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Abstract: In this paper, we introduce a novel sim-learnheuristic method designed to address the team
orienteering problem (TOP) with a particular focus on its application in the context of unmanned
aerial vehicles (UAVs). Unlike most prior research, which primarily focuses on the deterministic and
stochastic versions of the TOP, our approach considers a hybrid scenario, which combines determinis-
tic, stochastic, and dynamic characteristics. The TOP involves visiting a set of customers using a team
of vehicles to maximize the total collected reward. However, this hybrid version becomes notably
complex due to the presence of uncertain travel times with dynamically changing factors. Some
travel times are stochastic, while others are subject to dynamic factors such as weather conditions
and traffic congestion. Our novel approach combines a savings-based heuristic algorithm, Monte
Carlo simulations, and a multiple regression model. This integration incorporates the stochastic and
dynamic nature of travel times, considering various dynamic conditions, and generates high-quality
solutions in short computational times for the presented problem.

Keywords: team orienteering problem; biased randomization; learnheuristic; simheuristic

1. Introduction

The team orienteering problem (TOP) is a classic optimization problem in which
a set of routes is constructed for a team of vehicles to traverse, aimed at collecting the
highest possible reward from customers within the routes before a defined time limit [1].
In sectors such as search and rescue, surveillance, and logistics, addressing the TOP is
crucial. One example of this could be a search and rescue mission, where a team of
unmanned aerial vehicles (UAVs) must navigate through a disaster-stricken area to locate
survivors and deliver supplies. While UAVs have emerged as essential assets in such
missions due to their capacity to perform hazardous duties and their skill in sensing,
monitoring, and navigating, the difficulties they face are difficult to overstate [2]. These
challenges are multifaceted and include unpredictable environmental factors like weather
or traffic conditions. Such unpredictability makes reliable behavior prediction impossible,
resulting in suboptimal solutions and a reduced mission efficiency. Additionally, the natural
limitations of UAVs, such as the limited battery life and cargo capacity, demand precise
optimization for mission accomplishment. Despite these challenges, UAVs remain a critical
technology for solving complex problems in various domains, emphasizing the importance
of the TOP and its applicability to UAVs [3]. Furthermore, the integration of Internet of
Things technologies stands as one of the most promising approaches for enabling UAVs to
sense their surroundings and collect data. This integration facilitates UAVs to gather and
exchange real-time environmental data, thereby optimizing their routes accordingly [4].

In recent years, the majority of studies focused on either deterministic or stochastic
variants of the TOP. In the case of the deterministic TOP, many of the studies in the literature
rely significantly on exact methods to solve this problem [5]. However, when presented with
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challenges given by large-scale instances, these exact methods show limited effectiveness.
On the other hand, in the case of the stochastic TOP, various studies have explored different
strategies, such as stochastic programming [6], robust optimization [7], and, recently, the
utilization of simheuristic approaches [8]. Furthermore, several versions of the TOP have
been developed to address specific real-world scenarios, including heterogeneous vehicle
capacities, customer time constraints, and unpredictable travel times and profits. For
example, Kirac et al. [9] addressed the TOP with time windows and mandatory visits, Lin
and Vincent [10] tackled the TOP with mandatory visits, Gunawan et al. [11] addressed the
TOP with variable profits, and Panadero et al. [12] tackled the TOP with stochasticity.

Our paper focuses on a hybrid variant of the TOP, which combines deterministic,
stochastic, and dynamic characteristics, addressing a gap in the scientific literature. To
solve this complex problem, a new sim-learnheuristic approach is introduced, with special
applications in UAVs that can be used to aid in disaster rescue. This approach combines
a biased-randomized savings-based heuristic, Monte Carlo simulations, and a multiple
regression model. The main objective of this novel methodology is to combine the strengths
of all three components, allowing for an agile exploration of the search space to produce
high-quality solutions for the presented problem. Figure 1 depicts this new variant of the
TOP, where the travel times display a wide range of features. These features include certain
travel times (deterministic), uncertain travel times (stochastic), and travel times that can
change over time due to dynamic factors (dynamic), such as varying traffic congestion and
weather conditions. This blend of characteristics results in a more precise representation of
the complexities evident in real-world situations.
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Tdynamic
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(5)
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Figure 1. Hybrid variant of the TOP considering different kinds of travel times.

The main contributions of this research are as follows: (i) we present a hybrid variant
of the TOP, which combines deterministic, stochastic, and dynamically changing travel
times due to factors such as traffic congestion and weather conditions; and (ii) we propose
a novel methodology called the sim-learnheuristic algorithm to solve this rich variant of
the TOP, where the integration of three distinct components is crucial for its capability
to solve increasingly complex combinatorial optimization problems. Figure 2 illustrates
the integration of the three components. Initially, the metaheuristic component addresses
the deterministic aspects of the problem. However, real-world scenarios often involve
uncertainties. To account for this, the simulation component incorporates the stochastic
nature of the environment. By combining this with the metaheuristic component, the
simheuristic component effectively tackles stochastic problems. Moreover, real-world
conditions are dynamic; thus, machine learning algorithms are employed to predict and
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adapt to these changes. Integrating these predictions within the simheuristic framework
enables it to address and solve complex dynamic problems effectively.

Figure 2. Integration of the sim-learnheuristic’s main three components.

The remaining sections of the paper are structured as follows: Section 2 presents brief
reviews of related articles. Section 3 presents the definition of the hybrid TOP, and Section 4
describes the proposed methodology of the sim-learnheuristic algorithm. Section 5 carries
out a series of computational experiments to illustrate the performance of the proposed
algorithm, and Section 6 presents the discussion of the obtained results. Finally, Section 7
highlights the main conclusions and future research lines of this work.

2. Related Work

In the field of optimization, simheuristics and learnheuristics are increasingly being
used to solve complex combinatorial optimization problems under uncertainty. Simheuris-
tic methods combine the advantages of both simulation and heuristics to tackle such
problems. On the other hand, learnheuristics employ machine learning algorithms to
improve the quality of solutions over time. Gonzalez-Neira et al. [13] proposed a hybrid
simheuristic method to solve a complex multicriteria stochastic permutation flow shop
problem. This method combines a greedy randomized adaptive search procedure, Monte
Carlo simulations, a Pareto archived evolution strategy, and an analytic hierarchy process
to handle stochastic processing times and sequence-dependent setup times. It considers
quantitative criteria like earliness/tardiness and qualitative criteria like product and cus-
tomer importance. The experimental results showed the significant impact of processing
time distributions and coefficients of variation on decision criteria. Similarly, Caldeira and
Gnanavelbabu [14] proposed a simheuristic approach to solve the stochastic flexible job
shop scheduling problem. They integrated Monte Carlo simulations into a Jaya algorithm
framework to minimize the expected makespan, considering uncertainties in production
processes represented by random variables with known probability distributions. The
computational results demonstrated its effectiveness across different variability levels using
reliability-based methods, showcasing its capability in handling stochasticity in flexible job
shop scheduling. Yazdani et al. [15] proposed a novel simheuristic approach to address
the waste collection routing problem in the context of construction and demolition waste
management. The proposed approach utilized a hybrid genetic algorithm to optimize
vehicle route planning from construction projects to recycling facilities. In their research.
they conducted a comparative analysis with existing approaches and demonstrated the
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high performance of the proposed simheuristic algorithm. Real case studies from Sydney,
Australia, were used for evaluation, contributing significantly to optimizing future waste
collection problems and providing recommendations for decision-makers and practitioners.
Crawford et al. [16] proposed a Q-learnheuristic framework integrating Q-Learning into
metaheuristics to address the exploration–exploitation balance dilemma. This framework,
applied to various metaheuristics including the Whale Optimization Algorithm and the
Sine-Cosine Algorithm, enhanced the selection of operators like binarization schemes
for binary combinatorial problems. This study extended the framework’s applicability,
demonstrating statistical improvements in both the exploration–exploitation balance and
the solution quality when solving the set covering problem. Gomez et al. [17] introduced
a novel approach to tackle the capacitated dispersion problem, which involves selecting
elements within a network while considering their bounded service capacities. The intro-
duction of a random Bernoulli component influences node capacities, potentially resulting
in nodes with zero capacity based on environmental variables. The proposed learnheuristic
approach hybridizes a heuristic algorithm with reinforcement learning, offering a promis-
ing method to handle this intricate problem variant effectively. Bullah and van Zyl [18]
proposed a novel learnheuristic approach to solve a constrained multi-objective portfolio
optimization problem. The authors developed a hybrid approach that combines machine
learning and a metaheuristic algorithm to obtain high-quality solutions that satisfy multiple
objectives, such as maximizing returns while minimizing risk and adhering to constraints
such as transaction costs and diversification requirements. The learnheuristic approach
involves training a neural network to predict the quality of solutions obtained by a meta-
heuristic algorithm and using this prediction to guide the search toward promising regions
of the solution space.

Focusing on the TOP, several articles have been published in recent years. Notably,
Tricoire et al. [19] employed an adaptive algorithm based on the Markov decision process
to decide whether to continue the route or take a shortcut given a specific deadline. Mufalli
et al. [20] discussed sensor assignment and routing for UAVs to maximize intelligence
gathering, considering constraints like a limited battery and sensor weight. They proposed
a detailed plan using mathematical models and local search strategies, with column gener-
ation for efficiency in larger missions. Likewise, Saeedvand et al. [21] presented a hybrid
technique for solving the TOP in rescue operations using humanoid robots, aiming to
optimize energy, task completion, and decision-making through a learning algorithm and
an evolutionary multi-objective approach. Schmitt-Ulms et al. [22] presented a machine
learning approach to solving a stochastic TOP with time windows. The authors used a
reinforcement learning algorithm, specifically the Q-learning algorithm, to learn how to
make routing decisions for a deliveryman facing stochastic travel times and customer
demands. Also, Lee and Ahn [23] presented a data-efficient deep reinforcement learning
(DRL) approach to solve a multi-start TOP for UAV mission re-planning. The authors
propose a method that learns to adapt to changing conditions by iteratively updating a
policy network through experience gained from previous UAV mission planning problems.
Xu et al. [24] discussed a novel application of electric vehicles in TOP systems, focusing on
charging energy-critical sensors using mobile chargers. Due to charger limitations, visiting
all sensors was restricted, and costs were assigned considering charger energy consump-
tion and travel. Different vehicle types and their capabilities were also considered, with
sensors possibly visited by multiple vehicles, affecting profit margins. An approximation
algorithm was proposed initially and later refined for handling vehicles of the same type.
In contrast, Sundar et al. [25] introduced a concurrent multi-threaded branch-and-price
algorithm with acceleration techniques for the TOP involving fixed-wing drones. They
addressed the kinematic constraints limiting drones’ maneuverability, particularly quick
turns and minimum turn radii. While their approach achieved optimal solutions for most
cases, its reliance on exact methods hindered real-time solutions, crucial for dynamic sys-
tems. Wang et al. [26] focused on the dynamic and stochastic orienteering problem in
autonomous transportation systems. They introduced self-adaptive heuristic algorithms to
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optimize task execution for intelligent agents, maximizing rewards and ensuring timely
returns to the starting location within a limited time frame. The orienteering problem
enables agents to selectively visit spots and optimize routing sequences for reward max-
imization. The study proposed a hybrid simulated annealing–tabu search algorithm for
initial routing plans and three multi-stage optimization strategies for real-time adjustments.
Simulation experiments demonstrated the effectiveness of the algorithm, improving the
solution quality and ensuring timely arrivals for agents. Elzein and Di Caro [27] proposed
a novel multi-stage metaheuristic algorithm to efficiently tackle large orienteering problem
instances. The metaheuristic partitions a potentially large set of candidate sites into smaller
clusters, where a solver is used to find near-optimal solutions within a bounded time.
These solutions are then merged and optimized to provide a final high-quality solution.
The metaheuristic significantly improves the computation time without a substantial loss
in solution quality, making it suitable for online applications in robotics, logistics, and
transportation scenarios with dynamic environments and a large number of candidate
points. The results demonstrated the effectiveness and efficiency of the proposed approach
over large benchmark instances. Le et al. [28] addressed the dynamic orienteering prob-
lem based on a VNS algorithm. The algorithm efficiently adapted existing solutions in a
dynamic environment. Experimental comparisons were made with two other improve-
ment heuristics using benchmark instances and road networks. This study evaluated the
algorithm’s performance, considering the impact of dynamic node values and budget
changes. Fang et al. [29] investigated the use of UAVs for monitoring landslide-prone
areas by solving a TOP with mandatory visits that maximize data collection with multiple
UAVs. The authors incorporated a novel algorithm such as a large neighborhood search
with a neural network heuristic for an enhanced efficiency and solution quality in both
small- and large-scale scenarios. Lastly, Juan et al. [30] provided a hybrid methodology
that combined simulation and reinforcement learning to effectively manage a vehicle’s
battery under dynamic settings. This approach demonstrated considerable advantages over
non-informed decisions, showing its potential for routing plans that account for multiple
dynamic elements such as weather, congestion, and battery conditions.

Most of the reviewed papers are summarized in Table 1, which discuss deterministic,
stochastic, and dynamic versions of the TOP. This paper considers the combination of
stochastic and dynamic scenarios of the TOP, and introduces a novel sim-learnheuristic
methodology designed to address these combined scenarios.
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Table 1. Summary of reviewed papers.

Paper Year Proposed Approach Problem Domain Key Contributions

Gonzalez-Neira et al. [13] 2021 Combined approach using GRASP, MSC, PAES,
and AHP Permutation flow shop problem GRASP, simulation-based optimization, PAES, AHP

Yazdani et al. [15] 2021 Hybrid genetic algorithm combined with Monte
Carlo simulation Waste collection routing problem Simheuristic approach to address a real case study of

waste collection planning

Crawford et al. [16] 2021 Combination of Q-Learning with metaheuristics to
address the exploration–exploitation dilemma Set covering problem Exploration–exploitation balance, Q-learnheuristics

framework

Gomez et al. [17] 2023 Combination of heuristics with reinforcement
learning Capacitated dispersion problem Learnheuristic algorithm using reinforcement

learning

Bullah and van Zyl [18] 2023 Hybrid approach combining machine learning and
metaheuristic optimization Constrained portfolio optimization Neural network prediction, guided search in

solution space

Tricoire et al. [19] 2010 Adaptive algorithm based on a Markov decision
process TOP Decision-making based on deadlines

Mufalli et al. [20] 2012 Combination of a mathematical method with local
search strategies TOP Efficient algorithm for the TOP in critical situations

Saeedvand et al. [21] 2020 Hybrid learning algorithm with an evolutionary
multi-objective approach TOP with time windows Hybrid learning algorithm for dynamic

decision-making

Schmitt-Ulms et al. [22] 2022 Reinforcement learning using the Q-learning
algorithm Stochastic TOP Machine learning approach for routing decisions in

the TOP

Lee and Ahn [23] 2024 Data-efficient DRL approach Multi-start TOP Adaptive policy network through DRL for UAV
mission re-planning

Xu et al. [24] 2020 An approximation algorithm refined for handling
vehicles of the same type TOP Application of electric vehicles, focusing on charging

energy-critical sensors using mobile chargers

Sundar et al. [25] 2022 Concurrent multi-threaded branch-and-price
algorithm with acceleration techniques TOP TOP variant involving fixed-wing drones with

kinematic constraints

Wang et al. [26] 2023 Self-adaptive heuristic algorithms Dynamic and stochastic orienteering problem Introduced algorithms to boost adaptability and
efficiency in autonomous transportation.

Elzein and Di Caro [27] 2022 Multi-stage metaheuristic Orienteering problem Merges and optimizes solutions for a high-quality
parallelizable final path



Algorithms 2024, 17, 200 7 of 19

Table 1. Cont.

Paper Year Proposed Approach Problem Domain Key Contributions

Le et al. [28] 2021 Improve the heuristic based on a VNS algorithm Dynamic orienteering problem Proposed an efficient VNS-based heuristic for
handling dynamic environments

Fang et al. [29] 2023 Large neighborhood search algorithm embedding a
neural network heuristic Dynamic TOP Verified the algorithm on synthetic datasets and a

real-world large-scale case

Juan et al. [30] 2023 Hybrid methodology combining simulation with
reinforcement learning Dynamic TOP Efficient routing plans that significantly outperform

non-informed decisions
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3. Problem Definition

The TOP is an NP-hard optimization problem [1], with a formal definition on a directed
graph G = (V, A). The graph has V = {0, 1, 2, . . . , n + 1} nodes, where the origin depot
is node 0, the destination depot is node n + 1, and N = {1, . . . , n} are the intermediate
nodes. The edges in A = {(i, j)|i, j ∈ V, i ̸= j} represent the connections between the nodes.
We consider a set of homogeneous UAVs denoted as D, and each UAV d ∈ D begins its
journey from the origin depot, serves a subset of intermediate nodes, and finally reaches
the destination depot. The objective is to maximize the total reward collected by all UAVs.
Following the mixed-integer linear programming model for the TOP proposed by [12], the
hybrid version of the problem, where the travel times are either deterministic, stochastic,
or dynamic, can be expressed formally as follows:

max ∑
d∈D

∑
(i,j)∈A

ujxd
ij (1)

where the objective is to maximize the aggregated deterministic reward of visited nodes
over the set of edges. For each visited node in the route, it yields a reward ui ≥ 0. Note that
these rewards are zero for both the origin and destination depots, while they hold strictly
positive values for the customers. More specifically, for each edge (i, j) ∈ A and each UAV
d ∈ D, we consider the binary variable xd

ij, which is equal to 1 if UAV d traverses through
edge (i, j), and takes the value 0 otherwise.

Below are the provided constraints with their explanations. In the course of the tour,
each point is visited at most once to ensure that no point is revisited (2).

∑
d∈D

∑
i∈V

xd
ij ≤ 1 ∀j ∈ N (2)

The variable yd
i is introduced to indicate the position of node i in the tour made by

vehicle d, and constraint (3) makes sure that there are no sub-tours.

yd
i − yd

j + 1 ≤ (1− xd
ij) | N | ∀i, j ∈ N, ∀d ∈ D (3)

Constraint (4) states that the total travel time of each vehicle should not be more
than its threshold (Tmax), since each UAV d ∈ D starts its route and can only serve some
intermediate nodes due to the limited travel time. The total travel time is the sum of the
travel times of deterministic, dynamic, and stochastic edges, which are included in Adet,
Adyn, and Astoch, respectively. These are disjoint sets that include all the edges of set A. For
each edge (i, j) ∈ Adet, we assume that the travel time of each edge is deterministic and
predefined (tij = tji > 0). Similarly, for each edge (i, j) ∈ Astoch, we assume the travel time
Tij is stochastic and can be modeled using a probability distribution function. Lastly, for
each edge (i, j) ∈ Adyn, we assume the travel time t̂ij is dynamic, which depends on various
factors such as weather and traffic conditions. Since the stochastic and dynamic travel
times bring in a level of uncertainty, this constraint introduces a probabilistic approach to
account for such unpredictability in travel times. The parameter γ, which ranges between
0 and 1, represents a threshold that defines the acceptable level of probability for keeping
the travel time within the specified travel limit.

P

 ∑
(i,j)∈Adet

tijxd
ij + ∑

(i,j)∈Adyn

t̂ijxd
ij + ∑

(i,j)∈Astoch

Tijxd
ij ≤ Tmax

 ≥ γ ∀d ∈ D (4)

Constraint (5) ensures that for every arrival at a node, there is a corresponding depar-
ture from that node.

∑
i∈V

xd
ij = ∑

h∈V
xd

jh ∀d ∈ D ∀j ∈ N (5)
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Constraint (6) indicates that the tour always commences at the starting node 0 and
ends at the ending node n + 1.

∑
j∈N

x0jd = ∑
j∈N

xj(n+1)d = 1 ∀d ∈ D (6)

Constraints (7) and (8) refer to the nature of yd
j and xd

ij variables. Finally, the vehicle
departs from each node it visited, except for the end node.

yd
j ≥ 0 ∀j ∈ N ∀d ∈ D (7)

xd
ij ∈ {0, 1} ∀i, j ∈ A, ∀d ∈ D (8)

Although the deterministic version of the TOP has been widely studied in the literature,
the high degree of uncertainty in real-life applications of the TOP makes it a good candidate
for our purpose. In this work, both stochastic and dynamic travel times are introduced
in the TOP. Hence, we will consider that the travel time of some edges can be modeled
as random variables following a theoretical probability distribution. Likewise, we will
consider that other edges have uncertain travel times that have to be predicted using
a multiple regression model. As far as we know, no other authors have addressed this
realistic version of the TOP in the past.

4. Our Sim-Learnheuristic Approach

To effectively solve the hybrid TOP described in Section 3, we propose a novel sim-
learnheuristic method that combines a biased-randomized heuristic multi-start (BR-MS)
framework, Monte Carlo simulations (MCSs), and a multiple regression model. This
methodology aims to combine the advantages of all elements, enabling efficient exploration
of the search space for optimal solutions [31].

This sim-learnheuristic methodology extends the simheuristic approach proposed
in [8] to solve the TOP with stochastic processing times. Figure 3 outlines the main com-
ponents of the sim-learnheuristic methodology. The sim-learnheuristic method can be
summarized in the following six main steps, which can be identified by labels S1 through
S6. First, the optimization problem is initially converted to its deterministic version, where
variables are replaced by their expected or most likely values, effectively eliminating un-
certainty. This deterministic problem is then solved using a BR-MS framework, leading
to the generation of multiple high-quality solutions. These deterministic solutions are
subsequently subjected to a comprehensive evaluation, considering the various sources
of uncertainty inherent in the problem. This evaluation involves a short number of MCS
runs, during which random variables and dynamic elements are assigned different values
based on probability distributions or machine learning models, respectively. Additionally,
constraints are assessed under uncertain conditions. Descriptive statistics are computed
for each solution, yielding detailed insights into their performance. The examination of
these solutions informs the generation of new solutions within the BR-MS framework until
a predefined stopping criterion, such as a maximum execution time, is met. Following the
previous stage, a subset of top-performing solutions, referred to as ’elite’ solutions, are
further examined under uncertainty. This second examination involves a longer number of
MCS runs than the initial evaluations. Based on this intensive examination, the solutions are
ranked, and the best solution is recommended. The selection of the best solution may take
into consideration measures of interest beyond just the expected value, such as variance or
reliability, to ensure a more robust decision-making process.
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Figure 3. Schema of the sim-learnheuristic methodology.

Algorithm 1 outlines the main steps of our sim-learnheuristic approach. The sim-
learnheuristic algorithm receives an instance as input, comprising the nodes, the maximum
number of vehicles, and the maximum travel time. First, a feasible initial solution (initSol)
is generated by applying a savings-based heuristic (line 1). The savings-based heuristic
was first proposed by Panadero et al. [8]. Then, a short number of MCS runs (nshort) are
performed to determine the expected reward of the initial solution (line 2). At this point,
the initial solution becomes the best-known solution so far (bestSol) and the pool of best
stochastic solutions (eliteSols) is initialized with this solution (lines 3–4). Next, the algorithm
performs an iterative procedure to generate new solutions until a maximum execution time
is reached (lines 6–16). At each iteration, the algorithm generates a new solution (newSol)
using a biased-randomized version of the savings-based heuristic (line 7). The biased-
randomized heuristic introduces a slight modification in the greedy behavior, providing
a certain degree of randomness while maintaining the logic behind the savings-based
heuristic. The biased-randomized version considers each element in the edges list with a
probability that follows a geometric distribution with a single parameter β ∈ (0, 1), which
controls the relative level of greediness in the randomized behavior of the algorithm. By
employing a biased-randomized version of the savings-based heuristic, multiple alternative
solutions can be generated without losing the logic of the original heuristic. Next, the
algorithm compares the newly generated solution to the best-known solution. If the new
solution has a higher reward value (line 8), a short number of MCS runs are performed
on the new solution to calculate its expected reward (line 9). In addition, if the newly
generated solution obtains a higher expected reward (line 10), the best-known solution
is updated and the new solution is added to the pool of elite solutions (lines 11–12). The
computational time employed to generate new solutions is updated before checking if the
maximum execution time (tmax) is reached (line 15). Once the stopping criteria are met, the
algorithm conducts a refinement procedure using a larger number of MCS runs (nlong) over
the pool of elite solutions (lines 17–22). This allows for more accurate estimations of the
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solutions in the elite pool. Finally, the solution with the highest expected reward is selected
from the pool of elite solutions and returned by the algorithm (line 23).

Algorithm 1 Sim-learnheuristic algorithm

1: initSol ←savingsHeuristic(inputs)
2: simulation(initSol, nshort)
3: bestSol ← initSol
4: add(eliteSols, bestSol)
5: time← 0
6: while time ≤ tmax do
7: newSol ←savingsHeuristicBR(inputs, β)
8: if reward(newSol) > reward(bestSol) then
9: simulation(newSol, nshort)

10: if expReward(newSol) > expReward(bestSol) then
11: bestSol ← newSol
12: add(eliteSols, bestSol)
13: end if
14: end if
15: updateTime(time)
16: end while
17: for sol ∈ eliteSols do
18: simulation(sol, nlong)
19: if expReward(sol) > expReward(bestSol) then
20: bestSol ← sol
21: end if
22: end for
23: return bestSol

Algorithm 2 depicts the main components of the savings-based heuristic. The heuristic
starts by constructing a dummy solution (sol) with as many routes as nodes (line 1).
Specifically, each route goes from the origin depot to a node before concluding its route
at the destination depot. Notice that the constructed routes that exceed the maximum
travel time are deleted from the solution. Then, the savings si,j associated with each edge
connecting two different nodes i and j are generated as follows:

si,j = α
(
t0,j + ti,n+1 − ti,j

)
+ (1− α)

(
ui + uj

)
(9)

where ti,j is the travel time between nodes i and j, ti,n+1 is the travel time between node
i and the destination depot, t0,j is the travel time between the origin depot and node j,
ui and uj are the rewards at nodes i and j, and α is a parameter used to balance travel
time and collected reward. Notably, each pair of nodes has two different savings, one for
each direction or edge. The savings associated with each edge are sorted in descending
order, from the highest to the lowest saving value (line 2). This sorted list of savings is
iterated, and a merging process is started (lines 3–15). At each iteration, a savings edge is
extracted from the list of savings, and the two routes associated with the savings edge are
obtained (lines 4–6). These two routes are merged, and the resulting route is checked to see
if the merge does not exceed the maximum travel time constraint (line 7). If the merge is
feasible, the two routes are removed from the solution, and the merged route is inserted
instead (lines 8–13). Once the merging process finishes, the routes are sorted based on their
collected reward in decreasing order from higher to lower rewards (lines 16). Then, the
number of routes equal to the number of vehicles in the fleet (vmax) constitutes the solution
proposed by the heuristic (line 17). Finally, the resulting solution with the highest rewarded
routes is returned by the procedure (line 18).
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Algorithm 2 Savings-based heuristic

1: sol ←genDummySolution(inputs)
2: savingsList←genSortedSavingsList(inputs, α)
3: while savingsList ̸= ∅ do
4: ijEdge←selectNext(savingsList)
5: iRoute←getOriginRoute(ijEdge)
6: jRoute←getEndRoute(ijEdge)
7: newRoute←mergeRoutes(iRoute, jRoute)
8: isMergePossible←checkMergeConditions(newRoute)
9: if isMergePossible = true then

10: deleteRoute(sol, iRoute)
11: deleteRoute(sol, jRoute)
12: addRoute(sol, newRoute)
13: end if
14: deleteEdge(savingsList, ijEdge)
15: end while
16: sortRoutesByProfit(sol)
17: deleteRoutesByProfit(sol, vmax)
18: return sol

The simulation process is depicted in Algorithm 3. The simulation procedure takes
two input parameters: a solution (sol) and the number of simulation replications (nruns)
to estimate the performance of the solution under stochastic and dynamic conditions. In
the procedure, a variable keeps track of the accumulated expected reward (sumReward),
which is initialized to zero at the start of the simulation process (line 1). The simulation
is run itmax times, and at each run, the expected reward of the solution (solReward) is
added to the accumulated expected reward (lines 2–28). For each route in the solution,
the route’s expected reward (routeReward) is computed along with the route’s expected
cost (routeCost) (lines 4–26). If the expected route cost exceeds the maximum travel time,
a penalty is applied to the route, resulting in a loss of all the collected rewards from the
visited nodes (lines 22–24). To compute the route’s expected reward, we iterate through the
route’s composing edges, and for each edge, we obtain its expected cost (lines 7–21). The
expected cost of an edge is computed based on its deterministic, stochastic, or dynamic
characteristics. The expected cost of a deterministic edge is predefined and specific to
each particular instance (line 12). Moreover, the expected cost of a stochastic edge is
sampled using a non-negative probability distribution, such as the Weibull or Log-Normal
distributions, to simulate the uncertainty in the route plan (line 14). Finally, the expected
cost of a dynamic edge is predicted using a multiple regression model considering the
current dynamic conditions at this time (lines 16–17). Once the simulation replications are
complete, the expected reward is computed as the average accumulated expected reward
across all the simulation replications and is assigned as the expected reward of the solution
(lines 29–30).
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Algorithm 3 Simulation procedure

1: sumReward← 0
2: for i ∈ {1, . . . , nruns} do
3: solReward← 0
4: for route ∈ getRoutes(sol) do
5: routeReward← 0
6: routeCost← 0
7: for edge ∈ getEdges(route) do
8: edgeCost← 0
9: node←getEndNode(edge)

10: type←getType(edge)
11: if type = DETERMINISTIC then
12: edgeCost←getCost(edge)
13: else if type = STOCHASTIC then
14: edgeCost←getStochasticValue(edge, varLevel)
15: else if type = DYNAMIC then
16: conditions←getDynamicConditions(time)
17: edgeCost←getDynamicValue(edge, conditions)
18: end if
19: routeCost← routeCost + edgeCost
20: routeReward← routeReward+getReward(node)
21: end for
22: if routeCost > routeMaxCost then
23: routeReward← 0
24: end if
25: solReward← solReward + routeReward
26: end for
27: sumReward← sumReward + solReward
28: end for
29: expReward← sumReward/itmax
30: setExpReward(sol, expReward)

5. Computational Experiments

The proposed sim-learnheuristic algorithm was implemented using Julia 1.8.2 and
tested on a personal computer equipped with an Intel Core i7 processor operating at
2.8 GHz and 16 GB of RAM. The algorithm’s computational time was set to a time limit
of 60 s for all instances. The β parameter for the geometric distribution was randomly
assigned from the interval (0.1, 0.3) after a quick tuning process over a random sample
of instances which established a good performance. For the exploratory and refinement
stages of the simulation phase, we conducted 100 and 1000 simulation runs, respectively. To
validate the proposed methodology, we randomly selected 23 instances from a well-known
benchmark presented next and conducted 10 separate executions for each instance, utilizing
varying initial seeds for the algorithm. Among the results from these runs, we reported the
best solutions based on the highest collected reward.

Given the unavailability of publicly accessible instances for the dynamic and stochastic
TOP, we decided to enhance the benchmark instances introduced by Chao et al. [1] for
the deterministic version of the TOP. The benchmark collection consists of 320 examples,
categorized into seven distinct sets. Each example within a set is identified using the
naming convention px.y.z, where x represents the set number, y denotes the number of
drones, ranging from two to four depending on the specific instance, and z indicates the
maximum driving range. These benchmark instances have been widely used in previous
research to assess the performance of algorithms in solving the deterministic TOP [32–34].
However, for our study, we extended these instances to encompass four different scenarios:
deterministic, stochastic, dynamic, and hybrid scenarios.
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In the deterministic scenario, the travel time for each route is predefined. The travel
time is given by the Euclidean distance defined between each pair of nodes of the bench-
mark instances.

In the stochastic scenario, we introduce uncertainty into the travel times between
nodes. Each edge (i, j) ∈ A in the directed graph G = (V, A) is now defined by a travel
time, Tij = Tji > 0, which is not deterministic but follows a best-fit probability distribution
function with a mean value E[tij] > 0. In our computational experiments, we used the
Log-Normal probability distribution to model the random travel times. The Log-Normal
distribution is preferred over the Normal distribution when modeling non-negative random
variables. It has two parameters, namely the location parameter µ and the scale parameter σ.
These parameters can be determined based on the properties of the Log-Normal distribution
considering the stochastic travel times between nodes i and j are assumed to be as follows:
E[Tij] = tij (i.e., the travel costs of the deterministic instances), and Var[Tij] =c·tij for all
i, j ∈ {0, 1, 2, . . . , n + 1}. The parameter c serves as a design parameter enabling us to
control the level of uncertainty. As c approaches zero, the results of the stochastic scenario
are expected to converge with those obtained in the deterministic scenario. For our analysis,
we have employed the value c = 1, which introduces a significant level of uncertainty as it
uses the deterministic travel time as variance. A more comprehensive discussion on the
implications of varying the parameter c can be found in Panadero et al. [12]. Specifically, the
authors consider three different levels of uncertainty: low (c = 0.05), medium (c = 0.25),
and large (c = 0.75). In addition, the edges are categorized into two parts for the stochastic
scenario following these conditions. If the node index is even, we classify the corresponding
edge as stochastic. Otherwise, we classify the edge as deterministic.

In the dynamic scenario, the travel times between nodes are predicted using a multiple
regression model that takes into account the current dynamic conditions. This means that
instead of relying on fixed or predefined travel times, the travel times between nodes are
now estimated based on the real-time or dynamic information available at the time of
planning the routes. This multiple regression model takes into account external factors
such as weather and congestion conditions to calculate the dynamic cost. The weather
adversity level w and congestion adversity level c, ranging from 0 (low) to 1 (high), serve
as input variables for the regression model. These two parameters are generated from a
uniform distribution, which indicates that extreme weather and traffic conditions are as
likely to occur as more standard ones. This generation matches the dynamic nature of the
system, as every condition is likely to occur at any point in time. Thus, the dynamic travel
times are calculated with Equation (10) as follows:

t̂ij = be · tij + (b1w + b2c + ϵ) (10)

where tij represents the deterministic time of the edge connecting nodes i and j, be is
a coefficient for edge standard time, b1 represents the coefficient for the weather, and
b2 represents the coefficient of the congestion. In addition, the term ϵ represents the
independent error term, assumed to be 0 to maintain the deterministic travel time value
when the conditions are ideal (w and c parameters are 0). For our analysis, we have
employed the values be = 1, b1 = 0.005, and b2 = 0.0075, which was designed so the
dynamic travel time varies between the deterministic travel time and 1.125 times the
deterministic travel time. In addition, the edges are categorized into two parts for the
dynamic scenario following these conditions. If the node index is even, we classify the
corresponding edge as dynamic. Otherwise, we classify the edge as deterministic.

In the hybrid scenario, we combine three distinct edge types: deterministic, stochastic,
and dynamic edges. In determining the type of edge, we implement these specific condi-
tions. If the node index is even, we classify the corresponding edge as stochastic. Otherwise,
if the node index is divisible by three, we classify the edge as dynamic. If neither of these
conditions is met, we assign the edge as a deterministic edge. This systematic approach
ensures the accurate classification of edges within our model.
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Due to the uncertain nature of travel times, there is a possibility of route failure when
a UAV is unable to reach the destination depot within the designated time limit. Therefore,
the reward collected by a particular UAV, rd, is defined as follows:

rd =


∑

(i,j)∈A
ui · xd

ij if ∑
(i,j)∈Adet

tijxd
ij + ∑

(i,j)∈Adyn

t̂ijxd
ij + ∑

(i,j)∈Astoch

Tijxd
ij ≤ Tmax

0 otherwise
(11)

Hence, when a UAV embarks on a route, it faces uncertainty in the time it takes
to travel between nodes due to the probabilistic nature of the travel times. If the UAV
fails to complete the planned route within the limited time, it forfeits all the rewards it
accumulated during its journey. It is important to note that any partial rewards obtained
are considered valid solely if the UAV manages to reach the destination node before the
end of its travel time.

6. Results and Discussion

Table 2 shows the experimental results for each instance. The first column identifies
the instances, while the remaining columns show the obtained results under the four
considered scenarios. The first section of the table reports the best-known solutions for the
deterministic variant of the problem obtained from the literature (BKS), our best-found
solutions for the deterministic version of the problem (OBD), and the percentage gaps
when both solutions are compared. The second section of the table reports the obtained
results for the stochastic scenario. First, the best-found solutions for the deterministic
scenario when evaluated in a stochastic environment are reported (OBD-S). To compute
this solution, an intensive simulation process has been applied to the OBD. The main idea
behind this process is to assess the best-found deterministic solutions under stochastic
uncertainty. Next, the best-found stochastic solutions obtained using our sim-leanheuristic
approach are reported (OBS). This approach considers the stochastic elements during the
search for a high-quality solution. The next section of the table shows the obtained results
for the dynamic scenario. First, the best-found solutions for the deterministic version when
evaluated under a dynamic environment are shown (OBD-Dy). Similarly, the best-found
solutions for the dynamic scenario are reported (OBDy). Lastly, the results for the hybrid
scenario are reported. First, the best-found solutions for the deterministic version when
evaluated in a hybrid scenario are shown (OBD-H). Next, the best-found solutions for the
hybrid scenario are reported (OBH).

It is noteworthy that for each instance, the best-found solutions obtained by our
sim-learnheuristic approach are consistently closer to the BKS when compared with the
best-found deterministic solutions simulated under the corresponding types of uncertainty.
In other words, our best-found solutions for the deterministic version of the problem
are sub-optimal for the different stochastic, dynamic, and hybrid scenarios. For instance,
considering the dynamic scenario, when simulating the OBD, solutions often exhibit
significant fluctuations. This is exemplified by the p5.3.z instance, as exemplified by p5.3.z,
where OBD-Dy yields an expected reward of 2.34 and OBDy yields an expected reward
of 1525.00. This difference can be attributed to the way our sim-learnheuristic approach
explores the search space for solutions. Specifically, our novel methodology considers this
uncertainty throughout the search for high-quality solutions. In other words, incorporating
uncertainty elements in the search process leads to superior results compared to solely
solving a deterministic version of the problem and then applying the solution in a real-life
scenario with dynamic uncertainty. This fundamental difference serves as the key factor
behind the substantial disparities observed between the best-found solutions obtained
using our sim-learnheuristic method and the results obtained simulating the best-found
deterministic solutions under the different uncertainty scenarios.
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Table 2. Experimental results for the different scenarios.

Instances
Deterministic Scenario Stochastic Scenario Dynamic Scenario Hybrid Scenario

BKS (1) OBD (2) GAP% (1)–(2) OBD-S OBS OBD-Dy OBDy OBD-H OBH

p1.2.r 280 275 1.78 166.60 167.74 33.24 36.84 150.86 159.23
p1.2.h 110 110 0.00 70.21 73.96 84.70 105.00 68.46 72.72
p1.2.p 250 245 2.00 134.29 148.34 0.00 57.20 130.55 143.48
p1.4.k 100 100 0.00 69.85 71.01 52.48 58.62 68.47 70.60
p2.3.h 165 165 0.00 104.68 105.01 72.72 76.56 102.30 105.06
p2.3.e 120 120 0.00 79.83 83.77 58.02 63.10 80.69 80.72
p2.3.f 120 120 0.00 91.09 91.55 120.00 120.00 90.48 90.84
p2.2.i 230 230 0.00 173.92 176.50 146.62 147.21 163.42 172.80
p2.4.j 120 120 0.00 91.09 91.55 120.00 120.00 90.48 90.84
p3.3.j 380 380 0.00 258.12 267.25 130.36 130.63 262.35 262.82
p3.3.o 590 590 0.00 346.61 379.20 129.58 309.12 339.07 359.68
p3.2.a 90 90 0.00 58.10 61.26 54.69 56.39 58.21 58.62
p3.2.d 220 220 0.00 142.13 155.44 105.25 193.86 137.19 141.27
p3.4.j 310 310 0.00 200.25 225.31 159.61 251.68 194.09 222.26
p3.4.k 350 350 0.00 247.31 257.19 218.01 221.11 242.13 249.29
p3.4.i 270 270 0.00 170.68 178.18 90.48 117.33 166.88 173.25
p5.3.z 1635 1620 0.91 943.60 1235.26 2.34 1525.00 850.78 1240.57
p5.3.o 870 870 0.00 495.03 520.64 0.00 270.00 485.46 487.78
p5.2.i 480 450 6.25 297.43 306.67 90.22 424.38 265.05 292.62
p6.2.g 660 660 0.00 431.97 436.26 417.12 446.49 406.56 411.51
p6.2.f 588 588 0.00 336.04 361.62 1.18 2.65 327.81 332.51
p7.2.c 101 101 0.00 80.75 82.03 48.05 48.16 66.18 66.20
p7.4.e 123 123 0.00 113.46 113.81 113.90 115.47 76.49 77.01

Average: 354.86 352.47 0.47 221.87 243.02 97.76 212.90 209.73 233.10

Moreover, if we compare the computed averages for the different scenarios, we observe
that we can classify the four different scenarios based on their uncertainty levels. Firstly,
the deterministic scenario can be considered a reference scenario with perfect information
(i.e., without uncertainty) for the expected reward under different uncertainty conditions.
Conversely, in the stochastic scenario, we observe a lower uncertainty level, resulting in an
average expected reward of 221.87 and 243.02 for the OBD-S and OBS, respectively. This
can be attributed to half of the edges’ travel times being stochastic in nature, while the other
half being deterministic. Similarly, for the hybrid scenario, we can observe a medium level
of uncertainty which results in an average expected reward of 209.73 and 233.10 for the
OBD-H and OBH, respectively. Lastly, considering the dynamic scenario, it demonstrates
the highest level of uncertainty, driven by the dynamic conditions that result in highly
variable travel times. The resulting average expected reward is 97.76 and 243.02 for the
OBD-Dy and OBDy, respectively. The dynamic scenario comprises half the dynamic and
half the deterministic travel time, while the hybrid scenario consists of roughly one-third
of the dynamic and one-third of the stochastic travel times. In other words, the combined
uncertainty of the travel times in the dynamic scenario surpasses that of the hybrid and
stochastic scenarios.

Figure 4 shows an overview of Table 2 which details the performance of our sim-
learnheuristic approach for all considered scenarios. The horizontal and vertical axes
represent the four uncertainty scenarios and the percentage gap obtained with respect to
the BKS reported in the literature, respectively. Median values are represented by triangles
and lines, while outliers are presented by circles. The average percentage gap for the
OBD-S is 33.48, while the average percentage gap for the OBS is 30.16. This means that, on
average, the OBS solutions are closer to the BKS solutions in the stochastic scenario. In the
hybrid scenario, if we compare the percentage gaps of the OBD-H with the OBH, we can
see that the OBH outperforms the OBD-H and is closer to the BKS. However, the average
gap for OBD-Dy is 55.12. This very high gap indicates that the deterministic approach
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does not adapt well to the changing dynamics of the system and results in considerably
worse outcomes.

Figure 4. Gaps with respect to BKS for the different scenarios.

7. Conclusions and Future Work

This paper presents a hybrid version of the TOP encompassing deterministic, stochas-
tic, and dynamic travel times. To address this problem, a novel sim-learnheuristic method-
ology is proposed, effectively combining a savings-based heuristic algorithm, Monte Carlo
simulations, and a multiple regression model. By integrating stochastic and dynamic
components in the sim-learnheuristic methodology, this approach captures the impact of
randomness and variability, obtaining high-quality solutions in scenarios with uncertainty.
This combination allows for the modeling of scenarios with both stochastic and dynamic
components simultaneously. The computational experiments reveal that relying on the
best solutions found for the deterministic version of the problem can lead to high variance
and unreliability in realistic scenarios with uncertainties. These uncertainties can result
in increasing travel times due to factors like traffic congestion and weather conditions. In
contrast, the sim-learnheuristic approach is able to find high-quality solutions in uncer-
tainty scenarios as it incorporates the stochastic and dynamic components in the search
for solutions that maximize the collected rewards. This approach ensures the generated
solutions are both reliable and robust, even in uncertain conditions with stochastic and
dynamic travel times.

Moving forward, our future work encompasses two key aspects. Firstly, we aim to
solve the multi-depot variant of the TOP. Secondly, we intend to enhance the realism of our
approach by employing discrete event simulations and more intricate machine learning
models. This will enable us to account for diverse interactions and complex environmental
conditions, such as synchronization between various vehicles or UAV battery levels.
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