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Abstract: The task of tree species classification through deep learning has been challenging for the
forestry community, and the lack of standardized datasets has hindered further progress. Our work
presents a solution in the form of a large bark image dataset called CentralBark, which enhances
the deep learning-based tree species classification. Additionally, we have laid out an efficient and
repeatable data collection protocol to assist future works in an organized manner. The dataset
contains images of 25 central hardwood and Appalachian region tree species, with over 19,000 images
of varying diameters, light, and moisture conditions. We tested 25 species: elm, oak, American
basswood, American beech, American elm, American sycamore, bitternut hickory, black cherry, black
locust, black oak, black walnut, eastern cottonwood, hackberry, honey locust, northern red oak, Ohio
buckeye, Osage-orange, pignut hickory, sassafras, shagbark hickory silver maple, slippery elm, sugar
maple, sweetgum, white ash, white oak, and yellow poplar. Our experiment involved testing three
different models to assess the feasibility of species classification using unaltered and uncropped
images during the species-classification training process. We achieved an overall accuracy of 83.21%
using the EfficientNet-b3 model, which was the best of the three models (EfficientNet-b3, ResNet-50,
and MobileNet-V3-small), and an average accuracy of 80.23%.

Keywords: dendrology; bark; artificial intelligence; deep learning

1. Introduction

Proper tree species identification is a crucial tool for sustainable forest management,
climate change mitigation, and biodiversity conservation. By accurately identifying trees,
practitioners, landowners, and the general public can better understand the current state
of a forest ecosystem and implement appropriate management [1]. However, manual
identification is tedious, and there are multiple methods for identifying trees through leaves,
buds, fruit, and bark observation. Although leaves are commonly used for identification
in the spring, summer, and early fall seasons, their reliability decreases greatly once they
senesce and fall off the trees for the winter. Using fruit or flowers is limited, as once they fall,
it becomes difficult to attribute them to a particular tree. Another way to identify trees is
the use of buds in the spring, but buds are hard to reach for tall trees and slight differences
within species may be difficult to identify from a distance [2]. By far, the most reliable and
well-agreed-upon method to identify trees is by using the bark, which is accessible and
does not vary too much throughout the year. Tree bark exhibits various patterns, shapes,
and textures that make for a more reliable identification method [3]. However, much like
the twig buds, a trained eye is required to identify trees accurately based on the bark.

Foresters, botanists, and other professionals involved in forest management need
to have a solid understanding of these methods to accurately identify tree species and
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make informed decisions regarding forest management. By doing so, they can ensure the
long-term health and sustainability of forest ecosystems.

Over the past two decades, various image-processing studies have attempted to im-
prove the accuracy of tree identification based on bark by treating it as a texture-recognition
task [4]. Typically, these studies employ a two-step method, which involves extracting
features from images and then feeding them into linear classifiers, e.g., Support Vector Ma-
chine, or non-linear classifiers, e.g., Multilayer Perceptron. Some of these methods include
Gabor filter banks as proposed by Chi et al. [5]; co-occurrence matrices; histogram and
auto-correlation methods, as applied by Wan et al. [6]; and the Grey-Level Co-occurrence
Matrix with Long Connection Length Emphasis, as employed by Song et al. [7]. Newer
studies, namely Kim et al. [8], have used state-of-the-art computer-vision class activation
mapping (CAM) to differentiate and classify bark patterns and further understand the
nested groups of parameters in CNNs. Other studies have added color features, such as
Wan et al. [6], or utilized handcrafted features, such as the shape, color, structure, and
orientation of bark with the help of Canny filters, hue histograms, and Gabor filters, as
proposed by Ratajczak et al. [9]. Boudra et al. [10] introduced the Statistical Macro Binary
Pattern (SMBP), a variant of the Local Binary Pattern that represents the intensity dis-
tribution within the macrostructure of large spatial support by one macro pattern code.
Fekri-Ershad [11] used Local Ternary Patterns and fed them to the Multilayer Percep-
tron, while Remes and Haindl [12] introduced rotationally invariant multispectral textural
features and reported 90.4% accuracy on BarkNet [3] using the nearest neighbor classifier.

With the help of artificial intelligence (AI), specifically deep learning methods, and
Convolutional Neural Networks (CNNs), Lecun et al. [13] demonstrated that accurate
identification can be achieved by providing a quantitative approach to exploring unique
features in each tree’s bark. Deep learning is a machine learning technique that teaches
computers to learn what comes naturally to humans. In this case, teaching computers to
become as experienced as professional foresters is the overarching goal. Several studies,
e.g., [1,3,14–16], have successfully used CNNs for bark identification, reporting equally
good or better accuracy compared to texture classification methods, with the added benefits
of easy implementation and end-to-end training.

Deep learning methods require a large dataset of labeled bark images to be effective.
A few datasets have been created, such as BarkTex [17], TRUNK12 [9], and BarkNet 1.0 [3].
These tree bark datasets contain bark images of hardwood species throughout the US,
Canada, and parts of Europe, to supplement the deep learning methods, but each dataset
varies in its usefulness due to its availability and the content of similar species.

The objective of our project is to develop AI tools for tree bark identification, allowing
people without extensive professional training to identify trees and allowing for the au-
tomation of the tree identification process—a task that is greatly in demand in the field of
digital forestry. An important step in this effort is to develop a dataset of annotated images
that is then used to train the AI model. While a handful of regional datasets, although
limited by a small number of species and images, already exist, we undertook the task of
creating one the most comprehensive databases of bark images of hardwood trees in the
eastern United States.

We aimed to create a dataset of raw images with zero cropping and focused on the US
Central Hardwood region and parts of the Central Appalachian regions (Indiana, Illinois,
and Ohio). The creation of this dataset includes 25 different hardwood species. These
species are a combination of the most commercially valuable species as well as the most
common species that foresters may encounter within the region. Along with the species,
the diameter at breast height (DBH) recorded in inches, the moisture condition (wet vs.
dry) of the bark at the time, GPS location, the time, and the date stamp, along with camera
metadata, were captured. While the related works provide very good results, our goal is to
improve deep learning identification efforts and adapt them to US hardwood species while
also potentially learning more about the forests in which the trees reside.
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2. Materials and Methods
2.1. Study Area

The data collection areas primarily comprised state-owned forests and parks located
in Indiana, Illinois, and Ohio, with some recreational parks also serving as data collection
areas. This allowed us to capture a wide range of light conditions, as public parks typically
have more open environments that allow for more light to hit each tree.

We selected forest sites based on the forest type and similarity of the desired species
on the dataset list to the species composition in the area (Figure 1). We also spread out
the data collection sites to ensure variation in the bark attributes within species, as some
species are known to exhibit different characteristics based on their geographic locations
and microenvironments. Furthermore, it was necessary to spread out the data collection
locations since some species in the dataset only grow in certain portions of the region of
interest. For example, sweetgum is a species that grows prolifically in southern Indiana
due to the abundance of hills that provide a lowland habitat.
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represents where large amounts of data were collected. The size of the clusters represents the amount
of data collected at each general location.

2.2. Image Collection

We chose 25 tree species commonly found in the Central Hardwood and Appalachian
regions. Our goal was to collect data on 250 individual trees per species. With 4 images per
tree, we collected nearly 1000 images per species. For each species, the first 150 trees were
identified, photographed, and labeled by a trained dendrologist. The remaining 100 trees of
each species were collected by either the same trained dendrologist or other trained forestry
practitioners, including forestry graduate students, students in dendrology class, and state
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foresters. Labels for these images were then verified by the trained dendrologist. We se-
lected forest sites based on the forest type and similarity of the desired species on the dataset
list to the species composition in the area. We captured and recorded images in various
seasons, weather, and light conditions. To capture the images, a combination of smartphone
cameras, including iPhones 10, 11, and 14 Pro, were used. The ArcGIS Fieldmaps app was
used for capturing tree locations and general data management. Figure 2 shows the final
image results of the following data collection protocol. Furthermore, the data collection
protocol is outlined in the following steps:

• Identify the tree species and record its GPS location in the app.
• Record the diameter at breast height to the nearest inch, ensuring that it is greater than

the 8-inch diameter threshold.
• Attach a bright color tag of known size (1′′ × 3′′) to a tree face prior to taking a picture

as a reference for the later measurement of the DBH of the tree using AI.
• Take the first photo on the north face of the tree and repeat the process, moving

counterclockwise (north, west, south, east) until the data collector returns to the initial
starting position.

• Ensure the entire tree is in view of the frame, and limit as much background as
possible.

• Record the bark moisture condition as either wet or dry.
• Data collection is spread over four seasons of the year and different times of the day

to include a variety of conditions.
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Figure 2. Depicted above is the result of one sample data point from our data collection protocol.
Starting on the north face of a (Prunus serotina) black cherry and moving counterclockwise, an image
is captured in each cardinal direction. Before capturing each image, a colored tag (1′′ × 3′′) is inserted
into the tree as a reference for DBH measurement.

2.3. Data Description

We captured 25 species, 4697 individual trees, and 19,147 images for this study. Table 1
lists the dataset statistics we used to conduct the experiment in this paper. Due to the
limited occurrence and distribution of some species within the region and study time
constraints, we did not reach our initial goal of 1000 images for all species.
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Table 1. Species list and dataset statistics for the CentralBark dataset. The #Trees column indicates
how many individual trees were used while capturing the images, while the #Images column indicates
the total number of training data images captured for each species.

Species Common Name #Trees #Images

1 Tilia americana American basswood 67 283

2 Fagus Grandifolia American beech 280 1.132

3 Ulmus Americana American elm 156 640

4 Platanus occidentalis American sycamore 239 981

5 Cary cordiformis Bitternut hickory 149 609

6 Prunus serotina Black cherry 284 1.173

7 Robinia pseudoacacia Black locust 154 631

8 Quercus velutina Black oak 211 843

9 Juglans nigra Black walnut 286 1.174

10 Populus deltoides Eastern cottonwood 279 1161

11 Celtis occidentalis Hackberry 202 846

12 Gleditsia triacanthos Honeylocust 36 171

13 Quercus rubra Northern red oak 278 1158

14 Aesculus glabra Ohio buckeye 32 155

15 Maclura pomifera Osage-orange 154 616

16 Carya glabra Pignut hickory 142 574

17 Sassafras albidum Sassafras 96 400

18 Carya ovata Shagbark hickory 278 1156

19 Acer saccharinum Silver maple 150 642

20 Ulmus rubra Slippery elm 27 121

21 Acer saccharum Sugar maple 290 1238

22 Liquidambar styraciflua Sweetgum 48 201

23 Fraxinus americana White ash 150 610

24 Quercus alba White oak 322 1327

25 Liriodendron tulipifera Yellow poplar 315 1305

Total 4697 19,147

2.4. Deep Neural Model for the Tree Species from Bark

In recent studies based on Convolutional Neural Networks (CNNs), researchers
demonstrated that accurate identification can be achieved by utilizing a quantitative ap-
proach to exploring unique features in each tree’s bark. Several studies have successfully
used CNNs for bark identification, reporting equally good or better accuracy when com-
pared to texture classification methods, with the added benefit of easy implementation and
end-to-end training. Deep learning methods require a large dataset of labeled bark images
to be effective. A few datasets have already been created, such as BarkTex, TRUNK12, and
BarkNet. They contain bark images of hardwood species throughout the US, Canada, and
parts of Europe to supplement the deep learning methods, but each dataset varies in its
usefulness due to its availability and content of similar species. The datasets were upscaled
in the number of images by cropping them. However, this does not improve variability, as
the images are from the same trees.
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2.5. CentralBark Dataset and Deep Neural Models

We selected CNNs EfficientNet-b3 [18], ResNet-50 [19], and Mobilenet-V3-small [20]
to conduct the baseline study and test the effectiveness of our dataset in bark identifica-
tion. ResNet-50 and EfficientNet-b3 have 25.55M and 12.23M parameters, respectively.
MobileNet-V3-small is a lighter architecture that reduces parameter space to 2.54M.

During the training of all our models, we used the Adam optimizer [21] with a learning
rate of 0.01 and cross-entropy loss. We also incorporated standard computer-vision data-
augmentation techniques such as image rotation, flipping, and grayscale transformations.
We trained our models using a mini-batch size of 32 and an input size of 224 × 224, to
enhance their performance and robustness. To demonstrate the effectiveness of our dataset,
during the testing phase, we conducted center cropping of the test images and then rescaled
them to the desired input size. By doing so, we were able to evaluate the base capability of
our dataset.

We employed a stratified five-fold cross-validation method without overlapping,
where 20% of the data was reserved for testing in each fold. For every experiment, we used
four of the folds (80% of the data) for training, with 70% of those data used as the training
set and 10% used as the validation set. The remaining fold (20% of the data) was used as
the test set. We split the data at the tree level. Our system was implemented on a desktop
computer equipped with an Intel Core i7-8700K CPU @ 3.70 GHz ×12, 32 GB of memory,
and an NVIDIA GeForce RTX 1080 Ti GPU. We used PyTorch 1.13 as the framework to
implement all the models.

3. Results

We have demonstrated the capability of EfficientNet-b3 to perform accurate species
identification from bark images of 25 Central Hardwood and Appalachian region species.
Using our dataset, we achieved 83.21% overall accuracy with the EfficientNet-b3 model.
EfficientNet-b3 has several architectural advantages compared to ResNet and MobileNet-v2
that likely contribute to its superior performance on many tasks.

In addition to the success of the CNN model, we also created a large and compre-
hensive dataset named CentralBark, with over 19,000 images. This dataset can be used to
further the research on bark classification for forestry and natural resources and AI learning
applications, as there exists an urgent need for large, standardized bark image datasets for
tree bark classification.

Table 2 shows each model’s performance by species from our dataset. We used micro-
average accuracy, which treats each sample as the same weight when averaged. The
EfficientNet-b3 architecture achieved the highest accuracy with a score of 83.21%. The
second-best performing model was ResNet-50, with an accuracy score of 81.37%, followed
by MobileNet-V3-small, with a score of 76.11%. It is worth noting that the performance
order of these models is consistent with their performance on the ImageNet dataset [22].

Table 2. CentralBark dataset performance vs. all three models (EfficientNet-b3, ResNet-50, and
MobileNet-V3-small).

Species Common Name EfficientNet-b3
(Accuracy %)

ResNet-50
(Accuracy %)

MobileNet-V3-Small
(Accuracy %)

Tilia americana American basswood 65.72 53.00 44.88

Fagus grandifolia American beech 96.02 93.11 95.67

Ulmus americana American elm 69.53 70.47 68.59

Platanus occidentalis American sycamore 90.52 92.35 86.75

Cary cordiformis Bitternut hickory 63.38 68.97 55.17

Prunus americana Black cherry 75.70 74.17 71.44

Robinia pseudoacacia Black locust 89.22 88.91 86.21
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Table 2. Cont.

Species Common Name EfficientNet-b3
(Accuracy %)

ResNet-50
(Accuracy %)

MobileNet-V3-Small
(Accuracy %)

Quercus velutina Black oak 87.66 84.82 75.56

Juglans nigra Black walnut 81.18 75.04 63.2

Populus deltoides Eastern cottonwood 87.17 82.26 75.88

Celtis occidentalis Hackberry 75.53 70.57 69.74

Gleditsia triacanthos Honeylocust 61.99 42.11 53.8

Quercus rubra Northern red oak 91.28 86.53 85.75

Aesculus glabra Ohio buckeye 61.29 60.00 55.48

Maclura pomifera Osage-orange 95.94 93.18 94.32

Carya glabra Pignut hickory 84.32 87.46 75.61

Sassafras albidum Sassafras 72.75 71.00 71.25

Carya ovata Shagbark hickory 88.06 85.12 83.56

Acer saccharinum Silver maple 80.84 82.09 69.94

Ulmus rubra Slippery elm 51.24 46.28 33.88

Acer saccharum Sugar maple 85.14 83.2 78.84

Liquidamber styraciflua Sweetgum 58.21 51.74 48.26

Fraxinus americana White ash 74.43 73.93 67.7

Quercus alba White oak 87.49 90.13 69.4

Liriodendron tulipifera Yellow poplar 87.28 87.66 89.73

Overall 83.21 81.37 76.11

The confusion matrix in Figure 3 reveals that some tree species are incorrectly identified
by the EfficientNet-b3 model, resulting in false positives. This inaccuracy can be attributed
to three main factors: the diameter at breast height (DBH) or the age of the tree, the color
and physical appearance of the bark, and subtle differences within species. For instance,
when trees are smaller in diameter, species like sugar maple (Acer saccharum) and hackberry
(Celtis occidentalis) have very similar bark. Hackberry can be identified by its smooth bark
when young, but it soon develops warty growths as the tree matures [23]. Consequently,
when young, sugar maples appear smooth, and then, as they mature, the ridges and furrows
become more pronounced. Because of the similarities between the two species, we ran into
inaccuracies in our confusion matrix. However, we found that with the increasing diameter
(age), the models were able to differentiate between them with greater results. Similarly,
black cherry (Prunus serotina) and white oak (Quercus alba) can be confused because of their
shared blocky and flaky bark pattern, despite their different morphology. Also, the bark of
cherry tends to bleach when exposed to sunlight, changing its shade from a darker gray to
a lighter one, which can further complicate identification.

Moreover, the differences in bark appearance within species are another significant
source of confusion, as observed in species such as American elm (Ulmus americana)
vs. slippery elm (Ulmus rubra) or pignut hickory (Carya glabra) vs. bitternut hickory
(Carya cordiformis). There are often minute differences in the bark pattern between species
of the same genus, such as the interlacing pattern in the tight bark of pignut and bitter-
nut hickory. Professional foresters identify these species based on touch. Wojtech and
Wessels [24] point out that the American elm has a mottled, grayish brown, and spongy
bark that can be compressed with the thumb, while the slippery elm is firmer and not easily
compressed. However, this kind of tactile input cannot be observed by AI without human
intervention. To improve accuracy, AI needs more data on these subtle differences within
species.
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4. Discussion

We found that EfficientNet-b3 has several architectural advantages compared to
ResNet and MobileNet-v2 that likely contribute to its superior performance on many
tasks. First, EfficientNet uses a compound scaling method that jointly scales the network
width, depth, and resolution, allowing for a more optimal allocation of resources. This
balanced scaling approach enables EfficientNet to achieve better accuracy and efficiency.
Additionally, EfficientNet employs MBConv (Mobile Inverted Bottleneck Conv) blocks,
which are a more efficient version of the bottleneck blocks used in ResNet. MBConv blocks
use depth-wise separable convolutions and squeeze-and-excitation (SE) modules, which
help improve the network’s representational power while keeping the computational cost
low. EfficientNet-b3 also has a larger receptive field compared to ResNet and MobileNet-v2
due to its deeper architecture and the use of larger kernel sizes in the early layers. This
allows the network to capture more contextual information, which can be beneficial for cer-
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tain tasks. Finally, EfficientNet is designed to maximize accuracy for a given computational
budget, allowing it to achieve higher accuracy with fewer parameters compared to ResNet
and MobileNet, making them more parameter-efficient.

One of the limitations we face with our dataset is that some of the images we collected
may not have bark texture throughout the entire area, as shown in Figure 4 in a sample
image of black oak (Quercus velutina). Additionally, there are cases where a single image
may contain multiple trees, making it difficult to isolate the bark texture of the target
tree. These limitations can potentially impact the performance of our model if we simply
perform center cropping and pass the processed image to the CNN classifier. The classifier
may become confused in such extreme cases, leading to inaccurate classification results.
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Furthermore, Figure 5 shows the relationship between the sample data size and the
classification accuracy. Species with larger amounts of data generally perform better with
each of the three models we used in our experiments. In our dataset we were able to
capture ample amounts of images for species that are generalists, ones that grow in many
different types of habitats, making searching for them relatively easy. Species that have
lower classification accuracy such as sweetgum do not have nearly as much sample data as
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they require a very specific type of habitat or location making them harder to find in our
region of interest.
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Another challenge we faced in our dataset was that there was a weak correlation
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5. Conclusions

We created a large and comprehensive dataset while also laying a framework for an
easy and repeatable protocol that allows datasets to be created and added to. Our dataset
is unique as it contains many attributes other than just the images of the tree bark, such as
diameter, the moisture condition of tree bark, GPS location, images from different cardinal
directions, and different light conditions. This dataset can be used for further research on
bark classification for forestry and AI applications.

We also demonstrated the capability of our dataset against three different existing CNN
models against our own dataset, in performing accurate species identification from bark
images of 25 Central Hardwood and Appalachian region species. Using our dataset, we
achieved the following results: EfficientNet-b3 achieved an accuracy of 83.21%, ResNet50
achieved 81.37%, and MobileNet-V3-small achieved 76.11%. It is worth noting that we
did not crop or alter the images in any way, and the results were achieved using the raw
images.

To overcome the limitations of this study, more work is needed to improve our current
model, including the gathering of additional images. It is essential to ensure that the images
in the dataset are representative of the entire population of tree species, to avoid any bias
in the training of the model. We are currently collecting images in the north and south of
the eastern US to include more species and regional variations. Additionally, we need to
address the issue of defects, moisture conditions, and DBH, which can adversely affect
classification accuracy.

Future research can also focus on extending the scope of the dataset beyond the Central
Hardwood and Central Appalachian regions to include other regions around the world.
Through Purdue University’s Institute for Digital Forestry, we are expanding the database
to contain twice as many hardwood species and some softwoods. Species expansion and
data collection have begun in Maine and Georgia to represent the northeast and southeast
regions of the United States. This will enable us to identify and classify tree species across
various geographic locations, thereby making a significant contribution to the conservation
and management of forest resources and helping move AI further in the direction of
simplifying forestry-related tasks. Overall, our study has shown the potential of using deep
learning methods in bark identification and has laid the groundwork for further research
in this field.
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