.688 0.835
ML PDE 0.644 0.873 0.580 0.750
PDE EQ 0.733 0.908 0.699 0.883
PDE JDT 0.665 0.891 0.629 0.791
PDE LC 0.654 0.884 0.681 0.820
PDE ML 0.628 0.877 0.588 0.725

Average 0.678 0.891 0.637 0.801

Table 7. F1-measure and AUC of proposed model with and without FS on PROMISE.

Source Target F1-Measure AUC

Without FS With FS Without FS With FS

synapse_1.2 poi-2.5 0.422 0.651 0.450 0.674
synapse_1.2 xerces-1.2 0.409 0.602 0.508 0.712

camel-1.4 ant-1.6 0.419 0.656 0.498 0.669
camel-1.4 jedit_4.1 0.410 0.636 0.512 0.612
xerces-1.3 poi-2.5 0.390 0.595 0.445 0.633
xerces-1.3 synapse_1.1 0.357 0.588 0.409 0.602
xerces-1.2 xalan-2.5 0.348 0.571 0.521 0.722
lucene_2.2 xalan-2.5 0.452 0.612 0.578 0.733

synapse_1.1 poi-3.0 0.502 0.602 0.436 0.630
ant-1.6 poi-3.0 0.480 0.520 0.456 0.619

camel-1.4 ant-1.6 0.520 0.782 0.533 0.713
lucene_2.2 ant-1.6 0.518 0.772 0.513 0.729
log4j-1.1 ant-1.6 0.526 0.745 0.520 0.733
log4j-1.1 lucene_2.0 0.503 0.733 0.547 0.757

lucene_2.0 log4j-1.1 0.519 0.742 0.578 0.719
lucene_2.0 xalan-2.5 0.398 0.546 0.490 0.669
jedit_4.1 camel-1.4 0.457 0.678 0.453 0.644
jedit_4.1 xalan-2.4 0.350 0.552 0.495 0.680
Average 0.443 0.643 0.496 0.680

Algorithms 2024, 17, 175 18 of 25

Algorithms 2024, 17, 175 18 of 27

5.2. Research Question—RQ2
In order to address RQ2, Tables 6 and 7 present the prediction model’s performance

on the AEEEM and PROMISE dataset with and without feature selection. The average
value of our model on the datasets without feature selection (F1-measure and AUC) are
0.678 and 0.637 on AEEEM and 0.443 and 0.496 on PROMISE. The average value of our
model on the feature selected datasets (F1-measure and AUC) are 0.891 and 0.801 on
AEEEM and 0.643 and 0.680 on PROMISE. From Tables 5 and 6, it can be observed that
the overall performance of the prediction model trained from the data processed by the
feature selection is significantly improved, with an average F1-measure improvement of
about 31.41% and AUC improvement of about 25.74% on AEEEM, and an F1-measure im-
provement of about 31.39% and AUC improvement of about 28.88% on PROMISE, as com-
pared to without feature selection. The Box plots of performance measures for the AEEEM
datasets are shown in Figure 7 and the Box plots of performance measures for the PROM-
ISE datasets are shown in Figure 8, with and without feature selection (F1-measure and
AUC). We observe that our proposed model shows good results on the feature-selected
datasets, indicating that the proposed model performs well and that the feature selection
method plays a significant role in enhancing prediction performance.

Figure 7. Boxplot of F1-measure and AUC of model with and without FS on AEEEM. Figure 7. Boxplot of F1-measure and AUC of model with and without FS on AEEEM.

Algorithms 2024, 17, 175 19 of 27

Figure 8. Boxplot of F1-measure and AUC of model with and without FS on PROMISE.

Table 6. F1-measure and AUC of proposed model with and without FS method on AEEEM.

Source Target F1-Measure AUC
 Without FS With FS Without FS With FS

EQ JDT 0.737 0.900 0.681 0.875
EQ LC 0.742 0.917 0.590 0.750
EQ ML 0.677 0.895 0.589 0.731
EQ PDE 0.659 0.879 0.610 0.771
JDT EQ 0.668 0.892 0.719 0.900
JDT LC 0.652 0.879 0.670 0.810
JDT ML 0.661 0.887 0.680 0.762
JDT PDE 0.649 0.875 0.586 0.761
LC EQ 0.650 0.878 0.570 0.846
LC JDT 0.760 0.923 0.674 0.848
LC ML 0.643 0.869 0.571 0.738
LC PDE 0.651 0.871 0.592 0.760
ML EQ 0.665 0.893 0.688 0.848
ML JDT 0.669 0.899 0.660 0.823
ML LC 0.772 0.938 0.688 0.835
ML PDE 0.644 0.873 0.580 0.750
PDE EQ 0.733 0.908 0.699 0.883
PDE JDT 0.665 0.891 0.629 0.791
PDE LC 0.654 0.884 0.681 0.820
PDE ML 0.628 0.877 0.588 0.725

Average 0.678 0.891 0.637 0.801

Figure 8. Boxplot of F1-measure and AUC of model with and without FS on PROMISE.

5.3. Research Question—RQ3

In order to address RQ3, we compared our model results with the results of baseline
models based on two metrics: AUC and F1-measure. Tables 8 and 9 compare the results of

Algorithms 2024, 17, 175 19 of 25

our model with the results of baseline models on AEEEM, and Tables 10 and 11 compares
the results of our model with the results of baseline models on PROMISE datasets. Accord-
ing to Tables 7–10, our model outperforms the state-of-the art techniques and improves
CPDP predictive performance. Figures 9 and 10 display the Bar charts for prediction
performance of the proposed model (SCAG-LSTM) and baseline models on the AEEEM
and PROMISE datasets.

Table 8. F1-measure of the proposed approach and baseline methods on AEEEM.

Source Target ALTRA MSCPDP TFIA Ours

EQ JDT 0.448 0.411 0.873 0.900
EQ LC 0.449 0.260 0.903 0.917
EQ ML 0.304 0.244 0.875 0.895
EQ PDE 0.415 0.260 0.864 0.879
JDT EQ 0.526 0.266 0.862 0.892
JDT LC 0.704 0.256 0.875 0.879
JDT ML 0.725 0.259 0.883 0.887
JDT PDE 0.713 0.283 0.866 0.875
LC EQ 0.465 0.307 0.862 0.878
LC JDT 0.868 0.486 0.911 0.923
LC ML 0.862 0.298 0.855 0.869
LC PDE 0.792 0.269 0.866 0.871
ML EQ 0.710 0.162 0.886 0.893
ML JDT 0.751 0.312 0.883 0.899
ML LC 0.808 0.123 0.925 0.938
ML PDE 0.806 0.227 0.865 0.873
PDE EQ 0.644 0.233 0.897 0.908
PDE JDT 0.800 0.391 0.881 0.891
PDE LC 0.800 0.16 0.873 0.884
PDE ML 0.800 0.219 0.853 0.877

Average 0.670 0.271 0.878 0.891

Table 9. AUC of the proposed approach and baseline methods on AEEEM.

Source Target ALTRA MSCPDP TFIA Ours

EQ JDT 0.266 0.628 0.735 0.875
EQ LC 0.286 0.640 0.738 0.750
EQ ML 0.253 0.557 0.702 0.731
EQ PDE 0.203 0.557 0.740 0.771
JDT EQ 0.388 0.575 0.719 0.900
JDT LC 0.271 0.574 0.726 0.810
JDT ML 0.605 0.574 0.707 0.762
JDT PDE 0.668 0.583 0.721 0.761
LC EQ 0.297 0.585 0.710 0.846
LC JDT 0.441 0.667 0.768 0.848
LC ML 0.341 0.590 0.732 0.738
LC PDE 0.605 0.576 0.755 0.760
ML EQ 0.579 0.528 0.755 0.848
ML JDT 0.309 0.585 0.730 0.823
ML LC 0.540 0.529 0.806 0.835
ML PDE 0.287 0.558 0.724 0.750
PDE EQ 0.373 0.551 0.785 0.883
PDE JDT 0.388 0.620 0.754 0.791
PDE LC 0.375 0.542 0.763 0.820
PDE ML 0.491 0.558 0.718 0.725

Average 0.398 0.578 0.739 0.801

Algorithms 2024, 17, 175 20 of 25

Table 10. F1-measure of the proposed approach and baseline methods on PROMISE.

Source Target TPTL DA-KTSVMO GB-CPDP Ours

synapse_1.2 poi-2.5 0.462 0.533 0.631 0.651
synapse_1.2 xerces-1.2 0.433 0.542 0.466 0.602

camel-1.4 ant-1.6 0.575 0.463 0.416 0.656
camel-1.4 jedit_4.1 0.396 0.402 0.356 0.636
xerces-1.3 poi-2.5 0.349 0.537 0.544 0.595
xerces-1.3 synapse_1.1 0.536 0.329 0.469 0.588
xerces-1.2 xalan-2.5 0.447 0.462 0.383 0.571
lucene_2.2 xalan-2.5 0.506 0.438 0.502 0.612

synapse_1.1 poi-3.0 0.342 0.566 0.537 0.602
ant-1.6 poi-3.0 0.353 0.315 0.384 0.520

camel-1.4 ant-1.6 0.556 0.511 0.652 0.782
lucene_2.2 ant-1.6 0.377 0.539 0.669 0.772
log4j-1.1 ant-1.6 0.595 0.585 0.676 0.745
log4j-1.1 lucene_2.0 0.478 0.576 0.622 0.733

lucene_2.0 log4j-1.1 0.419 0.561 0.489 0.742
lucene_2.0 xalan-2.5 0.510 0.510 0.514 0.546
jedit_4.1 camel-1.4 0.447 0.502 0.501 0.678
jedit_4.1 xalan-2.4 0.332 0.386 0.443 0.552
Average 0.451 0.487 0.514 0.643

Table 11. AUC of the proposed approach and baseline methods on PROMISE.

Source Target TPTL DA-KTSVMO GB-CPDP Ours

synapse_1.2 poi-2.5 0.485 0.498 0.593 0.674
synapse_1.2 xerces-1.2 0.485 0.563 0.681 0.712

camel-1.4 ant-1.6 0.541 0.655 0.532 0.669
camel-1.4 jedit_4.1 0.329 0.441 0.466 0.612
xerces-1.3 poi-2.5 0.588 0.477 0.568 0.633
xerces-1.3 synapse_1.1 0.488 0.468 0.502 0.602
xerces-1.2 xalan-2.5 0.471 0.437 0.696 0.722
lucene_2.2 xalan-2.5 0.621 0.702 0.568 0.733

synapse_1.1 poi-3.0 0.493 0.510 0.571 0.630
ant-1.6 poi-3.0 0.518 0.383 0.572 0.619

camel-1.4 ant-1.6 0.603 0.642 0.661 0.713
lucene_2.2 ant-1.6 0.411 0.570 0.658 0.729
log4j-1.1 ant-1.6 0.631 0.509 0.682 0.733
log4j-1.1 lucene_2.0 0.529 0.621 0.613 0.757

lucene_2.0 log4j-1.1 0.546 0.571 0.647 0.719
lucene_2.0 xalan-2.5 0.632 0.604 0.594 0.669
jedit_4.1 camel-1.4 0.267 0.355 0.556 0.644
jedit_4.1 xalan-2.4 0.425 0.563 0.669 0.680
Average 0.504 0.532 0.602 0.680

Algorithms 2024, 17, 175 21 of 25

Algorithms 2024, 17, 175 20 of 27

Table 7. F1-measure and AUC of proposed model with and without FS on PROMISE.

Source Target F1-Measure AUC
 Without FS With FS Without FS With FS

synapse_1.2 poi-2.5 0.422 0.651 0.450 0.674
synapse_1.2 xerces-1.2 0.409 0.602 0.508 0.712

camel-1.4 ant-1.6 0.419 0.656 0.498 0.669
camel-1.4 jedit_4.1 0.410 0.636 0.512 0.612
xerces-1.3 poi-2.5 0.390 0.595 0.445 0.633
xerces-1.3 synapse_1.1 0.357 0.588 0.409 0.602
xerces-1.2 xalan-2.5 0.348 0.571 0.521 0.722
lucene_2.2 xalan-2.5 0.452 0.612 0.578 0.733

synapse_1.1 poi-3.0 0.502 0.602 0.436 0.630
ant-1.6 poi-3.0 0.480 0.520 0.456 0.619

camel-1.4 ant-1.6 0.520 0.782 0.533 0.713
lucene_2.2 ant-1.6 0.518 0.772 0.513 0.729
log4j-1.1 ant-1.6 0.526 0.745 0.520 0.733
log4j-1.1 lucene_2.0 0.503 0.733 0.547 0.757

lucene_2.0 log4j-1.1 0.519 0.742 0.578 0.719
lucene_2.0 xalan-2.5 0.398 0.546 0.490 0.669
jedit_4.1 camel-1.4 0.457 0.678 0.453 0.644
jedit_4.1 xalan-2.4 0.350 0.552 0.495 0.680
Average 0.443 0.643 0.496 0.680

5.3. Research Question—RQ3
In order to address RQ3, we compared our model results with the results of baseline

models based on two metrics: AUC and F1-measure. Tables 8 and 9 compare the results of
our model with the results of baseline models on AEEEM, and Tables 10 and 11 compares
the results of our model with the results of baseline models on PROMISE datasets. Ac-
cording to Tables 7–10, our model outperforms the state-of-the art techniques and im-
proves CPDP predictive performance. Figures 9 and 10 display the Bar charts for predic-
tion performance of the proposed model (SCAG-LSTM) and baseline models on the
AEEEM and PROMISE datasets.

Figure 9. Bar chart of prediction performance of proposed model and comparing models on
AEEEM.
Figure 9. Bar chart of prediction performance of proposed model and comparing models on AEEEM.

Algorithms 2024, 17, 175 21 of 27

Figure 10. Bar chart of prediction performance of proposed model and comparative models on
PROMISE.

Table 8. F1-measure of the proposed approach and baseline methods on AEEEM.

Source Target ALTRA MSCPDP TFIA Ours
EQ JDT 0.448 0.411 0.873 0.900
EQ LC 0.449 0.260 0.903 0.917
EQ ML 0.304 0.244 0.875 0.895
EQ PDE 0.415 0.260 0.864 0.879
JDT EQ 0.526 0.266 0.862 0.892
JDT LC 0.704 0.256 0.875 0.879
JDT ML 0.725 0.259 0.883 0.887
JDT PDE 0.713 0.283 0.866 0.875
LC EQ 0.465 0.307 0.862 0.878
LC JDT 0.868 0.486 0.911 0.923
LC ML 0.862 0.298 0.855 0.869
LC PDE 0.792 0.269 0.866 0.871
ML EQ 0.710 0.162 0.886 0.893
ML JDT 0.751 0.312 0.883 0.899
ML LC 0.808 0.123 0.925 0.938
ML PDE 0.806 0.227 0.865 0.873
PDE EQ 0.644 0.233 0.897 0.908
PDE JDT 0.800 0.391 0.881 0.891
PDE LC 0.800 0.16 0.873 0.884
PDE ML 0.800 0.219 0.853 0.877

Average 0.670 0.271 0.878 0.891

Figure 10. Bar chart of prediction performance of proposed model and comparative models on PROMISE.

6. Threats to Validity
6.1. Internal Validity

The degree of trust by which the causal relationship under investigation in a study
is independent of other factors, or is unaffected by other variables, is known as internal
validity. As a result, the accuracy of our testing setup is crucial to maintaining internal
validity. TensorFlow serves as the backend for Keras, which we employ in this study
to construct the SCAG-LSTM model. Since these technologies and tools have been used
extensively in relevant research, they can be trusted. We additionally do white-box testing
on the source code to ensure that it is error-free. Another important danger to internal
validity comes from the datasets. The reference datasets are unbalanced and exhibit a
deficiency in the true distribution of the fraction of classes that are defective and those that
are not. In order to increase the data’s realism regarding the defect’s actual existence in
the software system, we alter the original datasets to mitigate this threat. Data sampling
strategies are used to modify the dataset’s distribution. However, we accept that many
statistical tests can be performed to verify the statistical significance of our conclusions.
Therefore, we propose to undertake more statistical testing in our future work.

Algorithms 2024, 17, 175 22 of 25

6.2. External Validity

The term “external validity” describes a scientific research study’s ability to be trans-
ferred to other investigations. The primary risk to the external validity of this study is from
our attempt to identify and collect diverse datasets from different AEEEM and PROMISE
projects. For our evaluation datasets, we chose five open-source Java programs from the
PROMISE and five open-source applications from the AEEEM dataset. We will be able to
confirm the correctness of our strategy with additional experiments on different datasets.
Furthermore, we cannot claim that our findings are broadly applicable. To ensure that the
results of this study can be applied to a larger population, future replication is required.

6.3. Construct Validity

Construct validity pertains to the design of the study and its ability to accurately
represent the true objective of the investigation. We have used a methodically related work
evaluation technique to combat these hazards to our study design. We double-checked and
made multiple adjustments to the research questions to make sure the topic was pertinent to
the study’s objective. The metrics taken into consideration can also endanger our research.
We use static code metrics exclusively for fault prediction. As a result, we are unable to
say if our findings apply to additional parameters. Nevertheless, much earlier research
also commonly used static code metrics. Further research on performance measures is
planned. The creation of ML models is another danger. We looked at a number of factors
that might have affected the study, such as feature selection, data pre-processing, data
balancing techniques, how to train the models, and which features to evaluate. However,
the methods used here are accurate enough to guarantee the validity of the study.

6.4. Conclusion Validity

The degree to which the research conclusion is derived in a reasonable manner is
referred to as conclusion validity. We conducted numerous experiments on sufficient
projects in this study to reduce the risk to the validity of the conclusions. As a result, the
outcomes derived from the collected experimental data should be statistically reliable.

7. Conclusions and Future Work

Defect prediction and quality assurance are critical in today’s quickly changing soft-
ware development environment to guarantee the stability and dependability of software
projects. Predicting errors across many software projects with accuracy and efficiency is
a major challenge in this industry. In order to improve the predictive performance of the
cross-project defect prediction (CPDP) model, we combined a variety of data preprocessing,
feature selection, data sampling, and modeling approaches in our study to propose a
comprehensive approach to addressing the difficulties associated with CPDP. To improve
the existing state-of-the-art approaches to predicting software defects, we proposed a novel
domain adaptive approach, which first integrates CFS-BFS and SMOTE-ENN to overcome
the domain adaptive problems related to data distribution differences and imbalance class,
enhancing the model’s performance and making it more robust and capable of handling
real-world software defect prediction scenarios. Furthermore, it optimizes LSTM with
Bi-GRU and Attention Mechanism to capture complex patterns and dependencies in the
data, while the attention layer provided insights into which features and instances are
most influential in making predictions. We conducted a number of tests on 10 publicly
available apache_lucene, equinox, eclipse_jdt_core, eclipse_pde_ui, and mylyn (AEEEM)
and predictor models in software engineering (PROMISE) datasets in order to assess the
efficacy of the suggested models, i.e., the baseline models, active learning-based method
(ALTRA), multi-source-based cross-project defect prediction method (MSCPDP), two-phase
feature importance amplification method (TFIA), domain adaptive kernel twin support
vector machines method (DA-KTSVMO), two-phase transfer learning method (TPTL), and
generative adversarial long-short term memory neural networks method (GB-CPDP) and
the outcomes were contrasted. According to our findings, the suggested model outper-

Algorithms 2024, 17, 175 23 of 25

forms the baseline models by 33.03%, 29.15% and 1.48% in terms of F1-measure and by
16.32%, 34.41% and 3.59% in terms of Area Under the Curve (AUC) on the AEEEM dataset,
while on the PROMISE dataset it enhances the baseline model F1-measure by 42.60%,
32.00% and 25.10% and AUC by 34.90%, 27.80% and 12.96% on the feature-selected and
balanced datasets. Future studies and advancements have multiple directions to pursue.
The suggested model can be strengthened and made more robust and generalizable by
validating its performance on additional datasets. Secondly, since SCAG-LSTM is lim-
ited to one-to-one prediction, we could attempt research on the many-to-one scenarios in
the future.

Author Contributions: Conceptualization, K.J., R.S., M.A. and M.A.W.; Data curation, M.A. and
M.A.W.; Formal analysis, K.J.; Funding acquisition, M.A.; Investigation, R.S.; Methodology, K.J.,
R.S. and M.A.; Project administration, M.A.W.; Resources, M.A.; Software, K.J.; Supervision, R.S.;
Validation, K.J., R.S., M.A. and M.A.W.; Visualization, M.A.W.; Writing—original draft, K.J.; Writing—
review and editing, R.S., M.A. and M.A.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by EIAS Data Science and Blockchain Lab, Prince Sultan
University. Authors would like to thank Prince Sultan University for paying the APC of this article.

Data Availability Statement: Data can be shared upon reasonable request from corresponding author.

Acknowledgments: The authors would like to thank Prince Sultan University for its support.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Khan, M.A.; Elmitwally, N.S.; Abbas, S.; Aftab, S.; Ahmad, M.; Fayaz, M.; Khan, F. Software defect prediction using artificial

neural networks: A systematic literature review. Sci. Program. 2022, 2022, 2117339. [CrossRef]
2. Alenezi, M. Internal quality evolution of open-source software systems. Appl. Sci. 2021, 11, 5690. [CrossRef]
3. Aljumah, S.; Berriche, L. Bi-LSTM-based neural source code summarization. Appl. Sci. 2022, 12, 12587. [CrossRef]
4. Alqmase, M.; Alshayeb, M.; Ghouti, L. Quality assessment framework to rank software projects. Autom. Softw. Eng. 2022, 29, 41.

[CrossRef]
5. Akimova, E.N.; Bersenev, A.Y.; Deikov, A.A.; Kobylkin, K.S.; Konygin, A.V.; Mezentsev, I.P.; Misilov, V.E. A survey on software

defect prediction using deep learning. Mathematics 2021, 9, 1180. [CrossRef]
6. Thota, M.K.; Shajin, F.H.; Rajesh, P. Survey on software defect prediction techniques. Int. J. Appl. Sci. Eng. 2020, 17, 331–344.
7. Matloob, F.; Ghazal, T.M.; Taleb, N.; Aftab, S.; Ahmad, M.; Khan, M.A.; Abbas, S.; Soomro, T.R. Software defect prediction using

ensemble learning: A systematic literature review. IEEE Access 2021, 9, 98754–98771. [CrossRef]
8. Gong, L.N.; Jiang, S.J.; Jiang, L. Research progress of software defect prediction. J. Softw. 2019, 30, 3090–3114.
9. Pal, S.; Sillitti, A. A classification of software defect prediction models. In Proceedings of the 2021 International Conference

Nonlinearity, Information and Robotics (NIR), Innopolis, Russia, 26–29 August 2021; pp. 1–6.
10. Pan, C.; Lu, M.; Xu, B.; Gao, H. An improved CNN model for within-project software defect prediction. Appl. Sci. 2019, 9, 2138.

[CrossRef]
11. Bhat, N.A.; Farooq, S.U. An empirical evaluation of defect prediction approaches in within-project and cross-project context.

Softw. Qual. J. 2023, 31, 917–946. [CrossRef]
12. Malhotra, R.; Khan, A.A.; Khera, A. Simplify Your Neural Networks: An Empirical Study on Cross-Project Defect Prediction. In

Proceedings of the Computer Networks and Inventive Communication Technologies: Fourth ICCNCT 2021, Coimbatore, India,
1–2 April 2022; pp. 85–98.

13. Vescan, A.; Găceanu, R. Cross-Project Defect Prediction using Supervised and Unsupervised Learning: A Replication Study. In
Proceedings of the 2023 27th International Conference on System Theory, Control and Computing (ICSTCC), Timisoara, Romania,
11–13 October 2023; pp. 440–447.

14. Sasankar, P.; Sakarkar, G. Cross-Project Defect Prediction: Leveraging Knowledge Transfer for Improved Software Qual-
ity Assurance. In Proceedings of the International Conference on Electrical and Electronics Engineering, Barcelona, Spain,
19–21 August 2023; pp. 291–303.

15. Jing, X.-Y.; Chen, H.; Xu, B. Cross-Project Defect Prediction. In Intelligent Software Defect Prediction; Springer: Berlin/Heidelberg,
Germany, 2024; pp. 35–63.

16. Bala, Y.Z.; Samat, P.A.; Sharif, K.Y.; Manshor, N. Cross-project software defect prediction through multiple learning. Bull. Electr.
Eng. Inform. 2024, 13, 2027–2035. [CrossRef]

17. Tao, H.; Fu, L.; Cao, Q.; Niu, X.; Chen, H.; Shang, S.; Xian, Y. Cross-Project Defect Prediction Using Transfer Learning with Long
Short-Term Memory Networks. IET Softw. 2024, 2024, 5550801. [CrossRef]

https://doi.org/10.1155/2022/2117339
https://doi.org/10.3390/app11125690
https://doi.org/10.3390/app122412587
https://doi.org/10.1007/s10515-022-00342-0
https://doi.org/10.3390/math9111180
https://doi.org/10.1109/ACCESS.2021.3095559
https://doi.org/10.3390/app9102138
https://doi.org/10.1007/s11219-023-09615-7
https://doi.org/10.11591/eei.v13i3.5258
https://doi.org/10.1049/2024/5550801

Algorithms 2024, 17, 175 24 of 25

18. Fan, X.; Zhang, S.; Wu, K.; Zheng, W.; Ge, Y. Cross-Project Software Defect Prediction Based on SMOTE and Deep Canonical
Correlation Analysis. Comput. Mater. Contin. 2024, 78, 1687–1711. [CrossRef]

19. Saeed, M.S.; Saleem, M. Cross Project Software Defect Prediction Using Machine Learning: A Review. Int. J. Comput. Innov. Sci.
2023, 2, 35–52.

20. Malhotra, R.; Meena, S. Empirical validation of feature selection techniques for cross-project defect prediction. Int. J. Syst. Assur.
Eng. Manag. 2023, 1–13. [CrossRef]

21. Xing, Y.; Qian, X.; Guan, Y.; Yang, B.; Zhang, Y. Cross-project defect prediction based on G-LSTM model. Pattern Recognit. Lett.
2022, 160, 50–57. [CrossRef]

22. Pandey, S.K.; Tripathi, A.K. Class imbalance issue in software defect prediction models by various machine learning techniques:
An empirical study. In Proceedings of the 2021 8th International Conference on Smart Computing and Communications (ICSCC),
Kochi, India, 1–3 July 2021.

23. Goel, L.; Sharma, M.; Khatri, S.K.; Damodaran, D. Cross-project defect prediction using data sampling for class imbalance
learning: An empirical study. Int. J. Parallel Emergent Distrib. Syst. 2021, 36, 130–143. [CrossRef]

24. Xing, Y.; Lin, W.; Lin, X.; Yang, B.; Tan, Z. Cross-project defect prediction based on two-phase feature importance amplification.
Comput. Intell. Neurosci. 2022, 2022, 2320447. [CrossRef] [PubMed]

25. Goel, L.; Nandal, N.; Gupta, S. An optimized approach for class imbalance problem in heterogeneous cross project defect
prediction. F1000Research 2022, 11, 1060. [CrossRef]

26. Nevendra, M.; Singh, P. Cross-Project Defect Prediction with Metrics Selection and Balancing Approach. Appl. Comput. Syst. 2022,
27, 137–148. [CrossRef]

27. Jin, C. Cross-project software defect prediction based on domain adaptation learning and optimization. Expert Syst. Appl. 2021,
171, 114637. [CrossRef]

28. Sun, Z.; Li, J.; Sun, H.; He, L. CFPS: Collaborative filtering based source projects selection for cross-project defect prediction. Appl.
Soft Comput. 2021, 99, 106940. [CrossRef]

29. Saeed, M.S. Role of Feature Selection in Cross Project Software Defect Prediction—A Review. Int. J. Comput. Inf. Manuf. (IJCIM)
2023, 3, 37–56.

30. Khatri, Y.; Singh, S.K. An effective feature selection based cross-project defect prediction model for software quality improvement.
Int. J. Syst. Assur. Eng. Manag. 2023, 14 (Suppl. S1), 154–172. [CrossRef]

31. Liu, C.; Yang, D.; Xia, X.; Yan, M.; Zhang, X. A two-phase transfer learning model for cross-project defect prediction. Inf. Softw.
Technol. 2019, 107, 125–136. [CrossRef]

32. Xu, Z.; Li, L.; Yan, M.; Liu, J.; Luo, X.; Grundy, J.; Zhang, Y.; Zhang, X. A comprehensive comparative study of clustering-based
unsupervised defect prediction models. J. Syst. Softw. 2021, 172, 110862. [CrossRef]

33. Ni, C.; Liu, W.-S.; Chen, X.; Gu, Q.; Chen, D.-X.; Huang, Q.-G. A cluster based feature selection method for cross-project software
defect prediction. J. Comput. Sci. Technol. 2017, 32, 1090–1107. [CrossRef]

34. Abdu, A.; Zhai, Z.; Abdo, H.A.; Algabri, R.; Lee, S. Graph-Based Feature Learning for Cross-Project Software Defect Prediction.
Comput. Mater. Contin. 2023, 77, 161–180. [CrossRef]

35. Goyal, S. Handling class-imbalance with KNN (neighbourhood) under-sampling for software defect prediction. Artif. Intell. Rev.
2022, 55, 2023–2064. [CrossRef]

36. Kaur, H.; Pannu, H.S.; Malhi, A.K. A systematic review on imbalanced data challenges in machine learning: Applications and
solutions. ACM Comput. Surv. (CSUR) 2019, 52, 1–36. [CrossRef]

37. Bennin, K.E.; Keung, J.; Phannachitta, P.; Monden, A.; Mensah, S. Mahakil: Diversity based oversampling approach to alleviate
the class imbalance issue in software defect prediction. IEEE Trans. Softw. Eng. 2017, 44, 534–550. [CrossRef]

38. Vuttipittayamongkol, P.; Elyan, E. Neighbourhood-based undersampling approach for handling imbalanced and overlapped
data. Inf. Sci. 2020, 509, 47–70. [CrossRef]

39. Gong, L.; Jiang, S.; Jiang, L. An improved transfer adaptive boosting approach for mixed-project defect prediction. J. Softw. Evol.
Process 2019, 31, e2172. [CrossRef]

40. Kumar, A.; Kaur, A.; Singh, P.; Driss, M.; Boulila, W. Efficient Multiclass Classification Using Feature Selection in High-Dimensional
Datasets. Electronics 2023, 12, 2290. [CrossRef]

41. Yuan, Z.; Chen, X.; Cui, Z.; Mu, Y. ALTRA: Cross-project software defect prediction via active learning and tradaboost. IEEE
Access 2020, 8, 30037–30049. [CrossRef]

42. Rao, K.N.; Reddy, C.S. A novel under sampling strategy for efficient software defect analysis of skewed distributed data. Evol.
Syst. 2020, 11, 119–131. [CrossRef]

43. Fan, G.; Diao, X.; Yu, H.; Yang, K.; Chen, L. Software defect prediction via attention-based recurrent neural network. Sci. Program.
2019, 2019, 6230953. [CrossRef]

44. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

45. Tomek, I. An Experiment with the Edited Nearest-Nieghbor Rule. IEEE Trans. Syst. Man Cybern 1976, 6, 448–452.
46. Farid, A.B.; Fathy, E.M.; Eldin, A.S.; Abd-Elmegid, L.A. Software defect prediction using hybrid model (CBIL) of convolutional

neural network (CNN) and bidirectional long short-term memory (Bi-LSTM). PeerJ Comput. Sci. 2021, 7, e739. [CrossRef]

https://doi.org/10.32604/cmc.2023.046187
https://doi.org/10.1007/s13198-023-02051-7
https://doi.org/10.1016/j.patrec.2022.04.039
https://doi.org/10.1080/17445760.2019.1650039
https://doi.org/10.1155/2022/2320447
https://www.ncbi.nlm.nih.gov/pubmed/35479605
https://doi.org/10.12688/f1000research.123616.1
https://doi.org/10.2478/acss-2022-0015
https://doi.org/10.1016/j.eswa.2021.114637
https://doi.org/10.1016/j.asoc.2020.106940
https://doi.org/10.1007/s13198-022-01831-x
https://doi.org/10.1016/j.infsof.2018.11.005
https://doi.org/10.1016/j.jss.2020.110862
https://doi.org/10.1007/s11390-017-1785-0
https://doi.org/10.32604/cmc.2023.043680
https://doi.org/10.1007/s10462-021-10044-w
https://doi.org/10.1145/3343440
https://doi.org/10.1109/TSE.2017.2731766
https://doi.org/10.1016/j.ins.2019.08.062
https://doi.org/10.1002/smr.2172
https://doi.org/10.3390/electronics12102290
https://doi.org/10.1109/ACCESS.2020.2972644
https://doi.org/10.1007/s12530-018-9261-9
https://doi.org/10.1155/2019/6230953
https://doi.org/10.1613/jair.953
https://doi.org/10.7717/peerj-cs.739

Algorithms 2024, 17, 175 25 of 25

47. Uddin, M.N.; Li, B.; Ali, Z.; Kefalas, P.; Khan, I.; Zada, I. Software defect prediction employing BiLSTM and BERT-based semantic
feature. Soft Comput. 2022, 26, 7877–7891. [CrossRef]

48. D’Ambros, M.; Lanza, M.; Robbes, R. An extensive comparison of bug prediction approaches. In Proceedings of the 2010 7th IEEE
Working Conference on Mining Software Repositories (MSR 2010), Cape Town, South Africa, 2–3 May 2010; pp. 31–41.

49. Jureczko, M.; Madeyski, L. Towards identifying software project clusters with regard to defect prediction. In Proceedings of the
6th International Conference on Predictive Models in Software Engineering, Timis, oara, Romania, 12–13 September 2010; pp. 1–10.

50. Zhao, Y.; Zhu, Y.; Yu, Q.; Chen, X. Cross-project defect prediction considering multiple data distribution simultaneously. Symmetry
2022, 14, 401. [CrossRef]

51. Sun, Z.; Zhang, J.; Sun, H.; Zhu, X. Collaborative filtering based recommendation of sampling methods for software defect
prediction. Appl. Soft Comput. 2020, 90, 106163. [CrossRef]

52. Palatse, V.G. Exploring principal component analysis in defect prediction: A survey. Perspect. Commun. Embed.-Syst. Signal-
Process.-PiCES 2020, 4, 56–63.

53. Lei, T.; Xue, J.; Wang, Y.; Niu, Z.; Shi, Z.; Zhang, Y. WCM-WTrA: A Cross-Project Defect Prediction Method Based on Feature
Selection and Distance-Weight Transfer Learning. Chin. J. Electron. 2022, 31, 354–366. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00500-022-06830-5
https://doi.org/10.3390/sym14020401
https://doi.org/10.1016/j.asoc.2020.106163
https://doi.org/10.1049/cje.2021.00.119

	Introduction
	Related Work
	Cross-Project Defect Prediction
	Domain Adaptation

	Methodology
	Proposed Approach Framework
	Proposed Features Selection Approach
	Proposed Imbalanced Learning Approach
	Model Building

	Experimental Setups
	Benchmark Datasets
	Evaluation Metrics
	Baseline Models
	Research Questions

	Experimental Results
	Research Question—RQ1
	Research Question—RQ2
	Research Question—RQ3

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusions and Future Work
	References

