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Abstract: In today’s digital era, rumors spreading on social media threaten societal stability and
individuals’ daily lives, especially multimodal rumors. Hence, there is an urgent need for effective
multimodal rumor detection methods. However, existing approaches often overlook the insufficient
diversity of multimodal samples in feature space and hidden similarities and differences among
multimodal samples. To address such challenges, we propose MVACLNet, a Multimodal Virtual
Augmentation Contrastive Learning Network. In MVACLNet, we first design a Hierarchical Textual
Feature Extraction (HTFE) module to extract comprehensive textual features from multiple perspec-
tives. Then, we fuse the textual and visual features using a modified cross-attention mechanism,
which operates from different perspectives at the feature value level, to obtain authentic multimodal
feature representations. Following this, we devise a Virtual Augmentation Contrastive Learning
(VACL) module as an auxiliary training module. It leverages ground-truth labels and extra-generated
virtual multimodal feature representations to enhance contrastive learning, thus helping capture
more crucial similarities and differences among multimodal samples. Meanwhile, it performs a
Kullback–Leibler (KL) divergence constraint between predicted probability distributions of the vir-
tual multimodal feature representations and their corresponding virtual labels to help extract more
content-invariant multimodal features. Finally, the authentic multimodal feature representations are
input into a rumor classifier for detection. Experiments on two real-world datasets demonstrate the
effectiveness and superiority of MVACLNet on multimodal rumor detection.

Keywords: rumor detection; multimodal learning; data augmentation; contrastive learning; social
media analysis

1. Introduction

In recent years, with the rapid development of the Internet and intelligent terminals,
social media has become an indispensable communication channel in people’s daily lives
due to its convenience, real-time nature, information sharing ability, interactivity, and
diverse content. Although social media facilitates information exchange among people,
it has also become a new breeding ground for spreading rumors. Since the outbreak of
the COVID-19 epidemic, Facebook and Instagram have deleted over 20 million rumors in
total, while Sina Weibo handled 66,251 rumors in 2021 alone. Furthermore, the low cost
of information dissemination and imperfect supervision systems also lead to the rapid
spread of numerous rumors on social media [1], posing significant threats to individuals’
daily lives [2], social stability, and even national security. Therefore, how to effectively
and accurately detect rumors on social media has become one of the crucial issues in both
academia and industry.
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With the development of multimedia technology, rumors spreading on social media
have gradually changed from textual forms to multimodal forms with images. Multimodal
rumors with images can often create an immersive reading experience to attract readers
and give the illusion of high reliability to mislead readers, making it easier to rapidly
spread the rumor. However, traditional rumor detection methods [3–16] primarily utilize
features extracted from text to detect rumors, which limits their ability to detect such
multimodal rumors. Furthermore, previous studies [17–19] have demonstrated that image
content in posts effectively serves as supplementary information for rumor detection,
thereby improving detection performance. For these reasons, an increasing number of
researchers [19–30] have turned their attention to multimodal rumor detection to mitigate
the adverse impact of multimodal rumors.

In the real world, aside from rumors unintentionally created and spread by regular
users, there are also malicious rumors that are carefully crafted and deliberately spread by
rumor creators. Whether through content tampering or relationship network manipulation,
the intention of these rumor creators is to make rumors appear indistinguishable from
non-rumors in feature space, thus confusing detection models. Moreover, when humans
assess the veracity of a post, they generally attempt to find similarities and differences
between the post and other confirmed posts to help identify rumors. These phenomena
make it vital to consider enhancing the diversity of multimodal samples in feature space
and capturing hidden similarities and differences among multimodal samples to assist
rumor detection models in adapting to a broader range of complex data distributions
and understanding underlying data structures and patterns more effectively for further
improvement of their detection performance. Unfortunately, most existing multimodal
models tend to overlook these crucial considerations.

Based on the above considerations and to explore a more effective method for mul-
timodal rumor detection, we propose MVACLNet, a Multimodal Virtual Augmentation
Contrastive Learning Network. In MVACLNet, we first design a Hierarchical Textual
Feature Extraction (HTFE) module to extract textual features from multiple perspectives,
namely local, global continuous, and global non-continuous, to achieve a more compre-
hensive utilization of text data. Then, we enhance the fusion of textual and visual features
using a modified cross-attention mechanism, which operates from textual–visual and
visual–textual perspectives at the feature value level, to obtain richer and more precise
authentic multimodal feature representations. Following this, we devise a Virtual Aug-
mentation Contrastive Learning (VACL) module as an auxiliary training module. This
module serves three purposes. One is to generate extra virtual multimodal feature represen-
tations and corresponding virtual labels using an interpolation-based data augmentation
strategy, regarded as augmented samples, to enhance the diversity of multimodal samples
in feature space, thus strengthening the feature learning of the model. The second is to
introduce contrastive learning and additionally leverage ground-truth labels and virtual
multimodal feature representations to enhance it, thereby helping the model capture more
crucial similarities and differences among multimodal samples. The third is to perform the
Kullback–Leibler (KL) divergence constraint between predicted probability distributions
of the virtual multimodal feature representations and their corresponding virtual labels
to help the model capture more content-invariant multimodal features. In particular, the
introduced ground-truth labels can provide effective supervisory signals for contrastive
learning to prevent the model from misclassifying posts with noise. Finally, a Rumor
Classification module is developed to perform rumor prediction on the authentic mul-
timodal feature representations. Overall, with the help of VACL, MVACLNet can learn
more robust and generalized multimodal feature representations, thereby improving its
detection performance.

In summary, the contributions of our paper are as follows:

• We propose MVACLNet, a Multimodal Virtual Augmentation Contrastive Learning
Network, which achieves more effective multimodal rumor detection. It consists of
five modules: a Hierarchical Textual Feature Extraction module, a Visual Feature
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Extraction module, a Multimodal Feature Fusion module, a Virtual Augmentation
Contrastive Learning module, and a Rumor Classification module. Each designed
module has a different role, and all the modules contribute to the improvement of
detection performance.

• We design a Hierarchical Textual Feature Extraction (HTFE) module to extract textual
features from multiple perspectives in order to make comprehensive use of text data.

• We utilize a modified cross-attention mechanism, which operates from different per-
spectives at the feature value level, to obtain richer and more precise multimodal
feature representations.

• We devise a Virtual Augmentation Contrastive Learning (VACL) module as an auxil-
iary training module to improve detection performance, which can help the model
learn more robust and generalized multimodal feature representations by enhancing
the diversity of multimodal samples in feature space to enhance feature learning,
capturing more crucial similarities and differences among multimodal samples, and
extracting more content-invariant multimodal features.

• Experiments on two real-world datasets demonstrate the effectiveness and superiority
of MVACLNet in multimodal rumor detection.

2. Related Work

Based on the number of information modalities utilized, existing rumor detection
methods can be divided into two main groups: unimodal and multimodal rumor methods.

2.1. Unimodal Rumor Detection Methods

Existing unimodal rumor detection methods utilize features extracted from either texts
or images to detect rumors, where the former accounts for the vast majority. Traditional
machine learning-based models often rely on hand-crafted textual features to detect ru-
mors [3–6]. For example, Castillo et al. [3] manually constructed more than 80 statistical
features, such as punctuation marks, emoticons, and link counts. Zhao et al. [4] designed a
set of regular expressions to select signal tweets containing skeptical enquiries. However,
these feature engineering-based methods are time-consuming and labor-consuming, which
promoted the emergence and rapid development of deep learning-based models. The deep
learning-based models show superior performance due to their ability to capture high-level
semantic features automatically [7–11,31]. For instance, Ma et al. [7] proposed a recurrent
neural network-based model to capture hidden temporal and textual features from relevant
posts modeled as variable-length time series. Yu et al. [8] designed a convolutional neural
network-based model to extract crucial textual features from the input sequence and model
high-level interactions. Ma et al. [9] used the multi-task learning idea to jointly learn rumor
detection and stance classification tasks to obtain better feature representation. Qi et al. [31]
only utilized visual information from posts. They extracted visual features from the fre-
quency and pixel domains and fused them to obtain feature representations of posts. In
addition, researchers have also leveraged propagation structure features during the spread
of rumors [12–16]. Concretely, Ma et al. [12] proposed a tree-structured recursive neural
network to simultaneously capture textual semantic features and propagation structure
features. Bian et al. [13] modeled the propagation and dispersion of rumors as top-down
and bottom-up directed graphs, respectively, and leveraged graph convolutional networks
to capture corresponding patterns and structure features. Sun et al. [16] modeled the
dynamics of rumor propagation and background knowledge structures. Then, they utilized
graph convolutional networks to capture these structure features at different time stages
and incrementally combined them using a time fusion unit. However, such propagation
structure features are generally unavailable at the early stage of rumor dissemination.

Although these unimodal methods have achieved good performance in rumor de-
tection, they can only utilize features extracted from a single modality. The growing
prevalence of multimodal posts on social platforms has amplified their limitations in
effectively detecting multimodal rumors.
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2.2. Multimodal Rumor Detection Methods

Existing multimodal rumor detection methods simultaneously utilize features ex-
tracted from both text and images to detect rumors. Some works added auxiliary tasks to
the multimodal rumor detection task to improve detection performance [20–22]. Specifically,
Wang et al. [20] designed an event adversarial neural network (EANN), which introduces
an event discrimination task to capture event-invariant features by an event discriminator
with the adversarial method. Khattar et al. [21] proposed a multimodal variational autoen-
coder (MVAE), which introduces a multimodal reconstruction loss to learn shared feature
representation between textual and visual modalities by the variational autoencoder. Zhou
et al. [22] devised a similarity-aware detection method called SAFE. They defined an extra
detection loss based on the relevance score between modalities to help identify rumors,
where the score is calculated through a modified cosine similarity algorithm. Moreover,
with the tremendous success and advancement of pre-trained models, more and more
methods extract multimodal features through pre-trained models for learning deeper and
more complex semantics [23,24,26–30]. For instance, Singhal et al. [23,24] first used different
pre-trained models to obtain both textual and visual feature representations. After that,
using pre-trained models to extract multimodal features became the norm. In addition,
considering that only employing a simple concatenation to fuse textual and visual features
would discard associations between different modalities, many approaches explored more
effective strategies to sufficiently utilize the relationships between modalities [25–30]. For
example, Jin et al. [25] employed LSTM to obtain a joint representation of text and social
context. Then, they designed a neuron-level attention mechanism to capture correlations
between it and visual feature representations. Based on the better fusion of multimodal fea-
tures by using the crossmodal weight-sharing layer and attention mechanism, Xue et al. [28]
additionally considered visual tampering features and the semantic consistency of multi-
modal features. They defined an extra detection loss based on the cosine similarity between
textual and visual semantic features to help detect rumors. Chen et al. [29] first defined an
auxiliary correlation learning task to help achieve crossmodal feature alignment. Then, they
adaptively aggregated unimodal and crossmodal fusion features based on an ambiguity
score between modalities learned by estimating the KL divergence between distributions
of textual and visual features. Moreover, Yang et al. [30] additionally considered multilevel
modal features to obtain finer-grained representations. They used different encoding layers
of BERT to capture different levels of textual semantic features and aggregated them in
layers. Then, they used attention-based intramodal and intermodal fusion blocks to capture
corresponding correlations, thus obtaining higher-order fusion features.

Although these multimodal rumor detection methods achieve relatively excellent
performance, they mostly overlook the insufficient diversity of multimodal samples in
feature space and hidden similarities and differences among multimodal samples, which
limits the further improvement of their detection performance. Additionally, in recent
years, contrastive learning has achieved remarkable performance improvements in various
fields [32–37]. Meanwhile, the idea of data augmentation through interpolation has been
proven to be effective [38]. With such considerations and inspired by these studies, we
designed the Virtual Augmentation Contrastive Learning (VACL) module as an auxiliary
training module to improve detection performance.

3. Methodology
3.1. Problem Definition

The multimodal rumor detection task is defined as a binary classification task, which
aims to train a classifier to judge a given multimodal post as a rumor or a non-rumor.
Formally, let P = {p1, p2, ..., pn} be a set of posts on social media for detection, where pi is
the i-th post and n is the number of posts. Each post pi = {Ti, Vi, yi} ∈ P consists of the text
content Ti, the attached image Vi, and the ground-truth label yi ∈ {0, 1} (i.e., non-rumor
or rumor).
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3.2. Overview

The overall architecture of the proposed MVACLNet is shown in Figure 1, which
includes five modules: (a) a Hierarchical Textual Feature Extraction (HTFE) module, (b)
a Visual Feature Extraction module, (c) a Multimodal Feature Fusion module, (d) a Vir-
tual Augmentation Contrastive Learning (VACL) module, and (e) a Rumor Classification
module. It should be noted that VACL, as an auxiliary training module for enhancing the
feature learning of the model, only participates in model training. In the following sections,
we will describe each component in detail. In particular, all feature representations in this
paper are row vectors.
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Figure 1. The overall architecture of MVACLNet.

3.3. Hierarchical Textual Feature Extraction Module

To comprehensively utilize crucial information in text data, we extract textual features
from local and global levels, which contain three perspectives: local, global continuous,
and global non-continuous. This approach contributes to the deep understanding of
the meaning of the text and pays attention to its structure from different perspectives,
overcoming the limitations of extracting a text’s information from a single perspective. The
process of HTFE is shown in Figure 1a.

Many studies have proven that the pre-trained language model BERT [39] has strong
feature representation and transfer capabilities in various NLP tasks. To utilize its rich prior
knowledge, we used BERT to initialize feature embeddings of each word wt

i in the input
text T = {wt

1, wt
2, ..., wt

n} to use in the local and global continuous perspectives:

Ht =


ht

1
ht

2
...
ht

n

 = BERT(T), (1)

where Ht ∈ Rn×dt
represents the word embedding matrix of T, ht

i denotes the word
embedding of wt

i , n is the length of T, and dt is the dimension of the word embeddings.
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3.3.1. Local-Level Textual Feature Extraction

The local features of text reflect subtle semantic information and lexical associations
well. We applied CNN with pooling [40] on Ht to capture such local features.

Specifically, a feature mw,j is first generated by applying a filter W lt
w ∈ Rdt×w on a word

embedding window Ht
i:i+w−1:

mw,j = ReLU(Ht
i:i+w−1W lt

w + blt
w), (2)

where j ∈ (1, n− w + 1) represents the index of features obtained from the same convolu-
tional kernel, w is the width of the convolutional kernel, and blt

w ∈ R is the bias term. This
filter is applied to each possible word embedding window of Ht to generate a feature map:

mw = [mw,1, mw,2, ..., mw,n−w+1], (3)

where mw ∈ Rn−w+1. Afterward, we apply the max-pooling operation on mw to take the
maximum value,

m̂w = max(mw) (4)

as the feature corresponding to this filter, which aims to capture the most important feature
for each feature map.

Based on the above steps of using a filter to extract a feature, multiple filters with
different window sizes are employed to obtain multiple features. Here, we use dlt filters
with different receptive fields w ∈ {3, 4, 5} to obtain the semantic features of different
granularities, with an equal number of filters for each receptive field. All filters’ outputs
are concatenated to form the local-level textual feature representation Flt ∈ Rdlt

:

Flt = concat(m̂w=3,1, ..., m̂w=3,dlt/3, m̂w=4,1, ..., m̂w=4,dlt/3, m̂w=5,1, ..., m̂w=5,dlt/3), (5)

where concat(·) represents a concatenation operation.

3.3.2. Global-Level Textual Feature Extraction

Textual Continuous Feature Extraction
The continuous features of text reflect contextual information and semantic relation-

ships, which can help the model understand the meaning of text and its emotions. We
apply BiGRU on Ht to extract such continuous features, which can further capture their
temporal and sequential characteristics:

Rgtc =


r1
r2
...
rn

 = BiGRU(Ht), (6)

where Rgtc ∈ Rn×dgtc
represents the hidden state matrix of Ht; ri = [−→ri ,←−ri ] ∈ Rdgtc

denotes the hidden state of ht
i , which is formed by concatenating the forward hidden state

−→ri ∈ Rdgtc/2 of ht
i and the backward hidden state←−ri ∈ Rdgtc/2 of ht

i .
Then, we concatenate←−r0 and −→rn to obtain the global-level textual continuous feature

representation Fgtc ∈ Rdgtc
:

Fgtc = concat(←−r0 ,−→rn ). (7)

Textual Non-Continuous Feature Extraction
Social texts often exhibit characteristics of discretization and fragmentation. To better

extract these non-continuous features from T, we transformed the feature extraction method
into representation learning on a text graph.

Text Graph Construction.We converted each text into an independent heterogeneous
text graph Gt(Vt, Et) with corresponding feature matrix Xt and adjacency matrix At, where
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Vt represents the set of nodes that includes a text node and multiple word nodes, and Et

represents the edge set that includes text–word edges and word–word edges.
For constructing Xt, we used pre-trained feature embeddings to initialize feature

representations of word nodes. The initial feature representation of the text node was
obtained by accumulating feature embeddings of non-repeating words it contains. Formally,
Xt ∈ Rntg×dgtnc

, where ntg is the number of nodes in Vt, and dgtnc denotes the dimension of
the feature representation of nodes.

For constructing At, we built weights of text–word and word–word edges based on
word occurrence in texts and word co-occurrence in the whole corpus [41]. Here, we
employ the term frequency-inverse document frequency (TF-IDF) and positive point-wise
mutual information (PPMI), respectively, to calculate the weights of the edges between the
text nodes and the word nodes and between the word nodes. Formally, the weight of the
edge between node ni and node nj is defined as

At
i,j =


TF− IDF(ni, nj) ni is text, nj is word
PPMI(ni, nj) ni, nj are words
1 ni = nj

. (8)

The PPMI value between the word nodes is computed as

PPMI(ni, nj) = max(log
p(ni, nj)

p(ni)p(nj)
, 0), (9)

p(ni, nj) =
|W(ni, nj)|
|W| , (10)

p(ni) =
|W(ni)|
|W| , (11)

where |W| is the total number of sliding windows in the corpus, |W(ni)| is the number of
sliding windows containing ni, and |W(ni, nj)| is the number of sliding windows containing
both ni and nj. In particular, the statistical data used are based on the entire corpus rather
than specific textual content.

Text Graph Representation Learning. After obtaining Xt and At, we employed a
two-layer GCN [42] on the constructed text graph Gt to perform graph representation
learning to obtain hidden representations of all nodes:

Ogtnc = GCN(Xt, At), (12)

where Ogtnc ∈ Rntg×dgtnc
.

Finally, we applied global average pooling on Ogtnc to obtain the global-level textual
non-continuous feature representation Fgtnc ∈ Rdgtnc

. It is formulated as

Fgtnc = MEAN(Ogtnc). (13)

3.3.3. Multi-Perspective Textual Feature Fusion

After obtaining Flt, Fgtc, and Fgtnc, we concatenated them to obtain the final textual
feature representation Ft ∈ Rdt

:

Ft = concat(Flt, Fgtc, Fgtnc), (14)

where dt = dlt + dgtc + dgtnc.

3.4. Visual Feature Extraction Module

We used the pre-trained visual model ResNet50 [43] to extract the semantic features
of the input image V. Specifically, we extracted the output of the penultimate layer of
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ResNet50 and named it cv, where cv ∈ Rdrno
and drno is the output dimension of ResNet50.

Then, we passed it through two fully connected layers with non-linear activation functions
to obtain the visual feature representation Fv, that is,

Fv = ReLu(ReLu(cvWv
1 + bv

1)W
v
2 + bv

2), (15)

where Fv ∈ Rdv
has the same dimension as the textual feature representation Ft, i.e., dv = dt,

and Wv
∗ and bv

∗ are corresponding linear transformation matrices and bias terms.

3.5. Multimodal Feature Fusion Module

Features of different modalities often carry distinct and complementary information.
Effective integration contributes to improving a model’s robustness and performance. To
this end, we developed this module to effectively fuse the textual and visual features
obtained from previous modules to form a richer and more precise multimodal feature
representation. The process of the multimodal fusion scheme is shown in Figure 1c.

Specifically, we first performed multi-head linear mappings on the textual and visual
feature representations Ft and Fv, respectively, to generate corresponding queries, keys,
and values: {

qt
h = FtWq,t

h , kt
h = FtWk,t

h , vt
h = FtWv,t

h
qv

h = FvWq,v
h , kv

h = FvWk,v
h , vv

h = FvWv,v
h

, (16)

where all queries, keys, and values ∈ Rdh
, all W∗h are corresponding mapping matrices, h

represents the index of attention heads, and dh is the dimension of each attention head.
Then, we applied a co-attention mechanism [44], a variant of the self-attention mecha-

nism [45], to produce enhanced crossmodal feature representations. Here, we perform it
from two perspectives: textual-to-visual and visual-to-textual. Formally, the query comes
from one modality, while the key and value are from another. In particular, considering
that we need to calculate the attention weight matrix between a query and a key here,
rather than between a set of queries and a set of keys like the original attention mechanism,
we modified the calculation method of each attention score from a feature vector-based
method to a feature value-based method for adapting to this situation, i.e., from the feature
vector level to the feature value level, which could also help capture the correlation more
finely. The computations are defined as

zvt = (
H
||

h=1
(vt

h(softmax( (q
v
h)

Tkt
h√

dh
))

T
))Wo,vt

ztv = (
H
||

h=1
(vv

h(softmax( (q
t
h)

Tkv
h√

dh
))

T
))Wo,tv

, (17)

where zvt ∈ Rdt
is the enhanced textual feature representation enhanced by the visual

features; ztv ∈ Rdv
is the enhanced visual feature representation enhanced by the textual

features; Wo,vt ∈ Rdmh×dt
; Wo,tv ∈ Rdmh×dv

, dmh is the feature dimension after concatenating
features of multiple attention heads; and H is the number of attention heads.

Finally, we concatenated zvt and ztv together and passed them through a fully con-
nected layer with a non-linear activation function to obtain the final multimodal feature
representation F ∈ Rd:

F = ReLU(concat(zvt, ztv)Wm f f + bm f f ), (18)

where Wm f f ∈ R(dt+dv)×d denotes the linear transformation matrix, and bm f f ∈ Rd is the
bias term.

3.6. Virtual Augmentation Contrastive Learning Module

Enhancing the diversity of multimodal samples in feature space and capturing hidden
similarities and differences among multimodal samples can help the model adapt to a
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broader range of complex data distributions and understand underlying data structures
and patterns more effectively. With such considerations, we designed this module and
used it as an auxiliary training module to assist the model in learning more robust and
generalized multimodal feature representation to improve detection performance. The
process of VACL is shown in Figure 1d.

To distinguish the virtual multimodal feature representations generated in this module,
we use “authentic” to describe the multimodal feature representations that flow into VACL
from the previous module, i.e., we rename the multimodal feature representation F as the
authentic multimodal feature representation Fauth. Meanwhile, all labels are represented in
a one-hot format.

3.6.1. Ground-Truth Label Introduction

We first introduced ground-truth labels to provide effective supervisory signals for
subsequent contrastive learning, which can help prevent the model from misclassifying
posts with noise and enhance contrastive learning.

In each data batch, let Sauth represent the authentic multimodal feature representation
set, where Sauth = {Fauth

i |1 ≤ i ≤ B} and B is the size of each data batch. We first divided
each authentic multimodal feature representation Fauth

i into authentic-positive multimodal

feature representation Fauth,pos
i or authentic-negative multimodal feature representation

Fauth,neg
i according to its ground-truth label. For example, when the ground-truth label of

Fauth
i is “non-rumor”, it is divided into Fauth,pos

i , and when the label of Fauth
i is “rumor”, it

is divided into Fauth,neg
i .

After that, we can obtain the authentic-positive multimodal feature representation set
Sauth,pos and the authentic-negative multimodal feature representation set Sauth,neg, where
Sauth,pos = {Fauth,pos

i |1 ≤ i ≤ Nauth,pos}, Sauth,neg = {Fauth,neg
i |1 ≤ i ≤ Nauth,neg}, and

Nauth,pos and Nauth,neg denote the number of authentic-positive and authentic-negative
multimodal feature representations in set Sauth, respectively.

3.6.2. Virtual Sample Generation

Based on the above settings, to enhance the diversity of multimodal samples in feature
space, we generated extra virtual multimodal feature representations and corresponding
virtual labels using an interpolation-based data augmentation strategy [38], which were
regarded as augmented samples for strengthening the feature learning of the model.

In this paper, we perform interpolation pairwise on the representations in set Sauth,pos,
and all resulting representations form the virtual-positive multimodal feature representa-
tion set Svir,pos. Similarly, we perform interpolation pairwise on the representations in set
Sauth,neg, and all resulting representations compose the virtual-negative multimodal feature
representation set Svir,neg. Additionally, we perform interpolation pairwise, in a cross-set
manner, on the representations in sets Sauth,pos and Sauth,neg, and all resulting representa-
tions form the virtual-mixed multimodal feature representation set Svir,mix. Specifically, the
virtual-positive multimodal feature representation Fvir,pos

k ∈ Svir,pos, the virtual-negative

multimodal feature representation Fvir,neg
k ∈ Svir,neg, and the virtual-mixed multimodal

feature representation Fvir,mix
k ∈ Svir,mix are generated by the following formula:

Fvir,pos
k = λFauth,pos

i + (1− λ)Fauth,pos
j

Fvir,neg
k = λFauth,neg

i + (1− λ)Fauth,neg
j

Fvir,mix
k = λFauth,pos

i + (1− λ)Fauth,neg
j

, (19)

where i, j, and k denote the indexes of these multimodal feature representations, i can be
equal to j, and the interpolation balance parameter λ is sampled from the Beta distribution
in each batch:

λ ∼ Beta(ε, ε), (20)
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λ = max(λ, 1− λ), (21)

where ε is a hyperparameter used to control the distribution of λ.
Based on the same method, we generated corresponding virtual labels for each virtual

multimodal feature representation, which formed three corresponding virtual label sets,
Yvir,pos, Yvir,neg, and Yvir,mix, where each virtual label yvir,∗

k is generated as follows:
yvir,pos

k = λyauth,pos
i + (1− λ)yauth,pos

j

yvir,neg
k = λyauth,neg

i + (1− λ)yauth,neg
j

yvir,mix
k = λyauth,pos

i + (1− λ)yauth,neg
j

. (22)

3.6.3. Sample Reorganization

To utilize these generated virtual multimodal feature representations and their cor-
responding virtual labels to perform subsequent feature learning, we reorganized them
in advance.

Concretely, we merged Sauth,pos and Svir,pos to compose the enhanced positive multi-
modal feature representation set Senh,pos and merged Sauth,neg and Svir,neg to compose the
enhanced negative multimodal feature representation set Senh,neg.

Meanwhile, Svir,pos, Svir,neg, and Svir,mix were merged to form the virtual multimodal
feature representation set Svir. Yvir,pos, Yvir,neg, and Yvir,mix were merged to form the virtual
label set Yvir.

3.6.4. Enhanced Contrastive Learning

To catch more crucial similarities and differences among multimodal samples, we
introduced contrastive learning and additionally leveraged ground-truth labels and the
virtual multimodal feature representations to enhance it.

Specifically, for Senh,pos and Senh,neg, we employed the contrastive learning strategy to
encourage the multimodal feature representations belonging to the same class to be close
to each other and those belonging to different classes to be far away from each other in
the multimodal feature space. In this way, the model can capture more critical intra-class
similarity features and inter-class difference features. The enhanced contrastive learning
loss is defined as

Lcon = − ∑
Fcon

i ∈Scon
log


1

|Spos(Fcon
i )| ∑

Fpos
j ∈Spos(Fcon

i )

esim(Fcon
i ,Fpos

j )/τ

∑
Fneg

k ∈Sneg(Fcon
i )

esim(Fcon
i ,Fneg

k )/τ

, (23)

where Scon = Senh,pos ∪Senh,neg; Fcon
i represents the i-th multimodal feature representation in

Scon; Spos(Fcon
i ) denotes the positive sample set of Fcon

i , which consists of those multimodal
feature representations belonging to the same enhanced set as Fcon

i ; Fpos
j is the j-th positive

sample of Fcon
i ; Sneg(Fcon

i ) represents the negative sample set of Fcon
i , which is composed of

those multimodal feature representations that do not belong to the same enhanced set as
Fcon

i ; Fneg
k is the k-th negative sample of Fcon

i ; the enhanced set is either Senh,pos or Senh,neg;
| · | denotes the counting operation on a set; sim(·) represents the calculation function of
cosine similarity; and τ ∈ R+ is a scalar temperature parameter.

3.6.5. KL Divergence Constraint

For Svir and Yvir, we performed the KL divergence constraint, regarded as part of the
total loss, between predicted probability distributions of the virtual multimodal feature
representations and their corresponding virtual labels to help the model capture more
content-invariant multimodal features:

Lkld = EFvir
i ∈Svir ,yvir

i ∈Yvir KL(Softmax(MLP(Fvir
i ))||yvir

i ), (24)
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where Fvir
i is the i-th virtual multimodal feature representation in Svir, yvir

i denotes the
virtual label of Fvir

i , and a two-layer MLP and a softmax function are employed to predict
the probability distribution of Fvir

i .

3.7. Rumor Classification Module

We performed rumor classification on the authentic multimodal feature representa-
tions in Sauth. The predicted label ŷi of Fauth

i ∈ Sauth was calculated via a fully connected
layer and a softmax function:

ŷi = softmax(Fauth
i W + b), (25)

where W and b are the weight and bias parameters. Then, we used the cross-entropy loss
as the rumor classification loss:

Lcls = −∑
i

yi log(ŷi), (26)

where yi denotes the ground-truth label of Fauth
i .

3.8. Overall Loss

The overall loss is a weighted sum of the rumor classification loss, the enhanced
contrastive learning loss, and the KL divergence constraint loss:

L = αLcls + βLcon + γLkld, (27)

where α, β, and γ are hyperparameters that balance these three losses.
We optimized the parameters of the model by minimizing the overall loss L.

4. Experiments and Analysis

In this section, we first introduce the datasets used, the experimental setup, and the
baseline models. Second, we compare the detection performance of MVACLNet with the
baseline models. Then, we perform the ablation analysis to verify the effectiveness of each
module and component of MVACLNet. Finally, we visually analyze the role of VACL.

4.1. Datasets

We conducted experiments on two real-world datasets, Twitter [46] and Weibo [25], to
verify the effectiveness of the proposed MVACLNet.

In the Twitter dataset, each tweet contains textual content, image/video, and associ-
ated social context information. The dataset has around 17,000 unique tweets spanning
different events. The dataset was divided into two parts: the development set (9000 rumor
tweets, 6000 non-rumor tweets) and the test set (2000 tweets). There are no overlapping
events between these two sets. In particular, all the tweets were manually verified by
cross-checking online sources (articles and blogs). Due to our focus on using text and
image content to identify rumors, we removed posts that only attached videos. We used
the development set for training and the test set for testing.

In the Weibo dataset, each post contains textual content, image content, and social
context information. The dataset contains 4749 rumors and 4779 non-rumors. The non-
rumor posts were all verified by the Xinhua News Agency, an authoritative news agency in
China, and rumors were all confirmed by the official rumor debunking system of Weibo.
We only focus on textual and image information, ignoring social context information. The
dataset is divided into the training and testing sets in an 8:2 ratio.

4.2. Experimental Setup

For the model implementation and training, our algorithms were implemented using
the Pytorch framework [47] and trained with Adam Optimizer [48].
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For the data preprocessing, we removed URLs and emoticons from text and uniformly
set the size of images to 224 × 224 × 3.

For the settings of the pre-trained models, we used bert-base-uncased for English text
and bert-base-chinese for Chinese text. In particular, we kept the parameters of BERT and
ResNet50 static to avoid overfitting.

For the initial word embeddings in the global-level textual non-continuous feature
extraction component, we used GloVe [49] for English and FastText [50] for Chinese.

For the dimension settings, the word embedding dimension initialized by BERT was
768; the output dimension of the penultimate layer of ResNet50 was 2048; the dimensions
dlt, dgtc, and dgtnc were all 300; the dimensions dt and dv were both 900; and the dimension
d was 300.

For the parameter settings, we set the learning rate to 0.002, the batch size to 64, and
the number of attention heads, i.e., H, to 9. The hyperparameter ε, which controls the
distribution of λ, was set to 0.7 for both Twitter and Weibo. The hyperparameters α, β, and
γ, which balance losses, were set to 1.0, 1.0, and 1.5 for Twitter, respectively, and 1.0, 2.0,
and 1.5 for Weibo, respectively.

For the training strategies, we adopted the early stop strategy and the dynamic
learning rate reduction strategy during the model training and set the value of dropout
used for attention to 0.1 to avoid overfitting.

For the evaluation metrics, we used accuracy, precision, recall, and F1 score as the
evaluation metrics to assess experimental performance, as these metrics are widely accepted
for evaluating multimodal rumor detection methods. All the aforementioned evaluation
metrics are represented as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (28)

Precision =
TP

TP + FP
, (29)

Recall =
TP

TP + FN
, (30)

F1 =
2× Precision× Recall

Precision + Recall
, (31)

where TP (true positive) represents the number of positive samples classified correctly as
positive, TN (true negative) represents the number of negative samples classified correctly
as negative, FP (false positive) represents the number of negative samples incorrectly
classified as positive, and FN (false negative) represents the number of positive samples
incorrectly classified as negative.

4.3. Baselines

To evaluate the effectiveness and superiority of MVACLNet, we compare it with two
types of baseline models: unimodal models and multimodal models, where the former is
based on textual or visual content in the post and the latter relies on both textual and visual
content in the post.

(a) Unimodal Models:

• VGG-19 [51]: This model is a pre-trained deep convolutional neural network archi-
tecture with 19 layers, which is widely employed for image classification tasks and is
known for its straightforward yet effective stacked convolutional layer structure. We
used it to obtain visual feature representation, which is input into a fully connected
layer followed by a softmax layer to detect rumors.

• BERT [39]: This model is a pre-trained language model based on the Transformer
encoder architecture, which captures bidirectional contextual textual information. We
used it to obtain textual feature representation, which is input into a fully connected
layer followed by a softmax layer to detect rumors.
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(b) Multimodal Models:

• att-RNN [25]: This model employs LSTM to learn a joint representation of text and
social context, and it extracts visual features through VGG-19. Then, it designs a
neuron-level attention mechanism to capture correlations between visual and textual
social features to obtain an attention-aggregated visual representation. Finally, it
concatenates the representations for rumor detection. For fairness in the comparison,
we removed the part that deals with social features in the concrete implementation.

• EANN [20]: This model uses TextCNN [40] and VGG-19 to extract textual and visual
features, respectively. Then, it concatenates them as a multimodal feature repre-
sentation, which is input into an event discriminator and a rumor classifier. The
event discriminator guides the model to capture event-invariant multimodal features
through an event adversarial mechanism.

• MVAE [21]: This model utilizes the variational autoencoder and a designed multi-
modal reconstruction loss to learn a shared representation between textual and visual
modalities, where the encoder extracts textual and visual features through bidirec-
tional LSTM and VGG19, respectively. Finally, the sampled latent multimodal feature
representation is used for rumor detection.

• Spotfake [23]: This model uses BERT to extract textual features and utilizes VGG19 to
capture visual features. Then, it concatenates them for rumor detection.

• Spotfake+ [24]: This model is an upgraded version of SpotFake that replaces BERT
with the pre-trained language model XLNet [52] to extract textual features.

• SAFE [22]: This model first converts an image to text through a pre-trained im-
age2sentence model. Then, it uses TextCNN to capture textual and visual features,
which are concatenated for rumor detection. Meanwhile, it further utilizes the rel-
evance between modalities, quantified as crossmodal similarity, to define an extra
detection loss, thereby helping identify rumors.

• MCNN [28]: This model applies BERT and BiGRU to capture textual semantic features
and utilizes ResNet50, an attention mechanism, and BiGRU to extract visual semantic
features. Meanwhile, it captures visual tampering features through the Error Level
Analysis (ELA) algorithm and ResNet50. Then, it uses a crossmodal weight-sharing
layer and the attention mechanism to fuse all the above features and the semantic
features of ResNet50 output for prediction. Afterward, it further employs cosine
similarity to measure the similarity between textual and visual semantic features,
which is used to define an extra detection loss to help detect rumors.

• CAFE [29]: This model utilizes BERT and ResNet34 to extract textual and visual
features, respectively. Then, it defines an auxiliary correlation learning task to help
achieve crossmodal feature alignment. Following this, it adaptively aggregates uni-
modal features and crossmodal correlations based on a learned ambiguity score
between modalities, where the score is quantified by estimating the KL divergence be-
tween distributions of textual and visual features. Finally, the aggregated multimodal
feature representation is input into a classifier for rumor detection.

• MRAN [30]: This model first extracts multilevel textual semantic features through
different encoding layers of BERT. Then, it further utilizes TextCNN to aggregate
these features in layers, thus filtering out some noise while extracting important
local information. The visual features are extracted through VGG-19. Afterward, it
uses text/image attention blocks and cross-attention blocks to capture intramodal
and intermodal associations, thereby obtaining higher-order fusion features between
textual and visual modalities. Finally, the fused multimodal feature representation is
used for rumor detection.

4.4. Comparative Experiments and Analysis

Tables 1 and 2 exhibit the detection performance of MVACLNet and all baseline models
on the two real-world datasets, where the experimental results of the baseline models were
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obtained on the same datasets according to their model structure and experimental setup.
It should be noted that all experimental results are from the test set.

Table 1. The performance of different methods on the Twitter dataset.

Method Accuracy
Rumor Non-Rumor

Precision Recall F1 Precision Recall F1

VGG-19 0.596 0.695 0.518 0.593 0.524 0.700 0.599
BERT 0.706 0.648 0.540 0.589 0.715 0.636 0.673

att-RNN 0.664 0.749 0.615 0.676 0.589 0.728 0.651
EANN 0.648 0.810 0.498 0.617 0.584 0.759 0.660
MVAE 0.745 0.801 0.719 0.758 0.689 0.777 0.730
SAFE 0.766 0.777 0.795 0.786 0.752 0.731 0.742

Spotfake 0.771 0.784 0.744 0.764 0.769 0.807 0.787
Spotfake+ 0.790 0.793 0.827 0.810 0.786 0.747 0.766
MCNN 0.784 0.778 0.781 0.779 0.790 0.787 0.788
CAFE 0.806 0.807 0.799 0.803 0.805 0.813 0.809

MRAN 0.855 0.861 0.857 0.859 0.847 0.816 0.831
MVACLNet 0.891 0.811 0.922 0.863 0.949 0.872 0.909

The bold numbers indicate the optimal values for the corresponding metrics.

Table 2. The performance of different methods on the Weibo dataset.

Method Accuracy
Rumor Non-Rumor

Precision Recall F1 Precision Recall F1

VGG-19 0.633 0.630 0.500 0.550 0.630 0.750 0.690
BERT 0.804 0.800 0.860 0.830 0.840 0.760 0.800

att-RNN 0.772 0.854 0.656 0.742 0.720 0.889 0.795
EANN 0.782 0.827 0.697 0.756 0.752 0.863 0.804
MVAE 0.824 0.854 0.769 0.809 0.802 0.875 0.837
SAFE 0.763 0.833 0.659 0.736 0.717 0.868 0.785

Spotfake 0.869 0.877 0.859 0.868 0.861 0.879 0.870
Spotfake+ 0.870 0.887 0.849 0.868 0.855 0.892 0.873
MCNN 0.846 0.809 0.857 0.832 0.879 0.837 0.858
CAFE 0.840 0.855 0.830 0.842 0.825 0.851 0.837

MRAN 0.903 0.904 0.908 0.906 0.897 0.892 0.894
MVACLNet 0.913 0.916 0.911 0.913 0.910 0.916 0.913

The bold numbers indicate the optimal values for the corresponding metrics.

From the experimental results of unimodal models, we can observe that BERT outper-
forms VGG-19, which shows that textual features are more important and influential than
visual features for the rumor detection task.

For the comparison between unimodal and multimodal models, BERT performs better
than att-RNN and EANN on the Twitter dataset, and it also obtains better performance
than att-RNN, EANN, and SAFE on the Weibo dataset, which indicates the advantage
of utilizing BERT to extract textual semantic features to detect rumors. However, on the
whole, its performance is still lower than that of other multimodal models, which shows
the limitation of using unimodal models to detect multimodal rumors. These results
also confirm the effectiveness of visual content as supplementary information and the
importance of designing an effective Multimodal Feature Fusion schema for multimodal
rumor detection.

From the experimental results of multimodal models, we can see that Spotfake and
Spotfake+ outperform att-RNN, EANN, MVAE, and SAFE on the two datasets, which
proves the advantage of using different pre-trained models to extract multimodal features
in the multimodal rumor detection task. MCNN and CAFE achieve better performance
than att-RNN, EANN, MVAE, and SAFE on the two datasets. At the same time, CAFE
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performs better than Spotfake and Spotfake+, and MCNN performs more satisfactorily than
Spotfake on the Twitter dataset. Moreover, MRAN obtains the best detection performance
of all the multimodal baseline models on the two datasets. These findings illustrate that
capturing finer-grained and comprehensive modal features, leveraging intramodal and
intermodal associations, and designing more effective feature fusion strategies between
modalities can benefit the multimodal rumor detection task.

For our proposed model, the experimental results show that MVACLNet outperforms
all the baseline models on these two datasets in terms of accuracy and most other metrics,
confirming its effectiveness and superiority. These results also demonstrate that addition-
ally considering extracting textual features from multiple perspectives to comprehensively
utilize textual information, enhancing the diversity of multimodal samples in feature space
to enhance feature learning, capturing more crucial similarities and differences among mul-
timodal samples, and extracting more content-invariant multimodal features can be further
beneficial to the multimodal rumor detection task, thus improving detection performance.

Furthermore, we can observe that these models generally perform better on the Weibo
dataset than on the Twitter dataset. This discrepancy may arise due to several distinctions
between these two datasets. In terms of textual content, the average post length in the
Twitter dataset is smaller than that in the Weibo dataset, making it unable to provide more
textual semantic information. Regarding image content, the number of images in the Twitter
dataset is less than the number of posts, indicating that there are instances where a single
image is shared by multiple posts, resulting in insufficient image features in the Twitter
dataset. In contrast, each post in the Weibo dataset has one or multiple corresponding
images. These dissimilarities inevitably lead to variations in the performance of each model
when applied to these two datasets.

4.5. Ablation Experiments and Analysis

To assess the effectiveness of each module or component in MVACLNet, we designed
several variants to investigate the impacts of these modules or components on MVACLNet:

• “w/o VACL” represents a model without the Virtual Augmentation Contrastive Learn-
ing module.

• “w/o KLC” represents a model that only uses the enhanced contrastive learning
without performing the KL divergence constraint in VACL.

• “w/o ECL” indicates a model that only implements the KL divergence constraint
without employing the enhanced contrastive learning in VACL.

• “w/o KLC+VA” represents a model that only leverages ground-truth labels to enhance
contrastive learning in VACL, which does not perform the KL divergence constraint
and does not use the extra-generated virtual multimodal feature representations to
enhance contrastive learning.

• “w/o VA” represents a model that only leverages ground-truth labels to enhance
contrastive learning and performs the KL divergence constraint in VACL, which does
not use the extra-generated virtual multimodal feature representations to enhance
contrastive learning.

• “w/o MFF” signifies a model with the Multimodal Feature Fusion module replaced
by a two-layer MLP with an ReLu activation function.

• “w/o LT” represents a model that removes the local-level textual feature extraction
component from HTFE.

• “w/o GTC” signifies a model that removes the global-level textual continuous feature
extraction component from HTFE.

• “w/o GTNC” denotes a model that removes the global-level textual non-continuous
feature extraction component from HTFE.

Tables 3 and 4 present the performance of variants of MVACLNet on the two real-world
datasets. It should be noted that all experimental results are from the test set.
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Table 3. The performance of different variants of MVACLNet on the Twitter dataset.

Method Accuracy
Rumor Non-Rumor

Precision Recall F1 Precision Recall F1

MVACLNet 0.891 0.811 0.922 0.863 0.949 0.872 0.909
w/o VACL 0.824 0.763 0.763 0.763 0.860 0.860 0.860
w/o ECL 0.831 0.772 0.776 0.774 0.867 0.864 0.865
w/o KLC 0.843 0.792 0.781 0.787 0.872 0.879 0.875

w/o KLC+VA 0.847 0.770 0.837 0.802 0.899 0.853 0.875
w/o VA 0.857 0.768 0.883 0.821 0.923 0.841 0.881

w/o MFF 0.857 0.772 0.871 0.818 0.918 0.849 0.882
w/o LT 0.833 0.746 0.831 0.786 0.894 0.834 0.863

w/o GTC 0.841 0.797 0.767 0.781 0.866 0.885 0.875
w/o GTNC 0.830 0.763 0.784 0.773 0.870 0.857 0.864

The bold numbers indicate the optimal values for the corresponding metrics.

Table 4. The performance of different variants of MVACLNet on the Weibo dataset.

Method Accuracy
Rumor Non-Rumor

Precision Recall F1 Precision Recall F1

MVACLNet 0.913 0.916 0.911 0.913 0.910 0.916 0.913
w/o VACL 0.874 0.876 0.872 0.874 0.872 0.876 0.874
w/o ECL 0.879 0.890 0.865 0.877 0.868 0.892 0.880
w/o KLC 0.869 0.880 0.857 0.868 0.860 0.882 0.871

w/o KLC+VA 0.876 0.882 0.869 0.876 0.870 0.883 0.876
w/o VA 0.878 0.890 0.862 0.876 0.866 0.893 0.879

w/o MFF 0.874 0.900 0.842 0.870 0.851 0.906 0.878
w/o LT 0.874 0.853 0.907 0.879 0.900 0.842 0.870

w/o GTC 0.879 0.893 0.861 0.877 0.865 0.896 0.880
w/o GTNC 0.883 0.868 0.903 0.885 0.899 0.862 0.880

The bold numbers indicate the optimal values for the corresponding metrics.

Based on the results of the ablation experiments, it is evident that each module or
component serves a distinct purpose, and removing any module or component will impact
the overall performance of MVACLNet.

For “w/o VACL”, compared with the complete model, its accuracy decreased by 6.7%
and 3.9% on the Twitter and Weibo datasets, respectively. Meanwhile, its F1 scores for the
rumor and non-rumor categories decreased by 10% and 4.9%, respectively, on the Twitter
dataset, and both decreased by 3.9% on the Weibo dataset. These results indicate that
removing the VACL module has a noticeable effect on the model’s performance, affirming
the effectiveness and generalization of the VACL module proposed in this paper.

From the experimental results of “w/o ECL”, “w/o w/o KLC”, “w/o KLC+VA”,
and “w/o VA”, we can observe that the accuracy and the F1 scores of these variants
all decreased to varying degrees compared with the complete model. These findings
suggest that the lack of any component of VACL does not yield optimal performance.
Instead, the joint consideration of enhancing the diversity of multimodal samples in feature
space to strengthen feature learning, capturing more crucial similarities and differences
among multimodal samples, and extracting more content-invariant multimodal features can
complement and enhance each other to help the model learn more robust and generalized
multimodal feature representations, thereby achieving superior detection performance.
These results also indirectly prove that the extra-generated virtual multimodal feature
representations and the introduced ground-truth labels can enhance contrastive learning to
capture more critical intra-class similarity features and inter-class difference features.

For “w/o MFF”, its accuracy decreased by 3.4% and 3.9% on the Twitter and Weibo
datasets, respectively, compared with the complete model. Meanwhile, its F1 scores
for the rumor and non-rumor categories decreased by 4.5% and 2.7%, respectively, on
the Twitter dataset and decreased by 4.3% and 3.5%, respectively, on the Weibo dataset.
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These results show that the proposed Multimodal Feature Fusion module effectively fuses
multimodal features and explores the underlying connections between textual and visual
features, which also proves that designing an effective feature fusion strategy contributes
to multimodal rumor detection.

The experimental results of “w/o LT”, “w/o GTC”, and “w/o GTNC” all exhib-
ited varying degrees of decreases compared to the complete model, which illustrates that
neglecting textual features from any perspective does not achieve optimal detection per-
formance. These findings demonstrate the effectiveness of our proposed HTFE module,
i.e., considering extracting textual features from multiple perspectives to comprehensively
utilize textual information can benefit multimodal rumor detection.

4.6. Visualization Analysis

To further explore and analyze the effectiveness of the proposed VACL module, we
used the t-SNE algorithm [53] to visually compare the multimodal feature representations
learned by “w/o VACL” with those learned by MVACLNet on the two datasets. The t-SNE
algorithm maps high-dimensional data to a two-dimensional space, which are presented on
a two-dimensional coordinate map for visualization. The visualization results are shown in
Figure 2.

(a) (b)

(d)(c)

Figure 2. The visualization results of the multimodal feature representations learned by “w/o VACL”
and MVACLNet on the Twitter and Weibo datasets. (a) The visualization result of the multimodal
feature representations learned by “w/o VACL” on the Twitter dataset. (b) The visualization result
of the multimodal feature representations learned by MVACLNet on the Twitter dataset. (c) The
visualization result of the multimodal feature representations learned by “w/o VACL” on the Weibo
dataset. (d) The visualization result of the multimodal feature representations learned by MVACLNet
on the Weibo dataset.

In Figure 2, we can observe that Figure 2a,c contain more misclassified samples com-
pared to Figure 2b,d. In addition, the interval of the distribution for sample points in
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Figure 2b,d are more distinct than those in Figure 2a,c, with clustering results being more
concentrated. These results show that MVACLNet exhibits more satisfactory classifica-
tion performance, which demonstrates that MVACLNet outperforms “w/o VACL” in
learning multimodal feature representations and further validates the effectiveness of
the VACL module. The reason is that, compared with “w/o VACL”, MVACLNet can
enhance feature learning by enhancing the diversity of multimodal samples in feature
space and capture more critical similarities and differences among multimodal samples,
more content-invariant multimodal features, and more representative latent multimodal
features of rumors. These help the model acquire more robust and generalized multimodal
feature representations, thus improving the performance of multimodal rumor detection.

5. Limitations and Threats to Validity

Our model performs better than the baseline models on the Twitter and Weibo datasets,
while its performance on other datasets still needs further validation. Our model’s perfor-
mance on strong noise datasets also needs further testing.

6. Conclusions

In this paper, we propose a Multimodal Virtual Augmentation Contrastive Learning
Network (MVACLNet) for rumor detection. First, MVACLNet utilizes the designed Hierar-
chical Textual Feature Extraction (HTFE) module to extract textual features from multiple
perspectives, thereby leveraging textual information comprehensively. Second, it better in-
tegrates the textual and virtual features using a modified cross-attention mechanism, which
operates from different perspectives at the feature value level, to obtain richer and more
precise multimodal feature representations. Third, a Virtual Augmentation Contrastive
Learning (VACL) module is devised as an auxiliary training module to help the model
learn more robust and generalized multimodal feature representations by enhancing the
diversity of multimodal samples in feature space for enhancing feature learning, captur-
ing more critical similarities and differences among multimodal samples, and extracting
more content-invariant multimodal features. The experimental results demonstrate the
effectiveness and superiority of MVACLNet on multimodal rumor detection.

In future work, we aim to explore an improved multimodal learning method suitable
for detecting multimodal rumors with a certain extent of propagation structure, as in some
cases, multimodal rumors may have already spread over a period of time and formed a
certain scale of information dissemination structure.
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Abbreviations
The following abbreviations are used in this manuscript:

MVACLNet Multimodal Virtual Augmentation Contrastive Learning Network.
HTFE Hierarchical Textual Feature Extraction.
VACL Virtual Augmentation Contrastive Learning.
KL Kullback–Leibler.
LSTM Long Short-Term Memory.
BERT Bidirectional Encoder Representation from Transformers.
CNN convolutional neural network.
BiGRU Bidirectional Gated Recurrent Unit.
TF-IDF Term Frequency-Inverse Document Frequency.
PPMI Positive Point-Wise Mutual Information.
GCN graph convolutional network.
ResNet Residual Network.
VGG Visual Geometry Group.
att-RNN Recurrent Neural Network with an attention mechanism.
EANN Event Adversarial Neural Network.
MVAE multimodal variational autoencoder.
SAFE Similarity-Aware FakE news detection method.
MCNN Multimodal Consistency Neural Network.
MRAN Multimodal Relationship-Aware Attention Network.
TP true positive.
TN true negative.
FP false positive.
FN false negative.
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