
Citation: Delabre, M.;

El-Mabrouk, N. Synesth:

Comprehensive Syntenic

Reconciliation with Unsampled

Lineages. Algorithms 2024, 17, 186.

https://doi.org/10.3390/a17050186

Academic Editor: Frank Werner

Received: 14 March 2024

Revised: 20 April 2024

Accepted: 25 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Synesth: Comprehensive Syntenic Reconciliation with
Unsampled Lineages
Mattéo Delabre * and Nadia El-Mabrouk *

Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, 2920 Chemin de la Tour,
Montréal, QC H3T 1J4, Canada
* Correspondence: matteo.delabre@umontreal.ca (M.D.); mabrouk@iro.umontreal.ca (N.E.-M.)

Abstract: We present Synesth, the most comprehensive and flexible tool for tree reconciliation that
allows for events on syntenies (i.e., on sets of multiple genes), including duplications, transfers, fissions,
and transient events going through unsampled species. This model allows for building histories
that explicate the inconsistencies between a synteny tree and its associated species tree. We examine
the combinatorial properties of this extended reconciliation model and study various associated
parsimony problems. First, the infinite set of explicatory histories is reduced to a finite but exponential
set of Pareto-optimal histories (in terms of counts of each event type), then to a polynomial set of
Pareto-optimal event count vectors, and this eventually ends with minimum event cost histories
given an event cost function. An inductive characterization of the solution space using different
algebras for each granularity leads to efficient dynamic programming algorithms, ultimately ending
with an O(mn) time complexity algorithm for computing the cost of a minimum-cost history (m and
n: number of nodes in the input synteny and species trees). This time complexity matches that of
the fastest known algorithms for classical gene reconciliation with transfers. We show how Synesth
can be applied to infer Pareto-optimal evolutionary scenarios for CRISPR-Cas systems in a set of
bacterial genomes.

Keywords: tree reconciliation; algebraic dynamic programming; multi-objective optimization; horizontal
gene transfer; synteny; fission; unsampled lineages

1. Introduction

A gene/species tree reconciliation is an embedding of a gene tree explicating the topologi-
cal difference between the two trees through a sequence of events into its associated species
tree by shaping the gene family inside its host species. Gene/species tree reconciliation has
been widely studied since the 1980s [1]; first, by focusing on duplication and loss events and
then extending to horizontal gene transfers [2–4] and other events such as hybridization
or incomplete lineage sorting (see review in [5]). One of the major drawbacks of classical
reconciliation is that gene families are considered separately from one another, which is not
appropriate for genes organized in syntenies, i.e., colocalized genes likely to have evolved
together through segmental events.

Although some work has been achieved to infer the evolution of adjacencies [6], to
group individual events into segmental ones [7] or to minimize “duplication episodes” [8,9],
none of these methods are intended to explicitly look for evolutionary scenarios that
minimize segmental events. We presented the first algorithm that generalizes reconciliation
to synteny trees (i.e., with leaves representing syntenies rather than single genes) and
segmental events for the duplication–loss distance in [10], and we extended it to horizontal
transfers with SuperDTL in [11].

Here, we present Synesth (for SYNteny Evolution in SegmenTal Histories), an extended
syntenic reconciliation model accounting for fissions, whereby part of a synteny is de-
tached to another locus or species, in addition to losses, gains, duplications, and transfers.

Algorithms 2024, 17, 186. https://doi.org/10.3390/a17050186 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17050186
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-4561-683X
https://doi.org/10.3390/a17050186
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17050186?type=check_update&version=3

Algorithms 2024, 17, 186 2 of 16

Moreover, as the choice of the species included in a study—or, equivalently, the absence of
species that are not chosen, unsampled, or extinct—has a serious impact on the output of a
reconciliation algorithm [12–14], we account for the transfers going in species.

Among the infinite space of possible histories explicating the evolution of a synteny
tree inside a species tree when both are given as an input, we are interested in selecting
the most likely ones. A possible way to achieve this is by assigning costs (or probabilities)
to event types and selecting histories minimizing (resp. maximizing) the overall cost
(resp. probability). The resulting histories can vary significantly depending on the chosen
costs, which are usually challenging to determine and strongly depend on the taxa under
study [15,16]. Instead, our goal here is to provide an overview of the optimal histories for
all possible cost choices.

Our approach is to progressively subdivide the history space. First, the space is
reduced to a finite but exponential size set of Pareto-optimal histories (in terms of counts
of each event type), then to a polynomial size set of Pareto-optimal event count vectors,
and eventually to the single cost of an optimal history. We develop efficient and exact
algorithms to compute the optimal histories for each subdivision level using algebraic
dynamic programming. The inductive characterization of Pareto-optimal histories, which is
given in Section 5, leads to a polynomial–time dynamic programming algorithm to output
all Pareto-optimal vectors (Section 6), and then ultimately to an O(mn) time complexity
algorithm (where m and n are number of nodes in the input synteny and the species trees,
respectively) to output the cost of a minimum cost history (Section 7), thereby matching
the time complexity of the fastest algorithms for the classical duplication–transfer–loss
reconciliation [14], an implementation of the algorithm is available at: https://github.com/
UdeM-LBIT/superrec2/tree/algo2024 (accessed on 20 April 2024).

In Section 8, we apply Synesth to study the evolution of CRISPR-associated (Cas) gene
syntenies. In taking advantage of a previous work [15,17], we present a visualization of
the solution landscape as a partition of the space of cost choices into regions of equivalent
costs leading to the same set of optimal histories.

We first introduce the required notations in Section 2, the evolutionary model in
Section 3, and then we consider the solution space subdivision and optimization problems
in Section 4.

2. Preliminary Notation

All trees are considered rooted in this method. Given a tree T, we denote by r(T) its
root, by V(T) its node set, by L(T) ⊆ V(T) its leaf set, and we let I(T) = V(T)− L(T) be
the set of its internal nodes. A node v′ is an ancestor of v if v′ is on the path from r(T) to v,
and the parent p(v) of v, of which v is a child, directly precedes v on this path. Conversely, v
is a descendant of v′. This ancestor–descendant relation is denoted as ≤ and forms a partial
order on the nodes, in which the root is minimal and the leaves are maximal. Any pair of
nodes v and v′ not ordered by this relation are said to be separated, which we denote as
v ∥ v′. Notice that a node v is both an ancestor and a descendant of itself; whenever this
case needs to be excluded, we will talk about strict ancestors and strict descendants.

We denote by E(T) the set of edges of T, each of which are represented by a pair
of nodes (p(v), v). For any two nodes v and v′ of T, there exists a unique path from
v to v′ that we denote PT(v, v′) ⊆ E(T). The distance between v and v′ is defined as
DT(v, v′) = |PT(v, v′)|. Given a node v of T, T[v] is the subtree of T rooted at v (i.e.,
containing only the descendants of v). The lowest common ancestor (LCA) of a subset V of
nodes, denoted as lcaT(V), is the ancestor of all nodes in V, which is the most distant from
the root.

A tree T′ is said to be an extension of a tree T if T′ can be obtained from T by a sequence
of operations among the following: (1) Subdividing an edge (u, w) by adding a new node
v and replacing (u, w) by two edges (u, v) and (v, w); (2) Grafting a new node v below an
existing node u by adding the edge (u, v); (3) Rerooting the tree to a new node u by adding
the edge (u, r(T)).

https://github.com/UdeM-LBIT/superrec2/tree/algo2024
https://github.com/UdeM-LBIT/superrec2/tree/algo2024

Algorithms 2024, 17, 186 3 of 16

The set of children of any node v is denoted by ch(v). If |ch(v)| = 1, then v is said to
be unary and we denote its only child by vc. If |ch(v)| = 2, then it is said to be binary and,
unless specified otherwise, we denote its children by vℓ and vr in no particular order. A
binary tree is a tree where all internal (non-leaf) nodes are binary. If all internal nodes are
unary or binary, then the tree is partially binary.

If F is a set of gene families, then a synteny on F is a subset X ⊆ F , which represents
a group of genes assumed to have jointly evolved. Notice that we ignore the relative order
of genes in the genomic region, as well as the physical distance between genes and regions.
The genes of a synteny are considered to all belong to different gene families (i.e., repeated
gene families inside a synteny are forbidden); therefore, a gene is simply identified by the
family Γ ∈ F it belongs to.

A species tree S on a set Σ of species is a binary tree with a bijection between L(S)
and Σ. For a set of syntenies X , a synteny tree ⟨T, x, s⟩ is a tuple where T is a binary tree,
x : L(T) → X and s : L(T) → Σ are two functions, the second indicating the species to
which each synteny belongs.

Finally, the restriction of a function f to a subset A of its domain is denoted as f |A.

3. Evolutionary Histories for Syntenies

We model the evolution of syntenies through the following syntenic events: codiver-
gence with the host species (“Spe”), duplication of a synteny subset (“Dup”), fission of a
synteny (“Cut”), transfer of a duplicated or cut subset (resp. “TrDup” or “TrCut”), and
the gain or loss of a subset (“Gain”, “Loss”). Losses can be partial in the sense that only
a subset of genes in a synteny are lost. Evolutionary histories are the sequences of such
events, as formally defined below (see example in Figure 1).

Definition 1 (Evolutionary history for syntenies). A history H on a species tree S is a tuple
⟨H, e, x, s⟩, where H is a partially binary tree. Each node v ∈ V(H) is labeled with a species
s(v) ∈ V(S) and a synteny (i.e., a subset of gene families) x(v). Each internal node is additionally
labeled with an event e(v) ∈ E = {Spe, Dup, Cut, TrDup, TrCut, Gain, Loss} acting on x(v)
and s(v). These labels satisfy the following conditions:

1. If e(v) = Spe, with ch(v) = {v′, v′′} and σ = s(v), then x(v) = x(v′) = x(v′′),
s(v′) = σℓ, and s(v′′) = σr.

2. If e(v) ∈ {Dup, Cut, TrDup, TrCut}, with ch(v) = {vt, vk}:

1. If e(v) ∈ {Dup, TrDup}, then x(vt) ⊆ x(v) = x(vk);
2. If e(v) ∈ {Cut, TrCut}, then x(vt) ∪ x(vk) = x(v), x(vt) ∩ x(vk) = ∅,

and x(vt) ̸= ∅ (but x(vk) = ∅ is allowed);
3. If e(v) ∈ {Dup, Cut}, then s(v) = s(vt) = s(vk);
4. If e(v) ∈ {TrDup, TrCut}, then s(v) ∥ s(vt), and s(v) = s(vk).

3. If e(v) ∈ {Gain, Loss} with ch(v) = {vc}, then s(vc) = s(v) and the following:

1. If e(v) = Gain, then x(vc) ⊋ x(v).
2. If e(v) = Loss, then x(vc) ⊊ x(v) (a loss is full if x(vc) = ∅, and partial otherwise).

4. For each gene family Γ, exactly one Gain event in H involves Γ.

5. The only nodes v of the history such that x(v) = ∅ are its root and its leaves.

Finally, we denote by Tr any event in {TrDup, TrCut}.

Notice that, when the sets of x(v) are restricted to at most one gene family each, this
model reduces to the classical reconciliation model of [14], with TrDup corresponding to T
(transfer) and TrCut to TL (transfer–loss). Additionally, from any syntenic history on a set
of gene families F , one can extract a reconciled gene tree for each gene family Γ ∈ F whose

Algorithms 2024, 17, 186 4 of 16

root is the gain event for Γ and leaves are the loss events where Γ is lost. This root is unique
because of Condition (4), which excludes convergent gains.

Moreover, as in [14], we will allow for transfers to and from unsampled or extinct
species by augmenting the species tree. For example, in Figure 1, Synteny {1, 2} in Species A
is the result of a transfer from an unsampled species. In the following, unless specified
otherwise, all histories are on augmented species trees, as formally defined below.

1, 2

2, 3

2, 3

1, 3

1, 2

3

1, 2

A

B

C

T S∗

(1)

A

B

C

1, 2
1, 2

1, 2

1, 2

1, 2, 3

2, 3
1, 2, 3

3

1, 3
2 2, 3

1, 2

1, 21, 2 / 3
2, 3

3
1, 2

H
(2)

Figure 1. (1) A synteny tree T (on the left) with an augmented species tree S∗ (on the right). The
numbers represent single gene families and the letters represent species. As indicated by the dashed
gray lines connecting the two trees, the Syntenies {1, 2}, {2, 3}, and {1, 3} belong to Species A,
{2, 3}, and {1, 2} to B {3} and {1, 2} to C. The dotted lines in the augmented species tree represent
unsampled edges. (2) An output history H of Synesth when given T and S∗ as the input with costs
(δDup = 2, δCut = 2.5, δTrDup = 3, δTrCut = 3.5, δLoss = 1). The history tree is represented with black
lines on top of the species tree filled in gray. The hatched background represents a part of the history
taking place in an unsampled lineage. The events are represented as follows: “Spe” by ovals, “Dup”
and “Cut” by rectangles, “TrDup” and “TrCut” by diamonds, “Loss” by right half-circles, and “Gain”
by left half-circles. The synteny contents are written inside of each event, while the associated species
is represented implicitly by the position of each event on top of the species tree. Duplicated or
transferred genes are underlined, while fissions are represented by a separation in the synteny.

Definition 2 (Augmented species tree). A tree S can be augmented into S∗ by adding unsam-
pled leaves as follows: (1) Subdivide each edge (v, v′) of E(S) into two edges (v, z) and (z, v′)
linked to a new node z; (2) Connect each z to a new unsampled leaf; (3) Create a new root r(S∗)
whose two children are r(S) and a new unsampled leaf. Edges leading to unsampled leaves are called
unsampled edges.

Finally, notice that Definition 1 does not require the species involved in a transfer
to be contemporary, nor does it forbid biologically infeasible cyclic histories, such as one
resulting from a transfer from a Species A to a Species B, and then back from Species B to
an ancestor of Species A (for a more precise definition of acyclicity, see [4]). This limitation
is necessary to make the computational problems of the next section tractable.

4. Explicatory Histories and Optimization Problems

The goal of reconciliation is to infer histories that explicate the topology of a synteny
tree given a tree of the corresponding species. Such histories are extensions of the synteny
tree that map all leaves to the appropriate species and syntenies without introducing new
visible leaves.

Algorithms 2024, 17, 186 5 of 16

Definition 3 (Visible leaves). A leaf l of a history H = ⟨H, e, x, s⟩ is said to be visible if
x(l) ̸= ∅ and s(l) ∈ V(S), and invisible otherwise. The set of visible leaves of H is denoted as
LV(H).

For example, in Figure 1, the history in (2) explicates the trees in (1). In that history, the
only invisible leaf is the unnamed leaf in the hatched region (representing an unsampled
species). The leaves below full losses would also be invisible, but that example history does
not contain any full loss. The following is a formal definition of an explicatory history:

Definition 4 (Explicatory histories). For a species tree S, a history H = ⟨H, e, x, s⟩ on S∗ is said
to explicate a synteny tree T = ⟨T, x′, s′⟩ and S if the following holds true:

1. H is an extension of T.

2. x′ = x|L(T) and s′ = s|L(T).

3. LV(H) = L(T).

4. No (u, v) ∈ E(T) is such that s(v) < s(u).

5. No gain event is the parent of a node v ∈ V(H)− V(T).

6. No partial loss event is a child of a node v ∈ V(H)− V(T).

The set of all such histories is denoted by H(T , S).

Condition (3) disallows introducing new visible leaves. Condition (4) excludes as-
signments of species that create cycles between adjacent nodes of the synteny tree. This
condition is a necessary, but not sufficient, condition for acyclicity. Imposing a full acyclicity
condition would lead to computationally intractable problems [4].

As for Conditions (5) and (6), they are introduced to avoid having multiple histories
with the same events, but with gains and losses distributed differently between the adjacent
nodes of the synteny tree. More precisely, Condition (5) requires sifting gains down and
merging them until they are the parent of a synteny tree node; conversely, Condition (6)
requires sifting losses up and merging them until they are the child of a synteny tree node.

Note that H(T , S) is infinite: given any explicatory history, it is always possible to
extend it into a larger one by introducing superfluous duplications or transfers. We next
define a way to reduce this space to a finite one.

Definition 5 (Event vector). Let H = ⟨H, e, x, s⟩ be a history. We define ev(H) = (cDup, cCut,
cTrDup, cTrCut, cLoss) ∈ N5 as the vector such that ce is the number of events of type e ∈ E in H.

As usual for reconciliation, our definition of an event vector excludes the number
of speciations since they do not allow one to meaningfully distinguish between histories.
Notice that the number of gains is also excluded, as needed to make the problem of
Section 6 tractable. Consequently, we disregard taking advantage of the simultaneous gains
of multiple genes to reduce the overall number of individual gain events.

Definition 6 (Order on vectors and histories). For two event vectors (ai)1≤i≤n and (bi)1≤i≤n,
(ai) ⪯ (bi) if for all i ∈ {1, ..., n}, ai ≤ bi. This partial order induces another one on the histories,
namely H ⪯ H′ if ev(H) ⪯ ev(H′).

Definition 7 (Pareto optimality). For any set E with a partial order ⪯, we define its Pareto subset
as min ⪯ E = {x ∈ E | ∀y ∈ E, (x ̸= y) → ¬(y ⪯ x)}.

As an example, in the set of vectors A = {(1, 2), (2, 2), (3, 1)} ⊆ N2, we have (1, 2) ⪯
(2, 2) while (1, 2) and (3, 1) are not comparable; hence, min ⪯ A = {(1, 2), (3, 1)}.

Algorithms 2024, 17, 186 6 of 16

Let us now consider the set Hmin(T , S) = min ⪯H(T , S) of histories whose event
vectors are Pareto-optimal. As opposed to H(T , S), Hmin is a finite set, as we will show in
Theorem 3. We can thus meaningfully define the problem of computing this set.

Problem 1 (All Pareto-optimal histories).
Input: A synteny tree T and a species tree S.
Output: The set Hmin(T , S) of Pareto-optimal histories explicating T and S.

Even though Hmin is finite, it may contain a number of optimal histories that are expo-
nential in |V(T)|. Rather, consider the set evmin(T , S) = min ⪯ {ev(H) | H ∈ H(T , S)} of
Pareto-optimal event vectors. As we will show later (Theorem 4), the number of optimal
event vectors in evmin is polynomial. We now consider the following problem of reduced
complexity:

Problem 2 (All Pareto-optimal vectors).
Input: A synteny tree T and a species tree S.
Output: The set evmin(T , S).

Now, given a vector of costs for each event type δ = (δDup, δCut, δTrDup, δTrCut, δLoss) ∈
(R+ ∪ {∞})5, we can associate an overall scalar cost c(H) = δ · ev(H) to each history.

Problem 3 (Minimum cost).
Input: A synteny tree T , a species tree S, and a vector δ ∈ (R+ ∪ {∞})5.
Output: The minimum cost cmin(T ,S) = min{c(H) | H ∈H(T ,S)} of any history explicatingT and S.

Finally, we will call Problems 2’ and 3’ the versions of Problems 2 and 3 where we
additionally ask for one history corresponding to each returned optimal event vector (for
Problem 2’) or one history for the returned minimum cost (for Problem 3’). For example,
Figure 1 shows in (2) a possible solution for Problem 2’ for the synteny and species trees
in (1) for vector (cDup = 1, cCut = 0, cTrDup = 1, cTrCut = 1, cLoss = 1), as well as cost
(δDup = 2, δCut = 2.5, δTrDup = 3, δTrCut = 3.5, δLoss = 1) for Problem 3’.

5. Generating All Pareto-Optimal Histories

We start by addressing Problem 1, which asks to enumerate the Hmin set. This can be
conducted inductively by building histories from the leaves of the synteny tree up to its
root. This result is the basis for the dynamic programming formulations introduced for the
other problems in the upcoming sections.

The next two definitions are used to build histories by composing partial histories
(see Figure 2). In the following, a node v of a history such that x(v) = X and s(v) = σ is
denoted as v[X, σ], or v[e, X, σ] if the event e ∈ E associated to v is known. The node name
may be omitted where it is not relevant by simply writing [X, σ] or [e, X, σ]. If A, B, and C
are three nodes, then (A, B)C refers to the triplet tree with Root C and Leaves A and B.

Definition 8 (Partial histories). Let T = ⟨T, x, s⟩ be a synteny tree on a species tree S. Let
v ∈ V(T), X ⊆ F , and σ ∈ V(S∗). We define h(v, X, σ) as the set of the Pareto-optimal histories
explicating the subtree of T rooted at v[X, σ]. We also define path([X, σ], [Y, γ]) as the set of
Pareto-optimal acyclic histories whose root is [X, σ] and whose only visible leaf is [Y, γ]. Formally,

h(v, X, σ) = {⟨H, e, x, s⟩ ∈ Hmin(T [v], S) | (r(H) = v) ∧ (x(v) = X) ∧ (s(v) = σ)}
path([X, σ], [Y, γ]) = min ⪯ {H = ⟨H, e, x, s⟩ | (x(r(H)) = X) ∧ (s(r(H)) = σ)

∧ (LV(H) = {l}) ∧ (x(l) = Y) ∧ (s(l) = γ)

∧H is acyclic}.

Algorithms 2024, 17, 186 7 of 16

Definition 9 (History composition). If H = ⟨H, e, x, s⟩ and H′ = ⟨H′, e′, x′, s′⟩ are two
histories such that there exists a leaf l ∈ L(H) with x(l) = x(r(H′)) and s(l) = s(r(H′)), then
we define their composition H⊗H′ as the history obtained by replacing l with r(H′) and merging
e with e′, x with x′, and s with s′. This operation is only defined if the resulting history is valid
(particularly if no gene family would be gained in two separate Gain events).

When applied to two sets of histories A and B, then A ⊗ B is defined by taking the Carte-
sian product of the two sets and composing each resulting history pair whilst excluding invalid
compositions.

For any node v of a synteny tree T and any event e ∈ E , syntenies X, Y, Y′, Z, Z′ ⊆ F ,
and species σ, γℓ, γ′

ℓ, γr, γ′
r ∈ V(S∗), we define the set of histories starting with v[e, X, σ] as

followed by two paths from [Y′, γ′
ℓ] to vℓ[Y, γℓ] and from [Z′, γ′

r] to vr[Z, γr], thereby leading to
two sub-histories as follows:

M(v[e, X, σ], [Y′, γ′
ℓ], vℓ[Y, γℓ], [Z′, γ′

r], vr[Z, γr])

= ([Y′, γ′
ℓ], [Z

′, γ′
r]) v[e, X, σ] ⊗ (path([Y′, γ′

ℓ], vℓ[Y, γℓ])⊗ h(vℓ, Y, γℓ))

⊗ (path([Z′, γ′
r], vr[Z, γr])⊗ h(vr, Z, γr)).

For example, in Figure 2, we have H = M(v[Spe, X, σ], [X, σℓ], vℓ[Y, γℓ], [X, σr], vr[Z, γr]).

v

vℓ

T [vℓ]

vr

T [vr]

T

Xv σ

X σℓ

Yvℓ γℓ

h(vℓ , Y, γℓ)

X σr

Zvr γr

h(vr, Z, γr)

H
Figure 2. General shape of a history H for a synteny tree T starting with v[Spe, X, σ], which is
composed of two sub-histories taken from h(vℓ, Y, γℓ) and h(vr, Z, γr). These are linked together by
two paths (represented by wavy lines) taken from path([X, σℓ], vℓ[Y, γℓ]) and path([X, σr], vr[Z, γr]).

This representation of histories as the compositions of sub-histories and paths will now
be used to formulate inductive definitions for h(v, X, σ) and path(·, ·), as well as ultimately
Hmin(T , S). In the following, we use A ⊕ B to mean min ⪯ (A ∪ B).

Theorem 1 (Inductive form of Pareto-optimal histories). Let T = ⟨T, x, s⟩ be a synteny tree
on S, X be any synteny on F , and σ be a node of S∗. If v is a leaf of T, then h(v, X, σ) = {v[X, σ]}
if x(v) = X and s(v) = σ, and h(v, X, σ) = ∅ otherwise. If v is an internal node of T, then
h(v, X, σ) = PSpe ⊕ PDup ⊕ PCut ⊕ PTrDup ⊕ PTrCut with the following:

PSpe =
⊕

γℓ,γr ̸<σ
Y,Z⊆F

(
M(v[Spe, X, σ], [X, σℓ], vℓ[Y, γℓ], [X, σr], vr[Z, γr])

⊕ M(v[Spe, X, σ], [X, σr], vℓ[Y, γℓ], [X, σℓ], vr[Z, γr])
)

PDup =
⊕

γℓ,γr ̸<σ
Y,Z⊆F

(
M(v[Dup, X, σ], [X ∩ Y, σ], vℓ[Y, γℓ], [X, σ], vr[Z, γr])

⊕ M(v[Dup, X, σ], [X, σ], vℓ[Y, γℓ], [X ∩ Z, σ], vr[Z, γr])
)

PCut =
⊕

γℓ,γr ̸<σ
Y,Z⊆F

(
M(v[Cut, X, σ], [X ∩ Y, σ], vℓ[Y, γℓ], [X − Y, σ], vr[Z, γr])

⊕ M(v[Cut, X, σ], [X − Z, σ], vℓ[Y, γℓ], [X ∩ Z, σ], vr[Z, γr])
)

Algorithms 2024, 17, 186 8 of 16

PTrDup =
⊕

γi∥σ; γt ̸<γi ,σ
γk ̸<σ; Y,Z⊆F

(
M(v[TrDup, X, σ], [X ∩ Y, γi], vℓ[Y, γt], [X, σ], vr[Z, γk])

⊕ M(v[TrDup, X, σ], [X, σ], vℓ[Y, γk], [X ∩ Z, γi], vr[Z, γt])
)

PTrCut =
⊕

γi∥σ; γt ̸<γi ,σ
γk ̸<σ; Y,Z⊆F

(
M(v[TrCut, X, σ], [X ∩ Y, γi], vℓ[Y, γt], [X − Y, σ], vr[Z, γk])

⊕ M(v[TrCut, X, σ], [X − Z, γi], vℓ[Y, γt], [X ∩ Z, σ], vr[Z, γk])

⊕ M(v[TrCut, X, σ], [X ∩ Y, σ], vℓ[Y, γk], [X − Y, γi], vr[Z, γt])

⊕ M(v[TrCut, X, σ], [X − Z, σ], vℓ[Y, γk], [X ∩ Z, γi], vr[Z, γt])
)

Proof. If v is a leaf of T, then the proposition follows directly from Definitions 1 and 4.
Assume now that v is an internal node. First, notice that all histories of the Pe sets—for
e ∈ {Spe, Dup, Cut, TrDup, TrCut}—explicate T [v] and S, have their root assigned to X
and σ and are Pareto-optimal.

Let H = ⟨H, e, x, s⟩ ∈ h(v, X, σ). Since v is an internal node of T, v must be binary in
H; hence e(v) ∈ {Spe, Dup, Cut, TrDup, TrCut}. Denote the children of v in T as vℓ and vr,
and the children of v in H as wℓ and wr. If e(v) ∈ {Spe, Dup, Cut}, then γℓ and γr cannot
be strict ancestors of σ, as otherwise H would not be acyclic. Let Y = x(vℓ), Y′ = x(wℓ),
Z = x(vr), Z′ = x(wr).

If e(v) = Spe, then H ∈ PSpe by Definition 1 (Item 1).
Otherwise, let us first show that the synteny contents of both children are chosen

appropriately. We have that X ∩ Y ⊆ Y′ (resp. X ∩ Z ⊆ Z′); since, if any g ∈ X ∩ Y (resp.
g ∈ X ∩ Z) was not in Y′ (resp. Z′), we would have multiple gains of g in H, i.e., one above
v (since g ∈ X) and one between v and vl (since g ∈ Y, resp. vr since g ∈ Z).

• If e(v) ∈ {Dup, TrDup}, by Definition 1, at least one of Y′ or Z′ is equal to X. Without
loss of generality (w.l.o.g.), assume that Z′ = X. We should have Y′ ⊆ X ∩ Y, as
otherwise we would have at least one additional event in the path between v and
vl for losing Y′ − (X ∩ Y), thus contradicting the Pareto-optimality of H. Hence,
Y′ = X ∩ Y.

• If e(v) ∈ {Cut, TrCut}, it cannot be that Y′ ̸⊆ X ∩ Y and Z′ ̸⊆ X ∩ Z are both true as
such a scenario would lead to a loss on each path between v and vℓ and between v and
vr, whereas by choosing Y′ ⊆ X ∩ Y or Z′ ⊆ X ∩ Z, we save at least one loss. Since Y′

and Z′ are a partition of X, then Z′ = X − Y if Y′ = X ∩ Y, or Y′ = X − Z otherwise.

Finally, we show that the species of both children are also chosen appropriately.

• If e(v) ∈ {Dup, Cut}, then by Definition 1, s(wℓ) = s(wr) = σ.
• If e(v) ∈ {TrDup, TrCut}, then by Definition 1, either s(wℓ) = σ and s(wr) ∥ σ, or

s(wr) = σ and s(wℓ) ∥ σ.
• If e(v) = TrDup, if s(wℓ) = σ (resp. s(wr) = σ), then x(wℓ) = X (resp. x(wr) = Y).

We next consider how to compute the set of histories path([X, σ], [Y, γ]) given any
two syntenies X and Y and species σ and γ.

Theorem 2 (Pareto-optimal paths). Let X and Y be two syntenies and σ and γ be two species.
If γ is a strict ancestor of σ, then path([X, σ], [Y, γ]) = ∅. Otherwise, path([X, σ], [Y, γ]) =
P0 ⊕ P1 ⊕ P2, where the following holds:

• P0 = ∅ if σ ∥ γ. Otherwise, P0 contains the history made up of a chain of DS∗(σ, γ)
speciations and |{(u, v) ∈ PS∗(σ, γ) | v /∈ V(S)}| full losses; preceded by a partial loss event
if X ̸⊆ Y and followed by a gain event if Y ̸⊆ X. If γ ∈ L(S∗)− L(S), then P0 also includes
a history where the initial partial loss event is replaced by a terminal Dup or Cut event and
an unsampled leaf.

• P1 = PTrDup ⊕ PLeft
TrCut ⊕ PRight

TrCut. If σ ∥ γ, all three sets contain histories starting with a Tr
event v from σ′ = σ to γ. Otherwise, all three sets contain histories starting with a speciation

Algorithms 2024, 17, 186 9 of 16

at σ. Letting ch(σ) = {σ′, σ′′} such that σ′ ∥ γ, the speciation is followed by a Tr event v
from σ′ to γ and a full loss on the side of σ′′ if σ′′ /∈ L(S∗)− L(S). In both cases, the histories
end with a gain event if Y ̸⊆ X. For H ∈ PTrDup, e(v) = TrDup and x(vt) = X ∩ Y with

a full loss at vk if σ′ /∈ L(S∗)− L(S). For H ∈ PLeft
TrCut or H ∈ PRight

TrCut, e(v) = TrCut. For
H ∈ PLeft

TrCut, x(vt) = X ∩ Y and vk is a full loss if X ̸⊆ Y and σ′ /∈ L(S∗)− L(S). For

H ∈ PRight
TrCut, x(vk) = ∅ and there is a partial loss at vt if X ̸⊆ Y.

• P2 = ∅ if σ ∥ γ and X ⊆ Y, or σ ∈ L(S∗) − L(S), or σ = r(S∗). Otherwise, P2 =

PTrDup
TrDup ⊕ PTrCut

TrDup ⊕ PTrCut
TrCut . Each of the three sets Pe

e′ contain histories made up of two initial

consecutive transfers v and v′ such that e(v) = e and e(v′) = e′. The histories of PTrDup
TrDup and

PTrCut
TrDup are such that s(v′) = σ′ ∈ L(S∗)− L(S). In PTrDup

TrDup , v is followed by a full loss if

s(v) /∈ L(S∗)− L(S). In PTrCut
TrDup and PTrCut

TrCut , the first cut v is complete (i.e., with an empty
leaf). In PTrCut

TrCut if X ̸⊆ Y, then s(v) ∈ L(S∗)− L(S), otherwise the second cut v′ is complete
if s(v) /∈ L(S∗)− L(S). In all cases, the histories end with a gain event if Y ̸⊆ X.

−(X−Y)σ

σ

Y
γ

+(Y−X)

(P0)

X
σ = σ′

Y
γ

+(Y−X)

Xσ

Xσ′

Y
γ

σ′′

+(Y−X)

(P1)

X
σ

X
σ′

X
σ′

Y
γ

+(Y−X)

(P2)

Proof. If γ is a strict ancestor of σ, there can be no acyclic history leading from [X, σ] to
[Y, γ]; therefore, path([X, σ], [Y, γ]) = ∅.

Otherwise, let H = ⟨H, e, x, s⟩ ∈ path([X, σ], [Y, γ]), u = r(H), and let w be the only
visible leaf of H. We call P(u, w) the main path of H. We say that a subtree H[v] of H is
invisible if it contains only invisible leaves.

First notice that all binary nodes of H must be on the main path. Assume that
v is a binary node outside of the main path. Both subtrees of v must be invisible. If
s(v) /∈ L(S∗)− L(S), then at least one subtree contains a full loss; hence, we can completely
replace v and its subtrees with a full loss. Otherwise, we can completely replace v and its
subtrees with an unsampled leaf. In both cases, we strictly reduce the number of events
in H, which contradicts its Pareto-optimality. Also, notice that all binary nodes of the main
path have exactly one child whose subtree is invisible.

We show now that H may only contain at most two Tr nodes. Assume that H contains
at least three consecutive Tr events that we denote v1, v2, v3. Let v4 be the child of v3
resulting from the transfer. Consider the history H′ obtained from H via the following:
(1) Removing all the nodes on the path from v2 to v4 and their invisible subtrees, excluding
v2 and v4 themselves but including, in particular, v3; (2) Connecting v2 directly to v4; (3)
Remapping s(v2) to any unsampled species separated both from s(v1) and s(v4); (4) Replac-
ing the subtree below v2 by a single unsampled leaf l with s(l) = s(v2) and x(l) = x(v2)
if e(v2) = TrDup, or x(l) = x(v2) − x(v4) otherwise. Clearly, H′ ⪯ H, H′ ̸= H and
H′ ∈ path([X, σ], [Y, γ]), which contradicts the Pareto-optimality of H.

As per Definition 4 (Item 5 and Item 6), any partial loss must be placed at the end of
the history, and any gain must be placed at the start. Note that H contains either zero (P0),
one (P1), or two (P2) transfers.

• [H contains no transfers.] Note that σ cannot be separated from γ since only transfers
can reach separate species; thus, σ is an ancestor of γ. We start by showing that H
can only possibly contain a duplication or a cut if that event is on an unsampled leaf
species. If v is a node such that e(v) ∈ {Dup, Cut} and s(v) /∈ L(S∗)− L(S), then the
invisible subtree of v contains at least one full loss. In this case, we can remove the
invisible subtree and turn v into a partial loss, if needed, otherwise we would replace
v with its remaining child. Hence, if H contains a duplication or a cut, it must be the

Algorithms 2024, 17, 186 10 of 16

last binary event on the main path. Thus, all other binary events must be speciations,
and we need exactly DS∗(σ, γ) of them to reach σ from γ. Those speciations must lead
to one full loss for each species s ∈ V(S). Hence, H ∈ P0.

• [H contains exactly one transfer.] Let v be the only transfer node. If σ ≤ γ, then there
must be a speciation above v so that s(v) can be separated from γ since H cannot
contain other transfers. Notice that H contains no partial losses, duplications, or cuts.
In fact, any partial loss can be merged into the transfer. As for duplications and cuts,
they can be removed if they do not save any loss, or merged into the transfer otherwise.
Apart from the initial speciation if σ ≤ γ, H contains no other speciations as those
before (resp. after) the transfer can be removed by redirecting the transfer to start from
a higher species (resp. to end at a lower species) that is still separated from γ (resp. σ).
If e(v) = TrDup or X ̸⊆ Y, then the invisible subtree of v must contain at least one full
loss, unless s(v) ∈ L(S∗)− L(S). If s(v) /∈ L(S∗)− L(S) and e(v) = TrCut, then either
subtree of v must contain at least one full or partial loss if x(v) ̸⊆ Y. Hence, H ∈ P1.

• [H contains exactly two transfers.] Let v and v′ be the only two transfer nodes. If
σ = r(S∗), then H must contain at least one full loss; hence, H is not Pareto-optimal.
If σ ∈ L(S∗)− L(S), then, if σ ≤ γ, we can remove both transfers, and, if σ ∥ γ, then
we can remove v′, in both cases without introducing additional events. If σ ∥ γ, then
we have the following: If e(v) = TrDup, we can remove v′ without adding new losses;
If X ⊆ Y, then x(v) ⊆ x(v′) ⊆ x(w). Hence, we can also remove v′. If either of v
or v′ is such that e(v) = TrCut or e(v′) = TrCut, then e(v) = TrCut, as otherwise it
is e(v) = TrDup, and there is a full loss below v. In addition, we can exchange the
transfer types of v and v′ so that e(v) = TrCut, e(v′) = TrDup and s(v′) ∈ L(S∗), so
as to save a full loss. If x(v′) ̸⊆ Y or e(v′) = TrDup, then s(v′) ∈ L(S∗)− L(S), as
otherwise we can reroute the first transfer toward an unsampled leaf so as to save a
full loss. Hence, H ∈ P2.

Finally, the set of all possible histories Hmin(T , S) can be computed as the union of
assignments of the root node of the synteny tree to all possible syntenies and species. This
starts with a path from an empty synteny (i.e., an initial gain). In other words,

Hmin(T , S) =
⊕

X⊆F
σ∈V(S∗)

path([∅, σ], r(T)[X, σ])⊗ h(r(T), X, σ).

Hence, using Theorems 1 and 2, one can derive a dynamic programming algorithm to
solve Problem 1. Due to the exponential size of the set of solutions, the time complexity of
that algorithm is also exponential.

Theorem 3 (Number of minimal histories). Let T = ⟨T, x, s⟩ be a synteny tree on a species tree
S with gene family set F . Then,

|Hmin(T , S)| ∈ O
(
(2|F ||V(S)|3)|V(T)|

)
.

Proof. Using Theorem 1, we obtain that |h(v, X, σ)| ∈ O(f (v)) with

f (v) =

{
1 if v is a leaf,
(2|F ||V(S)|2 p)× f (vℓ)× f (vr) otherwise,

where p is an upper bound on the number of possible paths. This is because, in each
case of Theorem 1, up to all subsets Y, Z ⊆ F are tried along with up to all possible
species pairs γℓ, γr ∈ V(S∗), which has a number of nodes directly proportional to |V(S)|.
Using Theorem 2, we obtain p ∈ O(|V(S)|). We obtain the desired result by solving the
recurrence.

Algorithms 2024, 17, 186 11 of 16

6. Polynomial-Time Computation of Pareto-Optimal Event Vectors

We now address Problem 2. Given a synteny tree T = ⟨T, x, s⟩ on a species tree S,
similar to the way h(v, X, σ) was previously used to recursively compute Hmin(T , S), we
define Λ(v, X, σ) for computing evmin(T , S) as Λ(v, X, σ) = {ev(H) | H ∈ h(v, X, σ)}.

To compute Λ(v, X, σ), we replace the algebra of Theorem 1 with an algebra where:

• The base cases are {(0, 0, 0, 0, 0, 0)} and ∅;
• A ⊕ B is the union of vectors from A and B, retaining only the Pareto-optimal ones;
• A ⊗ B sums the pairs of vectors from A × B, retaining only the Pareto-optimal ones.

Additional simplifications can reduce the complexity of computing Λ(v, X, σ). We
start by showing that, when adapted for Problem 2, it is sufficient to try a constant number
of syntenies X, Y, Z ⊆ F at each step of the recurrence of Theorem 1. First, let us show that
it is sufficient to place the gain event for each gene family at the lowest common ancestor
of the leaves they appear in.

Definition 10 (Gain positions). Let T = ⟨T, x, s⟩ be a synteny tree on F , Γ ∈ F , v ∈ V(T),
and X ⊆ F . We thus define

lca(Γ) = lcaT{l ∈ L(T) | Γ ∈ x(l)},

f (v, X) = {Γ ∈ X | lca(Γ) ̸> v}.

Lemma 1 (Gains at the LCA). If T = ⟨T, x, s⟩ is a synteny tree on F , v ∈ V(T), and X ⊆ F ,
then min ⪯ (Λ(v, X, σ) ∪ Λ(v, f (v, X), σ)) = Λ(v, f (v, X), σ).

Proof. Let H ∈ h(v, X, σ). Let Γ ∈ X − f (v, X), if there is any. By definition, lca(Γ) > v.
Assume w.l.o.g. that lca(Γ) ≥ vℓ. Consider the history H′ in which Γ is removed from x(v)
and all x(w) for w ∈ T[vr], thereby removing any invalid loss event created in the process,
and in which the gain event for Γ is moved to be the parent of vr (potentially merging it
with other gains). Then, ev(H′) ⪯ ev(H), since we only potentially removed losses from
H and the number of gains is not part of the event vector. Let H∗ be the history obtained
after repeating this process for each Γ ∈ X − f (v, X). Clearly, H∗ ∈ h(v, f (v, X), σ); hence,
e(H∗) ∈ Λ(v, f (v, X), σ) and ev(H∗) ⪯ ev(H).

In a similar way to Lemma 5 in [10], we now show that only two synteny contents have
to be tried at each step of the recurrence as any synteny larger than the minimal required
gene families (as formally defined below) leads to the same set of optimal event vectors.

Definition 11 (Minimal synteny contents). For any v ∈ V(T), we define

gain(v) = {Γ ∈ F | v = lca(Γ)},

xmin(v) =

{
x(v) if v is a leaf,
xmin(vℓ) ∪ xmin(vr)− (gain(vℓ) ∪ gain(vr)) otherwise.

Lemma 2 (Two choices of synteny contents). Let T = ⟨T, x, s⟩ be a synteny tree on a species
tree S and v be a node of T. For any X, X′ ⊋ xmin(v) such that X = f (v, X) and X′ = f (v, X′),
Λ(v, X, σ) = Λ(v, X′, σ).

Proof. We proceed by induction on the depth of v in T. If v is a leaf, then no valid history
exists; hence ,Λ(v, X, σ) = Λ(v, X′, σ) = ∅. Otherwise, let H = ⟨H, e, x, s⟩ ∈ h(v, X, σ),
Y = x(vℓ), Z = x(vr), and denote Hℓ ∈ h(vℓ, Y, s(vℓ)) (resp. Hr for vr) to be the subhistory
of H below vℓ (resp. vr).

Let G = X − xmin(v), and G′ = X′ − xmin(v). If Γ ∈ G, then Γ /∈ xmin(v), thus
implying that Γ /∈ xmin(vℓ) and Γ /∈ xmin(vr) since Γ /∈ gain(vℓ) and Γ /∈ gain(vr) because
lca(Γ) ̸> v. This implies that X ̸⊆ Y, Z. Using the same argument for Γ′ ∈ G′, we deduce
that X′ ̸⊆ Y, Z.

Algorithms 2024, 17, 186 12 of 16

Suppose that Y ⊋ xmin(vℓ). Let Y′ = (Y − G) ∪ G′. Noting that Y′ ⊋ xmin(vℓ), and
using the induction hypothesis, we see that Λ(vℓ, Y, s(vℓ)) = Λ(vℓ, Y′, s(vℓ)). There exists
a history H′

ℓ ∈ h(vℓ, Y′, s(vℓ)) such that ev(Hℓ) = ev(H′
ℓ). The same argument applies to

vr, thereby yielding a history H′
r such that ev(Hr) = ev(H′

r).
Suppose that Y = xmin(vℓ). Then, there must be an event to lose X − Y on the path

from v to vℓ. That event can also be used to lose X′ − Y. In this case, we let H′
ℓ = Hℓ. The

same argument applies to vr.
Finally, consider the history H′ that is obtained by replacing Hℓ with H′

ℓ, Hr by H′
r,

and setting x(v) = X′. Clearly, ev(H) = ev(H′) and H′ ∈ h(v, X′, σ); hence, ev(H) ∈
Λ(v, X′, σ).

Using the recurrence from Theorem 1 adapted to use the algebra over Pareto-sets of
vectors and simplified, as shown in Lemmas 1 and 2, we can obtain a dynamic programming
algorithm for solving Problems 2 and 2’.

Theorem 4. Problem 2 can be solved in time O((mn)9 log(mn)) and space O((mn)5), and
Problem 2’ in time O((mn)9n log(mn)) and space O((mn)5n), where m = |V(T)| and n =
|V(S)| are, respectively, the numbers of the nodes in the synteny and species trees.

Proof. Let us first show that |evmin(T , S)| ∈ O((mn)4). From Theorem 2, the number of
events in a history H ∈ path([X, σ], [Y, γ]) is in O(n) (attained for histories in P0, while
those in P1 and P2 have a constant number of events). From Theorem 1, the histories
H ∈ Hmin(T , S) are extensions of the synteny tree T, which are obtained by inserting such
paths; hence, the number of events in such histories is in O(mn). As the vectors have
five components, we obtain the desired result by adapting the argument from Lemma 3.1
in [15].

We solve Problem 2 using a dynamic programming table for Λ(v, X, σ). The number
of entries in the table is m for v, two for X (as per Lemma 2), and n for σ. Hence, the space
complexity result follows from the bound on the size of evmin(T , S) shown above.

As for the time complexity, following the recurrence adapted from Theorem 1, to
compute each entry we need to consider four options for Y and Z, as well as the up to n3

options for γℓ and γr (or γk and γt) and γi. However, it is possible to reduce these n3 species
options to a constant number of operations at each step by simultaneously computing three
separate tables in, inAlt, and out, as defined by Weiner and Bansal [14] and explained in
their Algorithm 1 and the proof of their Theorem 1. For each of these options, the ⊕ and ⊗
operators need to be used a constant number of times.

The ⊕ and ⊗ operations on two sets containing k Pareto-vectors can be implemented
in time O(k log k) [18] and O(k2 log k), respectively [15]. In our case, it follows from
the bound on the size of evmin(T , S) that both operators can be implemented in time
O((mn)4 log(mn)) and O((mn)8 log(mn)), respectively.

To solve Problem 2’, we need to be able to reconstruct one of the histories leading to
each Pareto-optimal event vector. To that end, we associate additional pieces of information
to each vector: the root node of the history, two pointers to two sub-histories, and two
paths that lead to those histories (see Figure 2). Since a path can contain, at most, O(n)
events, the time and space complexities of this method to solve Problem 2’ are obtained by
adding a factor of n to those of Problem 2.

7. Efficient Computation of Minimum-Cost Histories

We finally address Problem 3. Let T = ⟨T, x, s⟩ be a synteny tree on a species tree S,
and let δ ∈ (R+ ∪ {∞})5 be an event cost vector. Similar to the way through which
h(v, X, σ) and Λ(v, X, σ) were previously used to compute Hmin(T , S) and evmin(T , S), we
define c(v, X, σ) = {c(H) | H ∈ h(v, X, σ)} to compute cmin(T , S).

To compute c(v, X, σ), we replace the algebra of Theorem 1 with an algebra where:

• The base cases are 0 and ∞;
• A ⊕ B is the minimum of A and B;

Algorithms 2024, 17, 186 13 of 16

• A ⊗ B is the sum of A and B.

This is the so-called min-plus or “tropical” semiring. Notice that Lemmas 1 and 2 still apply
since if Λ(v, X, σ) = Λ(v, X′, σ), then c(v, X, σ) = c(v, X′, σ).

Theorem 5. Problem 3 can be solved in time and space O(mn), and Problem 3’ in time and space
O(mn2), where m = |V(T)| and n = |V(S)|.

Proof. Both results follow from the proof of Theorem 4 due to the fact that the minimum
and sum operators can be computed in constant time, thereby removing the (mn)8 log(mn)
factor from the time complexity, and also due to the fact that only a single value needs to be
stored for each entry of the dynamic programming table, thus removing the (mn)4 factor
from the space complexity.

8. Results

The CRISPR–Cas module is an adaptive system that allows prokaryotes to defend
against invading viruses and plasmids. Its fame is due to the development of the CRISPR-
Cas9 genome editing technology, which is one of the most reliable and accurate “molecular
scissors” to date. An important part of any CRISPR-Cas system is the operon of the
associated Cas genes playing various roles in the defense machinery. As the microbial
function of CRISPR-Cas systems highly depends on the syntenic organization of Cas genes,
elucidating the evolution of these syntenies is crucial.

In [11], taking the Makarova et al. [19] CRISPR-Cas classification of Class 1 as the
synteny tree—and considering a dataset of 15 bacterial species, as well as the species tree
topology inferred in [20]—we recovered an evolutionary history that is broadly consistent
with that proposed in [21], with the CRISPR-Cas emergence inferred at the root of Terrabac-
teria. However, some inconsistencies were observed. For example, in the Proteobacteria
subtree, the SuperDTL algorithm inferred an unlikely scenario with an ancestral synteny
duplication before the LCA of Shewanella putrefaciens, Vibrio crassostreae, Yersinia pseudotu-
berculosis, and Escherichia coli, thereby resulting in a succession of three consecutive full
synteny losses along the branch to E. coli.

Here, we used Synesth on the same dataset with the same event costs for Loss, Dup,
and TrDup events and by choosing intermediate costs for the new Cut and TrCut events.
The used event costs were (δDup = 2, δCut = 2.5, δTrDup = 4, δTrCut = 4.5, δLoss = 1).
Almost the same history was obtained but with the above unlikely scenario replaced by a
speciation (on the branch separating the ancestor of Geobacter sulfurreducens to the LCA of
Thioalkalivibrio and Shewanella putrefaciens) copying the ancestral synteny to an unsampled
species, which was later transferred back to E. coli (see Figure 3).

Choosing the appropriate event costs constitutes one of the main challenges of tree rec-
onciliation. Slight changes to the event costs may lead to significantly different history out-
puts. We use a similar approach to that which was developed by Libeskind-Hadas et al. [15]
to display a summary of the solution space over all possible event cost choices. In order
to represent the solutions in a 2D plot, we normalized the cost of Loss events to 1 and
set an equal cost for Dup and Cut and for TrDup and TrCut. The Pareto-optimal vectors
were condensed to three dimensions as follows: (cDup + cCut, cTrDup + cTrCut, cLoss). The
resulting plot is given in Figure 4, in which each color-coded region corresponds to a set of
event costs that give rise to exactly the same set of Pareto-optimal histories.

Algorithms 2024, 17, 186 14 of 16

Clostridium kluyveri
DSM 555

Bacillus halodurans C-125

Staphylococcus epi-
dermidis

Rhodococcus jostii RHA1

Thermoflexia bacterium

Cyanothece sp. PCC 8802

Synechocystis sp. 6803

Thermotoga lettingae TMO

Candidatus Scalindua brodae

Geobacter sulfurreducens

Thioalkalivibrio
sp. K90mix

Shewanella putrefa-
ciens CN-32

Vibrio crassostreae J5 20

Yersinia pseudo-
tuberculosis

Escherichia coli K12

5, 6, 7, 8,
10, 11

5, 6, 7, 8,
10, 11

5, 6, 7, 8,
10, 11

5, 6, 7, 8,
10, 11

5, 6, 7, 8,
10, 11

1, 2, 3", 3’, 4,
5, 6, 7, 8

1, 2, 3", 3’,
4, 5, 6, 7, 8

1, 2, 3", 3’, 4,
5, 6, 7, 8

1, 2, 3", 3’,
4, 5, 7, 8

6

1, 2, 5, 6,
7, 10, 11

5, 7, 8, 11
6, 10

5, 7, 10, 11
6, 8

1, 2, 5, 6, 7,
8, 10, 11

1, 2

1, 2, 3’, 4,
5, 6, 7, 10

8, 111, 2, 3’, 4, 5,
6, 7, 8, 11, 10

3’, 4

5, 7, 10, 11
1, 2, 6, 81, 2, 7, 11,

5, 6, 8, 10
1, 2, 5, 6, 7,
10, 11, 8

5, 7, 10, 11,
1, 2, 6, 8

5, 7, 10, 11

1, 2, 7, 11

1, 2, 3", 3’, 4,
5, 6, 7, 8, 11

3"

1, 2, 3", 3’,
4, 5, 6, 7, 8

1, 2, 3", 3’,
4, 5, 6, 7, 8

11

1, 2, 3", 3’, 4,
5, 6, 7, 8, 11

1, 2, 3", 3’, 4,
5, 6, 7, 8, 11

1, 2, 3", 3’, 5,
6, 7, 8, 11, 4

1, 2, 3", 3’, 4,
5, 6, 7, 8, 11

5, 6, 7, 8

1, 2, 3", 3’,
5, 6, 7, 8

4, 11

1, 2, 3", 3’,
5, 6, 7

8

1, 2, 3", 3’,
5, 6, 7, 8

5, 6, 7, 8
1, 2, 3", 3’

1, 2, 3", 3’,
5, 6, 7, 8

1, 2, 3", 3’,
5, 6, 7, 8

1, 2, 3", 3’,
5, 6, 7, 8, 11

Figure 3. Output of Synesth for the CRISPR-Cas Class 1 dataset when asked for one minimum-cost
history with event costs (δDup = 2, δCut = 2.5, δTrDup = 4, δTrCut = 4.5, δLoss = 1).

0 1 2 3 4 5
δDup = δCut

0

2

4

6

8

10

δ T
rD

up
=

δ T
rC

ut

(0, 6, 18)
n = 3,278,464
(0, 7, 13)
n = 7,447,552
(0, 8, 9)
n = 135,168
(0, 9, 7)
n = 1,859,904
(0, 15, 0)
n = 262,209,728

(0, 12, 2)
n = 55,296
(0, 13, 1)
n = 76,544
(1, 5, 20)
n = 880,768
(1, 6, 16)
n = 5,467,264

(1, 7, 12)
n = 1,056,640
(1, 14, 0)
n = 794,368
(2, 4, 23)
n = 491,520
(2, 6, 15)
n = 378,880

(3, 3, 29)
n = 1,851,392
(4, 2, 35)
n = 485,376
(5, 1, 43)
n = 204,800
(7, 0, 50)
n = 47,104

Figure 4. The event cost landscape for the solutions returned by Synesth for the Class 1 Cas gene
synteny dataset (see text). The cost of a loss event was fixed to 1. For each color region, the legend
shows a condensed event count vector of the form (cDup + cCut, cTrDup + cTrCut, cLoss), where “n”
indicates the number of distinct Pareto-optimal histories for any set of event costs in that region.

Algorithms 2024, 17, 186 15 of 16

9. Conclusions

Synesth is a flexible tool for tree reconciliation, which allows for a wide range of
segmental events that addresses the inevitable incompleteness of the input dataset in
terms of unsampled species, as well as offers various optimization and output criteria
to the user. Moreover, its time complexity brings it up to the level of the most time-
efficient reconciliation algorithms, such as ecceTERA [12] and RANGER-DTLx [14], but for
an evolutionary model with events involving sets of genes rather than single genes.

The inductive characterization of Pareto-optimal histories allows for an exhaustive ex-
ploration of the solution space. Taking advantage of this flexibility, future extensions of the
computational aspects of this work may address the problem of formally characterizing this
space in terms of constructing equivalence classes or normalized histories, thus uniformly
sampling the space of histories and assigning confidence values to predicted histories.

Further extensions of the model would also be worth investigating. For example,
representing syntenies as sets does not capture the information of gene orders and multi-
plicities. Accounting for gene orders would require allowing rearrangement events, and
this may significantly increase the computational complexity of the problem. Allowing
gene repetitions inside syntenies would require representing them as multisets, which
would break some of the assumptions required for the algorithmic approach presented in
this work. However, probably, the most questionable limitation of the model is the absence
of synteny fusions while synteny fissions are allowed; thus, it favors large syntenies up to
the root of the tree. Note, however, that including fusions will require adding reticulated
nodes. It will be interesting to see whether our dynamic programming scheme can be
generalized to such phylogenetic networks or if it makes the problem NP-hard, in which
case tree decomposition methods may be explored [22].

Another important challenge not addressed in this paper is how to obtain an input
synteny tree. In fact, phylogenetic methods instead output sets of gene trees—one for
each gene family. If the individual gene trees are “consistent”, i.e., with no contradictory
phylogenetic information, then a tree displaying them all can be obtained. However,
even in this case, there may be an exponential number of such supertrees. In [10], the
suggested solution was to test each possible supertree and retain the one leading to the
most parsimonious reconciliation. An alternative would be to simultaneously construct
and reconcile a supertree with a given species tree. This opens the door to interesting
future investigations.

Author Contributions: Conceptualization, N.E.-M.; methodology, M.D. and N.E.-M.; software, M.D.;
writing—original draft, M.D. and N.E.-M. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of
Canada (grant number RN000743) and Fonds de recherche du Québec—Nature et technologies (grant
number 335893).

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: We would like to thank Arnaud Grandisson for his work on the graphical output
and Mathieu Gascon for his help and invaluable comments on the model and algorithm.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Goodman, M.; Czelusniak, J.; Moore, G.W.; Romero-Herrera, A.E.; Matsuda, G. Fitting the gene lineage into its species lineage, a

parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Biol. 1979, 28, 132–163. [CrossRef]
2. Bansal, M.S.; Alm, E.J.; Kellis, M. Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer

and loss. Bioinformatics 2012, 28, i283–i291. [CrossRef]
3. Donati, B.; Baudet, C.; Sinaimeri, B.; Crescenzi, P.; Sagot, M.F. EUCALYPT: Efficient tree reconciliation enumerator. Algorithms

Mol. Biol. 2015, 10, 3. [CrossRef]
4. Tofigh, A.; Hallett, M.; Lagergren, J. Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans.

Comput. Biol. Bioinform. 2011, 8, 517–535. [CrossRef] [PubMed]

http://doi.org/10.1093/sysbio/28.2.132
http://dx.doi.org/10.1093/bioinformatics/bts225
http://dx.doi.org/10.1186/s13015-014-0031-3
http://dx.doi.org/10.1109/tcbb.2010.14
http://www.ncbi.nlm.nih.gov/pubmed/21233529

Algorithms 2024, 17, 186 16 of 16

5. El-Mabrouk, N.; Noutahi, E. Gene family evolution: An algorithmic framework. In Bioinformatics and Phylogenetics; Springer
International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 87–119. [CrossRef]

6. Duchemin, W.; Anselmetti, Y.; Patterson, M.; Ponty, Y.; Bérard, S.; Chauve, C.; Scornavacca, C.; Daubin, V.; Tannier, E. DeCoSTAR:
Reconstructing the ancestral organization of genes or genomes using reconciled phylogenies. Genome Biol. Evol. 2017, 9, 1312–1319.
[CrossRef] [PubMed]

7. Duchemin, W. Phylogeny of Dependencies and Dependencies of Phylogenies in Genes and Genomes. Ph.D. Thesis, Université
de Lyon, Lyon, France, 2017.

8. Dondi, R.; Lafond, M.; Scornavacca, C. Reconciling multiple genes trees via segmental duplications and losses. Algorithms Mol.
Biol. 2019, 14, 7. [CrossRef]

9. Paszek, J.; Gorecki, P. Efficient algorithms for genomic duplication models. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 15,
1515–1524. [CrossRef] [PubMed]

10. Delabre, M.; El-Mabrouk, N.; Huber, K.T.; Lafond, M.; Moulton, V.; Noutahi, E.; Castellanos, M.S. Evolution through segmental
duplications and losses: A super-reconciliation approach. Algorithms Mol. Biol. 2020, 15, 12. [CrossRef]

11. Anselmetti, Y.; Delabre, M.; El-Mabrouk, N. Reconciliation with segmental duplication, transfer, loss and gain. In Comparative
Genomics; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 124–145. [CrossRef]

12. Jacox, E.; Chauve, C.; Szöllősi, G.J.; Ponty, Y.; Scornavacca, C. ecceTERA: Comprehensive gene tree-species tree reconciliation
using parsimony. Bioinformatics 2016, 32, 2056–2058. [CrossRef] [PubMed]

13. Szöllősi, G.J.; Tannier, E.; Lartillot, N.; Daubin, V. Lateral gene transfer from the dead. Syst. Biol. 2013, 62, 386–397. [CrossRef]
[PubMed]

14. Weiner, S.; Bansal, M.S. Improved duplication-transfer-loss reconciliation with extinct and unsampled lineages. Algorithms 2021,
14, 231. [CrossRef]

15. Libeskind-Hadas, R.; Wu, Y.C.; Bansal, M.S.; Kellis, M. Pareto-optimal phylogenetic tree reconciliation. Bioinformatics 2014,
30, i87–i95. [CrossRef] [PubMed]

16. David, L.A.; Alm, E.J. Rapid evolutionary innovation during an Archaean genetic expansion. Nature 2011, 469, 93–96. [CrossRef]
[PubMed]

17. Libeskind-Hadas, R. Tree reconciliation methods for host-symbiont cophylogenetic analyses. Life 2022, 12, 443. [CrossRef]
[PubMed]

18. Saule, C.; Giegerich, R. Pareto optimization in algebraic dynamic programming. Algorithms Mol. Biol. 2015, 10, 22. [CrossRef]
19. Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; Shmakov, S.A.; Alkhnbashi, O.S.; Brouns, S.J.J.; Charpentier, E.; Cheng, D.; Haft, D.H.;

Horvath, P.; et al. Evolutionary classification of CRISPR–Cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol.
2020, 18, 67–83. [CrossRef] [PubMed]

20. Coleman, G.A.; Davín, A.A.; Mahendrarajah, T.A.; Szánthó, L.L.; Spang, A.; Hugenholtz, P.; Szöllősi, G.J.; Williams, T.A. A rooted
phylogeny resolves early bacterial evolution. Science 2021, 372, 588. [CrossRef]

21. Koonin, E.V.; Makarova, K.S. Evolutionary plasticity and functional versatility of CRISPR systems. PLoS Biol. 2022, 20, e3001481.
[CrossRef]

22. Scornavacca, C.; Weller, M. Treewidth-based algorithms for the small parsimony problem on networks. Algorithms Mol. Biol.
2022, 17, 15. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-030-10837-3_5
http://dx.doi.org/10.1093/gbe/evx069
http://www.ncbi.nlm.nih.gov/pubmed/28402423
http://dx.doi.org/10.1186/s13015-019-0139-6
http://dx.doi.org/10.1109/tcbb.2017.2706679
http://www.ncbi.nlm.nih.gov/pubmed/28541223
http://dx.doi.org/10.1186/s13015-020-00171-4
http://dx.doi.org/10.1007/978-3-031-06220-9_8
http://dx.doi.org/10.1093/bioinformatics/btw105
http://www.ncbi.nlm.nih.gov/pubmed/27153713
http://dx.doi.org/10.1093/sysbio/syt003
http://www.ncbi.nlm.nih.gov/pubmed/23355531
http://dx.doi.org/10.3390/a14080231
http://dx.doi.org/10.1093/bioinformatics/btu289
http://www.ncbi.nlm.nih.gov/pubmed/24932009
http://dx.doi.org/10.1038/nature09649
http://www.ncbi.nlm.nih.gov/pubmed/21170026
http://dx.doi.org/10.3390/life12030443
http://www.ncbi.nlm.nih.gov/pubmed/35330194
http://dx.doi.org/10.1186/s13015-015-0051-7
http://dx.doi.org/10.1038/s41579-019-0299-x
http://www.ncbi.nlm.nih.gov/pubmed/31857715
http://dx.doi.org/10.1126/science.abe0511
http://dx.doi.org/10.1371/journal.pbio.3001481
http://dx.doi.org/10.1186/s13015-022-00216-w

	Introduction
	Preliminary Notation
	Evolutionary Histories for Syntenies
	Explicatory Histories and Optimization Problems
	Generating All Pareto-Optimal Histories
	Polynomial-Time Computation of Pareto-Optimal Event Vectors
	Efficient Computation of Minimum-Cost Histories
	Results
	Conclusions
	References

