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Abstract: Litsea cubeba (Lour.) Pers. is an important economic tree. We aimed to explore the
phenotypic diversity of wild L. cubeba provenances from Jiangxi province and identify the germplasms
with desirable characteristics. Nest variance analysis, multiple comparisons, correlation analysis, path
analysis, redundancy analysis, and cluster analysis were conducted to compare the phenotypes of
526 wild L. cubeba trees from 27 provenances. We detected significant differences in the growth traits,
fruit traits, and essential oil (EO) content of L. cubeba provenances, as well as significant differences in
tree height, thousand seed dry weight, and the proportion of five essential oil components (citral,
neral, geranial, D-limonene, and citronellal) within the provenances. The fresh fruit yield (FFY) was
mainly determined by the ground diameter and the annual average minimum temperature. The
EO content was mainly affected by the water content, annual average temperature, longitude, and
latitude. The proportion of citral (CitrP) was negatively affected by extreme low temperatures. Four
individual L. cubeba trees had a high FFY of over 10.00 kg·tree−1. Two trees had a high EO content
exceeding 5%, with their CitrP over 80%. The provenances with high FFY were Guixi and Yushan
(2.65 kg·tree−1; 2.89 kg·tree−1). The provenances with a high EO content of about 4.00% were Dayu,
Yudu, Ji’an, Xinfeng, and Yushan. The provenance with the highest CitrP level (80.61%) was Ningdu.

Keywords: Jiangxi province; Litsea cubeba; phenotypes; environmental factors; provenances

1. Introduction

Litsea cubeba (Lour.) Pers., commonly known as mountain pepper, is a dioecious
deciduous small tree or shrub in the Lauraceae family, an important woody spice and
energy tree species worldwide, as are other members of this family. The fruit of L. cubeba is
turquoise during growth between April and July, and it changes from light red to reddish-
brown during maturation in August, ultimately appearing atropurpureus and falling away
from the tree when it is fully ripened in August or September [1] (Figure 1). Each part of
the tree contains essential oil (EO), and the pericarp of fresh fruit contains the most EO.
L. cubeba has a wide range of uses, with its fresh fruits and EO being natural seasonings [2].
It has a long history of consumption in Yunnan, Guizhou province, and other parts of
China. All parts of the tree have medicinal value and have been demonstrated to have
anti-tumor, antibacterial, anti-inflammatory, antioxidant, and sedative properties [3–5]. Its
EO consists of bioactive substances with broad-spectrum antibacterial properties, which
can be used as antibacterial agents or preservatives in the chemical and food industries and
as functional compounds in skincare products [6–9]. The remaining residue after removing
EO can be used as feed and food, as well as for extracting kernel oil, which is a promising
oil resource [10–12]. L. cubeba also has strong drought resistance and adaptability and is a
useful pioneer tree species for ecological restoration [13].
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L. cubeba is mainly distributed in China, Myanmar, Vietnam, Laos, Cambodia, Thailand,
India, and Indonesia. In China, it generally grows in tropical and subtropical areas south
of the Yangtze River [14,15]. Most L. cubeba in China grows wild, with scattered source
areas, significant regional differences, and rich genetic variations. Jiangxi province is one
of the main distribution areas of L. cubeba, with more than 733.33 hm2 of wild L. cubeba
forests [16]. However, due to the scattered distribution of forest land, the complex varieties
of L. cubeba, their uneven quality, and the exploitation of resources by local industries, the
wild L. cubeba germplasm resources in Jiangxi province have been damaged and urgently
need to be protected and better utilized.

Previous research on L. cubeba has focused on the extraction of EO [17–19], the com-
ponents of EO [20–23], and on phenotypic variations with a focus on regional differences
in EO yield, EO content, and EO composition [24–26]. Prior studies have analyzed the
diversity of leaf and fruit traits in L. cubeba and detected extremely rich diversity among
and within provenances [27]; explored the changes in the morphology and composition
during fruit development [28]; analyzed the changes in EO content and EO components
in L. cubeba in Fujian province [29]; and explored the relationship between the fresh fruit
yield (FFY) and EO characteristics of wild L. cubeba [30]. The terrain of China is complex
and diverse, and there is rich variation among wild L. cubeba provenances. However, the
reasons for the diversity of L. cubeba among local areas are not yet clear. In this study, we
analyzed 526 individual wild L. cubeba trees from 27 provenances in Jiangxi province, which
is a suitable area for L. cubeba growth. We explored the diversity of growth traits, fruit
traits, and EO characteristics of wild L. cubeba trees growing in different terrains, analyzed
the correlations between phenotypes and narrow-range geographical and climatic factors,
and identified excellent provenances and single trees. The aforementioned information
holds significance for the collection and conservation of L. cubeba germplasm resources in
Jiangxi and provides an important theoretical basis for subsequent cultivation and genetic
breeding of L. cubeba.
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Figure 1. The schematic diagram of the fruit and seed traits of L. cubeba.

2. Materials and Methods
2.1. Sampling Sites

Jiangxi province is situated south of the Yangtze River (between 113◦34′18′′ E and
118◦28′56′′ E; between 24◦29′14′′ N and 30◦04′43′′ N), with a land area of 166,900 km2

(https://www.gov.cn/guoqing/2013-04/02/content_2583729.htm, accessed on 1 January
2023). This province is relatively flat in the north and surrounded by mountains on the
other three sides, with rolling hills in the middle and widespread basins and valleys. The
whole province is a huge basin that opens to the north and feeds into Poyang Lake. As a
typical subtropical monsoon climate region, Jiangxi province is ideal for the development
of L. cubeba due to the warm and humid climate conditions. Moreover, due to the special
climate conditions formed by particular geomorphic features, wild L. cubeba populations
growing in Jiangxi province show rich variation. The geographical location diagram of
27 provenances for sampling in Jiangxi province is shown in Figure 2, and the code of
each provenance, its geographical location, and the climatic conditions at each sampling
site are listed in Table S1. We located single trees using Two-step Outdoor Assistant

https://www.gov.cn/guoqing/2013-04/02/content_2583729.htm
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(https://www.2bulu.com/, accessed on 1 July 2021) to obtain geographical data and
downloaded meteorological data (1991–2020) from the China Meteorological Network
(http://www.cma.gov.cn, accessed on 7 October 2021). Among the sampling sites of the
27 provenances, YD had the highest annual average temperature (AAT, ◦C) and annual
average minimum temperature (AAMinT, ◦C) (20.1 ◦C,−5.0 ◦C), LC had the highest annual
average maximum temperature (AAMaxT, ◦C) at 42.2 ◦C, and LS had the lowest AAT,
AAMaxT, and AAMinT (12.2 ◦C, 31.9 ◦C, −16.7 ◦C). Otherwise, the annual average rainfall
(AAR, mm) ranged from 208.2 mm (in YX) to 386.8 mm (in ND), and the annual average
relative humidity (AARH, %) ranged from 75% (in YD) to 82% (in FZ).
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2.2. Materials

In August 2021, we sampled 526 healthy wild female trees of L. cubeba from
27 provenances in Jiangxi province. At each sampling site, at least 15 individual trees
were investigated and sampled to detect tree growth and fruit traits. Because we actually
needed to randomly find them in a lot of unknown mountains for each provenance, com-
bined with the restriction of environmental factors and fruit characteristics, while each
individual tree does not have adequate and mature fruits to extract EO, so that it has been
extracted successfully only in 21 provenances, at least three trees of each provenance and
approximately 1 kg of fresh mature fruit from each tree (for three EO samples) were ran-
domly selected, as shown in Table S1. The ripe fruit was packed in polyethylene bags and
transported to the lab for the subsequent experiments as soon as possible. The distances
between individual trees were not shorter than 100 m.

2.3. Methods
2.3.1. Tree Growth

The growth traits of L. cubeba, including tree height (TH, m), trunk diameter at ground
level (GD, mm), and crown width (CW, m2) were measured using a box staff, vernier
caliper, and meter ruler, respectively.

https://www.2bulu.com/
http://www.cma.gov.cn
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2.3.2. Fruit Traits

The collected fruit was weighed using an electronic scale, and then the FFY (kg·tree−1)
was estimated. The thousand seed fresh weight (TSFW, g) was determined using an
electronic scale, and then the seeds (Figure 1) were dried in a DHG-9015A electric constant
temperature blast oven (Yiheng, Shanghai, China) to obtain the thousand seed dry weight
(TSDW, g), water content (WC, %), pericarp ratio (PR, %), and percarp:kernel (P:K) using
the methods described by Munir et al. (2021) [31] and Kattmah et al. (2019) [32]. Each index
was determined with three replicates for each tree.

2.3.3. EO Characteristics

The EO was extracted by steam distillation. Briefly, 100 g of fruit and 800 mL of
water were added to a round-bottom flask. After boiling, the water was distilled for
150 min. Following distillation, the liquid was accurately separated, and the EO from
the fresh fruit was transferred into a brown glass bottle and stored at 4 ◦C. The chemical
components of EO were determined as soon as possible because citral, the main component
in the EO of fruit peel, decomposes readily when exposed to light and heat. The chemical
components of the EO extracted from the pericarp were determined by 6890B-5977A gas
chromatography–mass spectrometry (GC-MS) equipped with an MSD workstation (Agilent,
Palo Alto, CA, USA) as described by Fan et al. (2023) [30]. The EO content and components
were determined with three replicates for each tree.

2.4. Statistical Analysis

Multiple calculations were used to characterize the phenotypic diversity. Prove-
nance clustering was conducted by hierarchical clustering analyses, aimed at separating
the typical provenances with high FFY and EO content and the proportion of citral
(CitrP). The heat map of Pearson’s correlation analysis was used to find the relation-
ships between the environmental factors and the phenotypic traits by Origin Pro 2023
(Learning Edition; Origin Lab, Northampton, MA, USA). Multiple stepwise regression
path analyses can be used to select the important factors by the direct and indirect path
coefficients. Redundancy analysis (RDA) describes the proportion of dependent variable
variation in the total dependent variable variation caused by the linear relationships
between the dependent and independent variables, which analyzed the reasons for the
variation of the dependent variable. When all values of the axis lengths in the detrended
correspondence analysis (DCA) were less than 3, RDA could be selected. On the con-
trary, canonical correlation analysis should have been chosen [33]. The contribution and
explanation values can directly reflect the relationship between environmental factors
and the phenotypic traits of L. cubeba displayed through Canoco 5.0 (Microcomputer
Power, Ithaca, NY, USA). The Shannon–Wiener index (H’) was used to represent the
genetic diversity index of each phenotypic trait, calculated by the method of Hamil
et al. (2021) [34]. The D-value is the comprehensive score of phenotypic traits obtained
through principal component analysis (PCA), the important basis for selecting excellent

individual trees, calculated by the formula: D =
7
∑

i = 1
(Wi × Si), Wi and Si are the weights

and scores of each principal component [35].

3. Results
3.1. Phenotypic Variation Characteristics

In this study, three growth traits (TH, GD, and CW) and six fruit traits (FFY,
TSFW, TSDW, WC, PR, and P:K) were investigated, and the EO content and the pro-
portion of eight dominant components of EO were determined (Figure 3). The eight
EO components were citral (C10H16O), 4-methyl-3-pentenal (C6H10O), 1-(cyclopane
carbonyl)piperidin-4-one (C9H13NO2), sabinene (C10H16), D-limonene (C10H16),
linalool (C10H18O), citronellal (C10H18O), and 3,7-dimethyl-3,6-octadienal (C10H16O).
The proportions of these eight components (out of the total EO) are referred to as CitrP,
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4M3PP, 1CCP4OP, SabP, D-LP, LinalP, CitroP, and 3,7-DP, respectively. The proportions
of neral (C10H16O) and geranial (C10H16O), two isomeric forms of citral, were included
in the statistical analyses.

The coefficient of variation (CV) was the highest for FFY (190.84%), followed by
1CCP4OP (126.91%) and 4M3PP (124.19%), and the lowest for CitrP (4.61%) (Table S2). The
character with the highest Shannon–Wiener index (H’) was WC (2.872), and the character
with the lowest H’ was FFY (0.002) (Table S2). The remaining 18 phenotypic traits were
ranked, from high H’ to low, as follows: PR (2.847) > TSDW (2.810) > TSFW (2.787) > TH
(2.652) > P:K (2.578) > GD (2.030) > CW (1.968) > GeranialP (1.569) > EO content (1.568) >
CitrP (1.553) > D-LP (1.552) > NeralP (1.549) > LinalP (1.506) > SabP (1.464) > CitroP (1.374) >
3,7-DP (1.270) > 4M3PP (1.270) > 1CCP4OP (1.270). The H’ of fruit traits was slightly greater
than the H’ of growth traits, and the H’ of growth traits was also slightly greater than that
of EO content and components, indicating that there was greater diversity in the fruit traits
of L. cubeba than in its growth traits. The nested variance analysis results (Table S3) show
that there are notable differences among provenances in 19 phenotypic traits (p ≤ 0.01),
except for GeranialP. Among these traits of L. cubeba, only nine (TH, TSDW, EO content,
CitrP, NeralP, GeranialP, D-LP, CitroP, and 3,7-DP) exhibited significant differences within
the provenances.
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3.1.1. Tree and Fruit Phenotypic Traits

The CVs for the three growth traits of L. cubeba within provenances are shown in
Table S4. The CV of CW ranged from 39.54% (ND) to 102.51% (PX), that of GD ranged
from 14.03% (TH) to 73.89% (PX), and that of TH ranged from 12.96% (TH) to 56.72% (RJ).
For the six fruit traits (Table S5), the CV of FFY ranged from 37.27% (XG) to 268.32% (PX),
that of TSFW ranged from 10.38% (SC) to 22.84% (WN), that of TSDW ranged from 14.43%
(RJ) to 26.96% (YX), that of WC ranged from 4.95% (SC) to 11.78% (WA), that of PR ranged
from 2.56% (SC) to 6.60% (XG), and that of P:K ranged from 13.89% (SC) to 36.28% (LS).
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The phenotypic variation was relatively small for five fruit traits within the SC provenance,
except for FFY.

The variation analysis and multiple comparison of growth traits revealed those
showing significant differences among provenances (Tables S2 and S7). The average TH
was 4.90 m across all provenances, ranging from 3.06 m (FZ) to 7.07 m (YD). The average
GD was 53.90 mm, ranging from 28.04 mm (LH) to 109.80 mm (YS), and the average GD
was significantly higher in the YS provenance (109.80 mm) than in the other provenances
(28.04–85.83 mm). The average CW was 23.92 m2, ranging from 9.98 m2 (XG) to 40.82 m2

(YS). Overall, the GD and CW were highest in YS and lower in LH. Similarly, the average
FFY across all the provenances was 2.40 kg·tree−1, ranging from 0.24 kg·tree−1 in XG to
2.89 kg·tree−1 in YS. Four provenances, namely LP, LC, GX, and YS, had FFYs greater
than 2 kg·tree−1, which were much higher than those of the other provenances. The
average TSFW was 129.51 g, ranging from 103.14 g (YD) to 153.55 g (LP). The average
TSDW was 47.93 g, ranging from 43.28 g (YD) to 157.44 g (WA). The average WC was
62.73%, ranging from 57.75% (YD) to 67.99% (SY). The PR ranged from 74.93% in YD
to 84.38% in (SY), with an average across all provenances of 79.36%. The average P:K
was 4.06, ranging from 3.09 (YD) to 5.65 in (SY). Among all 27 provenances, SY had the
highest values for WC, PR, and P:K, whereas YD had the lowest values for the six fruit
traits (Tables S2 and S8).

3.1.2. EO Characteristics

The CVs for EO content and components within provenances are shown in Table S6.
The LP provenance had the highest CVs of CitrP (6.55%), 4M3PP (264.57%), and 1CCP4OP
(264.58%). The ND provenance had the highest CVs of EO content (42.56%), D-LP (93.74%),
and LinalP (18.84%). The QN, WA, and TH provenances had the highest CVs of CitroP
(110.88%), GeranialP (7.39%), and SabP (245.00%), respectively. The DY provenance had the
highest CV of 3,7-DP (264.58%) and the lowest CV of 4M3PP (52.75%). The JA provenance
had the lowest CVs of EO content (5.37%), CitrP (0.73%), NeralP (0.48%), and D-LP (8.84%);
the YS provenance had the lowest CVs of SabP (6.58%), CitroP (11.76%), and 3,7-DP (5.24%);
and the XS provenance had the lowest CV of LinalP (1.76%).

The average EO content across all provenances was 3.55%, ranging from 2.56% (LH)
to 4.19% (YS). Nine provenances, including LC, ND, and FL, had EO content values higher
than the mean. Among the eight EO components, CitrP had the highest average proportion
(75.23%) and ranged from 72.57% (WN) to 80.61% (ND). The average NeralP was 39.01%,
ranging from 37.65% (LC) to 41.05% (ND). The average GeranialP was 36.22%, ranging
from 32.67% (WN) to 39.57% (ND). Neither 4M3PP nor 1CCP4OP were detected in TH and
JA, but their highest values were in QN (2.43% and 4.88%, respectively). The average SabP
across all provenances was 1.75%, ranging from 0.00% (LH) to 9.27% (LC). The average
D-LP was 6.93%, ranging from 4.09% (ND) to 9.27% (LC). The average LinalP was 1.80%,
ranging from 1.58% (XS) to 2.13% (JA). The average CitroP was 2.99%, ranging from 0.66%
(WA) to 6.04% (DY). The average 3,7-DP was 4.96%, ranging from 0.98% in DY to 9.29% in
TH (Tables S2 and S9).

3.2. Correlation Analysis of Phenotypes and Geographical and Climatic Factors
3.2.1. Correlation Analyses between Phenotypic Characteristics

The relationships among the 20 phenotypic characteristics of L. cubeba were conducted
by correlation analyses (Figure 4). There was a significant positive correlation between
TSFW and TSDW (r = 0.82 **), and with PR (r = 0.69 **), P:K (r = 0.65 **), and WC (r = 0.45 *),
and a significant positive correlation between TSDW and GD (r = 0.51 **). The FFY was
significantly positively correlated with GD (r = 0.48 *). The EO content was significantly
negatively correlated with WC (r = −0.48 *). The NeralP was significantly positively
correlated with CitrP (r = 0.86 **) and significantly positively correlated with EO content
(r = 0.54 *). There was a highly significant positive correlation between GeranialP and
CitrP (r = 0.71 **). In addition, we detected significant correlations between growth traits
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and fruit traits and other components in EOs. There was a highly significant positive
correlation between TH and SabP (r = 0.75 **), a negative correlation between GD and
CitroP (r = −0.47 *), and a positive correlation between CW and SabP (r = 0.47 *). There
was no significant correlation between FFY, TSFW, TSDW, and P:K and all the EO traits,
nor between WC and all the EO components.
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3.2.2. Correlation Analysis between Geographical and Climatic Factors and Phenotypes

Next, we conducted correlation analyses between environmental factors and the
phenotypes of L. cubeba (Figure 4). There were highly significant positive correlations
between longitude and FFY (r = 0.60 **), TSDW (r = 0.63 **), and significant correlations
between longitude and GD (r = 0.47 *) and TSFW (r = 0.49 *). Latitude was significantly
positively correlated with FFY (r = 0.44 *), TSFW (r = 0.52 *), and 3,7-DP (r = 0.53 *), but
negatively correlated with CitrP (r = −0.29 *), 4M3PP (r = −0.48 *), 1CCP4OP (r = −0.52 *),
and SabP (r = −0.51 *). The AAT was significantly positively correlated with EO content
(r = 0.56 **), positively correlated with NeralP (r = 0.47 *) and negatively correlated with WC
(r = −0.45 *). The AAMaxT was significantly positively correlated with 3,7-DP (r = 0.49 *)
and negatively correlated with CitrP (r =−0.48 *). The AAMinT was significantly positively
correlated with the NeralP (r = 0.55 **) and CitrP (r = 0.46 **), and negatively correlated
with FFY (r = −0.61 **). The AAR was positively correlated with TSFW (r = 0.45 *) and
TSDW (r = 0.52 *). The AARH was only negatively correlated with CitrP (r = −0.45 *).
There were no significant correlations between altitude and all phenotypes.

3.3. Path Analyses of FFY, EO Content and CitrP

We conducted a path analysis with multiple stepwise regression using geographic and
climatic factors as the independent variables and FFY as the dependent variable (Table S10),
selecting independent variables with significant regression coefficients to construct multiple
stepwise regression equations. The multiple stepwise regression equation for FFY was
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y = −95.506 − 0.351X6 + 0.849X1 − 0.014X7, where X6, X1, and X7 are AAMinT, longitude,
and AAR, respectively. The ranking of factors based on their direct path coefficient was
as follows: AAMinT (0.960) > AAR (0.712) > longitude (0.674) > latitude (0.505) > AARH
(0.484) > AAT (0.452) > elevation (0.206) > AAMaxT (0.021). The multiple stepwise re-
gression equation and path analysis indicated that AAMinT, longitude, and AAR played
an important part in FFY. While their indirect path coefficient was as follows: AAMinT
(1.288) > AARH (1.019) > latitude (0.775) > AAT (0.591) > elevation (0.247) > AAR (0.089) >
AAMaxT (0.024) > longitude (0.020).

Next, we conducted a path analysis with EO content as the dependent variable and
geographic and climatic factors as independent variables (Table S11). The multiple stepwise
regression equation for EO content was y = −2.503 + 0.339X4 − 0.001X3, where X4 and X3
are AAT and elevation. The ranking of factors based on their direct path coefficient was as
follows: longitude (0.409) > AAMinT (0.401) > latitude (0.388) > elevation (0.377) > AAR
(0.219) > AAMaxT (0.200) > AAT (0.002) > AARH (0.002). Their indirect path coefficient
was as follows: latitude (0.580) > AAMinT (0.538) > elevation (0.495) > AAMaxT (0.231) >
AAR (0.027) > longitude (0.012) > AARH (0.004) > AAT (0.003).

Similarly, CitrP was used as the dependent variable to conduct path analysis with
multiple stepwise regression (Table S12). The multiple stepwise regression equation
for CitrP was y = 149.802 − 1.018X5 − 0.419X8, where X5 and X8 are AAMaxT and
AARH, respectively. The ranking of factors based on their direct path coefficient was
as follows: AAMinT (0.885) > AAR (0.663) > AAT (0.507) > AAMaxT (0.493) > latitude
(0.237) > AARH (0.154) > longitude (0.043) > elevation (0.043). While their indirect
path coefficient was as follows: AAMinT (1.188) > AAT (0.663) > AAMaxT (0.569) >
latitude (0.355) > AARH (0.324) > AAR (0.083) > elevation (0.056) > longitude (0.001).
The direct and indirect path coefficients were higher for AAMinT than for the other
environmental factors, indicating that AAMinT strongly affected CitrP. The results
of the multiple stepwise regression equation and path analysis showed that extreme
temperatures significantly affected CitrP.

3.4. Redundancy Analysis

The raw phenotypic data of L. cubeba were used for DCA. As shown in Table S13,
all of the axis lengths were less than 3 (DCA 1 = 0.34, DCA 2 = 0.27, DCA 3 = 0.24, and
DCA 4 = 0.22), indicating that these data should be used for redundancy analysis (RDA).
The results showed that after RDA model correction, 52.6% of the phenotypic variation
in L. cubeba could be explained by three geographical factors and five climate factors.
RDA 1 explained 16.99% of phenotypic variation (typical correlation coefficient 0.91), and
RDA 2 explained 11.74% (typical correlation coefficient 0.78) (Table S14). The first two
axes explained a total of 28.73% of phenotypic variation, indicating a strong effect of
environmental factors on the phenotypes of L. cubeba.

Next, RDAs between environmental factors and the phenotypes of L. cubeba were
conducted to identify the environmental factor with the strongest effect on phenotypic
variation (Figure 5). RDA 1 was positively correlated with AAT and AAMinT and strongly
negatively correlated with latitude and AAMaxT. RDA 2 was highly positively correlated
with longitude and AAR. When the environmental factors were ranked on the basis of their
contribution values and the proportion of phenotypic variation they explained (Table S15),
latitude and longitude together explained 22.9% of phenotypic variation in L. cubeba, and
the p values of latitude (p value = 0.004) and longitude (p value = 0.010) were both lower
than 0.05, which was at a significant level. These results show that they had the greatest
impact on phenotypes.
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3.5. Identify Individual Trees and Provenances with Desirable Characteristic
3.5.1. Identification of L. cubeba Trees

A PCA was conducted based on the twenty phenotypic traits of L. cubeba (Table S16),
and seven principal components were extracted. The values of the first to seventh principal
components were 3.787, 3.447, 2.774, 2.422, 1.519, 1.323, and 1.167. The cumulative contri-
bution rate of the seven principal components was 82.192%, which represents most of the
traits, and the contribution rate of the seven principal components was 18.933%, 17.236%,
13.869%, 12.110%, 7.596%, 6.613%, and 5.834%.

In the PCA (Table S16), the weight coefficients of the seven principal components were
calculated (0.23, 0.21, 0.17, 0.15, 0.09, 0.08, and 0.07), and the D-values were calculated for
141 individuals of L. cubeba based on the membership function values of twenty phenotypic
traits (Table S17). The top ten individual trees with the highest D values were YS-825 (1.21),
XF-1467 (1.11), QN-1394 (1.03), ND-1187 (1.03), WA-1094 (0.99), LP-820 (0.99), LP-813 (0.92),
XF-1468 (0.84), FL-808 (0.84), and PX-1008 (0.80).

3.5.2. Identification of Individual Trees with Desirable Characteristics

There were four individual trees with FFYs greater than 10.00 kg·tree−1 (Figure 6),
namely PX-1010 (19.00 kg·tree−1), GX-835 (17.00 kg·tree−1), LP-814 (16.20 kg·tree−1), and
YS-825 (10.80 kg·tree−1). The range of the other 137 individual trees was 0.19 kg·tree−1

to 7.90 kg·tree−1. There were eight individual trees with an EO content higher than 5.0%
(Figure 7a), namely XF-1223 (5.77%), LC-1062b (5.54%), XF-1468 (5.26%), YD-1193 (5.15%),
YD-1194b (5.14%), PX-1111 (5.10%), HC-1391 (5.03%), and ND-1185 (5.01%). These were
identified as individuals with the desirable trait of high EO content. The CitrP was higher
than 80.00% in 11 individual trees (Figure 7b), namely ND-1187 (85.62%), XF-1468 (84.82%),
FL-808 (84.09%), LP-820 (82.55%), XF-1462 (81.30%), GX-1149 (80.95%), ND-1185 (80.71%),
QN-1393 (80.45%), QN-1238 (80.43%), HC-1371 (80.38%), and PX-1114 (80.05%). These
11 trees were identified as individuals with the desirable trait of high CitrP.
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3.5.3. Identification of Provenances with Desirable Traits

The 27 provenances of L. cubeba in Jiangxi province formed four groups in the hierar-
chical clustering based on FFY (Figure 8). A total of 21 provenances belonged to group 1,
including XF, YD, and LA, with the lowest FFY (between 0.24 and 0.99 kg·tree−1). Group 2
consisted of PX (1.38 kg·tree−1) and DY (1.47 kg·tree−1), which was just higher than group 1.
Group 3 consisted of LC (2.21 kg·tree−1) and LP (2.14 kg·tree−1). Only GX (2.65 kg·tree−1)
and YS (2.89 kg·tree−1) belonged to group 4, which were desirable provenances with the
highest FFY.

The twenty-one provenances were clustered into five groups according to EO content
(Figure 9a). Group 1 consisted of 10 provenances, including RJ, LP, and QN, with the
EO content ranging from 3.39% (TH) to 3.67% (GX). Group 2 consisted of PX (3.15%), YX
(3.21%), and AF (3.33%); group 3 consisted of XS (2.95%) and WN (2.85%); and group 4
had only one member, LH (2.56%). Group 5 consisted of five provenances with a high EO
content: DY (3.98%), YD (3.99%), JA (3.95%), XF (4.09%), and YS (4.19%). The provenances
in group 5 were identified as high-EO content provenances.

The 21 provenances were also clustered into 5 groups according to CitrP (Figure 9b).
Group 1 consisted of 10 provenances, including QN, YD, and YX, and their CitrP ranged
from 74.62% (WA) to 75.76% (LH). Group 2 consisted of AF (73.97%) and XS (74.61%).
Group 3 consisted of XF (76.22%), HC (76.63%), DY (76.31%), RJ (74.50%), and FL (77.45%),
and group 4 had only one member, ND (80.61%). The CitrP of ND was much higher than
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that of the other four groups, so ND was identified as having a high CitrP provenance.
Group 5 consisted of three provenances: WN (72.57%), LC (72.64%), and PX (73.98%), with
lower CitrP than those of the other four groups.
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4. Discussion
4.1. Phenotypic Diversity

Phenotypes were affected by the interaction between genetic diversity and environ-
mental factors, and as such, they have great significance for breeding new varieties and
lines with superior traits [36,37]. In this study, we analyzed the diversity of phenotypic
traits of wild L. cubeba from 27 provenances in Jiangxi province, and we detected significant
differences in growth traits, fruit traits, EO content, and EO components among prove-
nances, which was consistent with the results reported by Fan et al. (2023) [30]. We detected
significant variations in TH, TSDW, CitrP, GeranalP, NeralP, D-LP, CitroP, and 3,7-DP within
the provenances. Similar results have been reported in a previous study, which focused
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on the phenotypic traits of 10 provenances of L. cubeba and detected significant differences
in fruit and leaf traits within and among provenances [27]. In this study, we found that
the CVs were larger for FFY, 4M3PP, and 1CCPOP of L. cubeba than for other phenotypic
characters, which is consistent with the results of another study [30]. Similar studies have
shown that the variation in FFY was greater than the variations in other traits, mainly
due to the significant effects of tree structure, fruit bearing stage, climatic factors, and
interspecific relationships [38–40]. And proper fertilization can effectively increase the FFY
of Litsea cubeba [41].

In this study, FFY was significantly positively correlated with GD (r = 0.48 *), indicating
that GD is an important growth trait that affects FFY. The GD reflects the growth of the
tree; trees with thick trunks have strong growth potential. Thus, GD can be used as an
indicator for selecting excellent trees [42]. In previous studies, the FFY of L. cubeba was
positively correlated with diameter at breast height [43], similar to the results of this study.
In addition, L. cubeba has a high light requirement. In dense forests, the TH often increases
to compete for light, and the trees have a sturdy and straight trunk, smaller CW, fewer
branches, and lower FFY. When L. cubeba is shaded, it hardly bears fruit, and the quality
of the leaves is poor. In contrast, in open areas, it often grows in clusters and has higher
CW and FFY. The correlation between FFY and GD has important guiding significance for
further research and for the cultivation of L. cubeba. The significant negative correlation
between EO content and WC indicated that WC is an important factor affecting EO content.
Previous studies have shown that the WC rapidly decreases in the early and middle stages
of fruit development. The WC decreases slowly at the slow stage of fruit development and
remains unchanged during the rapid development stage, whereas the EO content shows the
opposite trend [28], The decrease in WC during fruit development and the increase in EO
content may be due to the transformation of substances in the fruit [44]. At the molecular
level, cell wall recombination induced by oxidants may mediate cell wall hydration. The
contraction of the cell wall caused by oxidative cross-linking of wall-bound phenolic acids
leads to cell wall dehydration. Wall tightening is the molecular basis for the decrease in wall
hydration and subsequent decrease in fruit WC commonly observed in mature fruits [45].

Tang (2015) detected a strong correlation between CitrP and EO content [29], and Lan
et al. (2020) detected significant positive correlations between TSDW and NeralP, as well
as between TSDW and geranial [28]. In the present study, we did not detect significant
correlations between CitrP and growth traits or fruit traits, but the proportion of other
EO components such as sabinene was positively correlated with TH, GD, and CW, while
GeranialP was negatively correlated with GD. These differences may be due to the different
site conditions and genetic differences among L. cubeba populations [46,47].

4.2. Geographic and Climate Factors Affecting the Phenotypes

Environmental factors can cause phenotypic variations [48,49]. Trees are influenced
by the combined effects of their genetic make-up and environmental factors, and then
their phenotypes exhibit certain variations [50]. The phenotypic traits of L.cubeba regularly
presented differences, which may be due to the difference in the climate conditions that were
affected by the variation of geographical locations [51,52]. The longitude was significantly
positively correlated with FFY (r = 0.60 **). The direct impact coefficient of longitude
was relatively high (0.674), indicating that longitude had a significant impact on FFY. The
AAMinT was negatively correlated with FFY (r = −0.61 **). The direct path coefficient
(0.960) and indirect path coefficient (1.288) of AAMinT were significantly higher than
those other environmental factors (0.021–0.712; 0.020–1.019). Therefore, we inferred that
longitude and AAMinT were crucial environmental factors affecting FFY. A higher FFY was
often accompanied by a higher longitude and a lower AAMinT. A previous study found
that the yield per tree was higher from L. cubeba trees growing at a lower longitude [30].

In this study, we detected a positive correlation between EO content and AAT (r = 0.56 **).
The results of multiple regression path analysis with the EO content as the dependent
variable showed that the factor with the highest direct path coefficient was longitude
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(0.409), and the factor with the highest indirect path coefficient was latitude (0.580). This
result indicated that L. cubeba trees growing in areas with high AAT, longitude, and low
latitude have higher EO contents. The significant negative correlation between CitrP and
AAMinT (r = −0.48 *) was consistent with the results reported by Tian et al. (2012) [27].
In the path analysis, AAMinT had the highest direct and indirect path coefficients (0.885;
1.188), showing that extreme temperature played a decisive role in CitrP, as reported in
other studies [53–55].

The eight environmental factors evaluated in this study collectively explained more
than half of the phenotypic variation in wild L. cubeba in Jiangxi province, with longitude
and latitude accounting for 22.9% of the phenotypic variation. Longitude and latitude
are strongly correlated with AAR and temperature, which are known to affect pheno-
type [56,57], and have been identified as important factors explaining the phenotypic
variation in L. cubeba in another recent study [30]. A previous study showed that altitude
can also affect the EO content and CitrP of L. cubeba [29]. However, we did not detect any
significant relationships between fruit characters and altitude, which may be due to genetic
exchange among different L. cubeba sources in Jiangxi province and the unclear altitude
gradient of the sampling sites in this study.

4.3. Individual Trees and Provenances with Desirable Characteristics

The PCA generated seven principal components with characteristic values greater
than 1. These seven principal components had a cumulative contribution rate of 82.192%
to phenotypic variation, and included most of the phenotypic trait data. These findings
indicated that the chemical component of EOs and fruit traits had the greatest impact on
the diversity of phenotypic traits of L. cubeba in Jiangxi province. Four single trees, namely
PX-1010, GX-835, LP-814, and YS-825, had high FFY (10.80 kg·tree−1–19.00 kg·tree−1), but
only two individual trees, XF-1468 and ND-1185, had both high EO content and high CitrP.
YS-825 had the highest comprehensive score (1.21), followed by XF-1467 (1.11), whereas
JA-1042 and DY-1455 had the lowest scores (0.00). The trees with desirable traits, as selected
based on comprehensive score values, can be used as parents for breeding hybrids and as
superior germplasm in breeding programs [58].

Previous studies analyzed the genetic variation in the seedling height and GD of
L. cubeba and then selected two excellent provenances, namely Fuyang in Zhejiang and
Jianyang in Fujian [59]; 10 fast-growing source regions were selected based on the growth
status of L. cubeba in Hunan province, and then three excellent regions were identified based
on economic indicators [24]. Through clustering the important economic traits of L. cubeba,
we found that the FFYs of two provenances, GX and YS (2.65 kg·tree−1, 2.89 kg·tree−1),
were much higher than those of the other 25 provenances. Thus, these provenances were
identified as excellent materials for high FFY. The FFYs of LC and LP (2.21 kg·tree−1,
2.14 kg·tree−1) were smaller than those of GX and YS but were higher than those of the
other provenances, so they were also identified as high-FFY provenances. The EO content
was higher than 3.95% in five provenances: DY, YD, JA, XF, and YS. The EO content of YS
was 4.19%, indicating that it has a high EO content. The CitrP in ND (80.61%) was much
higher than those in the other 20 provenances, identifying it as a high-CitrP provenance. We
compared the geographical distances between various provenances in different clusters and
found that the distance among L. cubeba populations clustered based on FFY, EO content,
and CitrP was about 70 km. Therefore, we speculated that when the distance between wild
L. cubeba provenances in Jiangxi province is greater than 70 km, there will be significant
variations in FFY, EO content, and CitrP among individual trees.

In this study, we did not explore the impact of other environmental factors, such as
soil physicochemical properties and illumination, on the phenotypic diversity of L. cubeba
in Jiangxi province. Another study analyzed the physical and chemical properties of
soil in areas where L. cubeba was distributed and found that soil properties significantly
affected the FFY and EO content [30]. Other studies have shown that light conditions
play an important role in shaping tree phenotypes [60,61]. In further research, it will be



Forests 2023, 14, 2283 14 of 17

interesting to further investigate the effects of soil characteristics and light conditions on
the phenotypes of L. cubeba.

5. Conclusions

This study analyzed the phenotypic diversity and the relationships between pheno-
typic variation and environmental factors, and the trends in the phenotypic variation of
L. cubeba under particular topographic conditions in Jiangxi province were explored. On
the basis of these analyses, individual trees and provenances with desirable traits were
identified. The main conclusions are as follows: There was significant variation in the
phenotypic traits of wild L. cubeba among provenances, and there were also significant
variations in TH, TSDW, CitrP, GeranialP, NeralP, and D-LP within provenances. A higher
FFY was often accompanied by a higher longitude and a lower AAMinT. L. cubeba trees
growing in areas with higher longitude, higher AAT, and lower latitude always have
higher EO content. Furthermore, lower AAMinT was not conducive to the generation
and accumulation of citral proportions. We identified four single trees with FFY (PX-1010,
GX-835, LP-814, and YS-825) and two single trees with EO content and CitrP (XF-1468 and
ND-1185). The individual tree with the highest comprehensive score was YS-825. The
cluster analyses identified two high-FFY provenances, GX and YS, five provenances with
high-EO content, DY, YD, JA, XF, and YS, and one high CitrP provenance, ND. This study
might greatly promote the core collection, construction, and preservation of wild L. cubeba
germplasm resources in Jiangxi province and provide important experimental materials
and a theoretical basis for the subsequent cultivation and genetic breeding of L. cubeba.
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Abbreviations

TH, tree height; GD, trunk diameter at ground level; CW, crown width; FFY, fresh fruit yield;
TSFW, thousand seed fresh weight; TSDW, thousand seed dry weight; WC, water content; PR;
pericarp ratio; P:K, pericarp:kernel; EO, essential oil; CitrP, proportion of citral; NeralP, proportion
of neral; GeranialP, proportion of geranial; 4M3PP, proportion of 4-methyl-3-pentenal; 1CCP4OP,
proportion of 1-(cyclopanecarbonyl)piperidin-4-one; SabP, proportion of sabinene; D-LP, proportion
of D-limonene; LinaP, proportion of linalool; CitroP, proportion of citronellal; 3,7-DP, proportion of
3,7-dimethyl-3,6-octadienal; AAT, annual average temperature; AAMaxT, annual average maximum
temperature; AAMinT, annual average minimum temperature; AARH, annual average relative hu-
midity; AAR, annual average rainfall; CV, coefficient of variation.
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55. Marčetić, M.; Kovačević, N.; Lakušić, D.; Lakušić, B. Habitat-related variation in composition of the essential oil of Seseli rigidum
Waldst. & Kit. (Apiaceae). Phytochemistry 2017, 135, 80–92. [CrossRef]

56. Feng, X.; Zhang, W.; Wu, W.; Bai, R.; Kuang, S.; Shi, B.; Li, D. Chemical composition and diversity of the essential oils of Juniperus
rigida along the elevations in Helan and Changbai Mountains and correlation with the soil characteristics. Ind. Crop. Prod. 2021,
159, 113032. [CrossRef]

57. Melito, S.; Petretto, G.L.; Podani, J.; Foddai, M.; Maldini, M.; Chessa, M.; Pintore, G. Altitude and climate influence Helichrysum
italicum subsp. microphyllum essential oils composition. Ind. Crop. Prod. 2016, 80, 242–250. [CrossRef]

58. Dong, L.; Li, T.; Huang, W.Y.; Wang, B.; Xv, L.C.; Xv, L.A.; Wen, Q. Selection and comprehensive evaluation of superior individual
plant in Camellia chekiangoleosa. J. Cent. South Univ. For. Technol. 2021, 41, 35–45. (In Chinese) [CrossRef]

59. Gao, M.; Chen, Y.C.; Wu, L.W.; Wang, Y.D. Genetic variation of seedling growth of Litsea cubeba from different prove-
nances/families. J. Tropi. Subtrop. Plants 2018, 26, 47–55. (In Chinese) [CrossRef]

60. Wang, H.; Li, Y.; Li, Z.; Ma, R.; Bai, X.; Zhan, X.; Luo, K.; Su, R.; Li, X.; Xia, X.; et al. Inhibition of Cronobacter sakazakii by Litsea
cubeba essential oil and the antibacterial mechanism. Foods 2022, 11, 3900. [CrossRef]

61. Lin, B.; Liu, Q. Plasticity responses of 4 tree species in subalpine-coniferous-forest to different light regimes. J. Ecol. 2008, 28,
4665–4675. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/plants9060680
https://doi.org/10.1016/j.ympev.2018.07.004
https://doi.org/10.1016/j.indcrop.2016.11.017
https://doi.org/10.1016/bs.ctdb.2016.04.002
https://doi.org/10.1111/jeb.13262
https://doi.org/10.3389/fpls.2021.686965
https://www.ncbi.nlm.nih.gov/pubmed/34322143
https://doi.org/10.1111/gcbb.12759
https://doi.org/10.1016/j.plaphy.2019.12.009
https://www.ncbi.nlm.nih.gov/pubmed/31862579
https://doi.org/10.1016/j.phytochem.2016.12.004
https://doi.org/10.1016/j.indcrop.2020.113032
https://doi.org/10.1016/j.indcrop.2015.11.014
https://doi.org/10.14067/j.cnki.1673-923x.2021.11.005
https://doi.org/10.11926/jtsb.3785
https://doi.org/10.3390/foods11233900
https://doi.org/10.1016/S1872-2032(09)60003-2

	Introduction 
	Materials and Methods 
	Sampling Sites 
	Materials 
	Methods 
	Tree Growth 
	Fruit Traits 
	EO Characteristics 

	Statistical Analysis 

	Results 
	Phenotypic Variation Characteristics 
	Tree and Fruit Phenotypic Traits 
	EO Characteristics 

	Correlation Analysis of Phenotypes and Geographical and Climatic Factors 
	Correlation Analyses between Phenotypic Characteristics 
	Correlation Analysis between Geographical and Climatic Factors and Phenotypes 

	Path Analyses of FFY, EO Content and CitrP 
	Redundancy Analysis 
	Identify Individual Trees and Provenances with Desirable Characteristic 
	Identification of L. cubeba Trees 
	Identification of Individual Trees with Desirable Characteristics 
	Identification of Provenances with Desirable Traits 


	Discussion 
	Phenotypic Diversity 
	Geographic and Climate Factors Affecting the Phenotypes 
	Individual Trees and Provenances with Desirable Characteristics 

	Conclusions 
	References

