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Abstract: Forest aboveground biomass (AGB) retrieval using synthetic aperture radar (SAR) backscat-
ter has received extensive attention. The water cloud model (WCM), because of its simplicity and
physical significance, has been one of the most commonly used models for estimating forest AGB
using SAR backscatter. Nevertheless, forest AGB estimation using the WCM is usually based on
simplified assumptions and empirical fitting, leading to results that tend to overestimate or underes-
timate. Moreover, the physical connection between the model and the polarimetric synthetic aperture
radar (PolSAR) is not established, which leads to the limitation of the inversion scale. In this paper,
based on the fully polarimetric SAR data from the Advanced Land Observing Satellite-2 (ALOS-2)
Phased Array-type L-band Synthetic Aperture Radar (PALSAR-2), the relative contributions of the
three major scattering mechanisms were first analyzed in a hilly area of southern China. On this
basis, the traditional WCM was extended by considering the secondary scattering mechanism. Then,
to establish the direct relationship between the vegetation scattering mechanism and forest AGB, a
new relationship equation between the PolSAR decomposition model and the improved water cloud
model (I-WCM) was constructed without the help of external data. Finally, a nonlinear iterative
method was used to estimate the forest AGB. The results show that volume scattering is the dominant
mechanism, accounting for more than 60%. Double-bounce scattering accounts for the smallest
fraction, but still about 10%, which means that the contribution of the double-bounce scattering
component is not negligible in forested areas because of the strong penetration capability of the
long-wave SAR. The modified method provides a correlation coefficient R2 of 0.665 and a root mean
square error (RMSE) of 21.902, which is an improvement of 36.42% compared to the traditional fitting
method. Moreover, it enables the extraction of forest parameters at the pix scale using PolSAR data
without the need for low-resolution external data and is thus helpful for high-resolution mapping of
forest AGB.

Keywords: polarimetric synthetic aperture radar; aboveground biomass; water cloud model; PolSAR
decomposition

1. Introduction

Forest aboveground biomass (AGB) is one of the most important parameters for
monitoring forest ecosystem [1–3]. Therefore, the accurate forest AGB estimation is of
great significance for the in-depth study of global carbon balance. The traditional field
measurement method is currently the most accurate method for biomass extraction, but
the method is labor-intensive, tedious, and destructive, making it difficult to meet the
requirements of large-scale mapping. In order to quantify forest AGB from the regional
scale to the global scale, different remote sensing technologies, especially space-borne
remote sensing, have recently been developed as the primary tools for large-scale forest
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AGB estimation [4,5]. Optical remote sensing has been used for estimating forest AGB for
a relatively long time. However, the applications of optical remote sensing are usually
plagued by weather conditions and saturation effects [6–9]. The use of LiDAR technology
for forest parameter estimation has also been reported in much of the literature [10–12]. In
particular, the new generation of satellite-borne radar, the Ice, Cloud and Land Satellite-2
(ICESat-2), which utilizes the multi-beam micro pulse photon computing technique, has
increased the spatial resolution of the spot and has a greater potential for application in
the inversion of forest structural parameters [13,14]. However, since its observation range
is discrete, it is generally combined with other remote sensing data to meet the needs of
large-scale inversion of forest parameters.

SAR systems are of particular interest for estimating and mapping forest AGB because
of their relative weather independence and strong penetration. Their penetration depth
depends mainly on the wavelength: the longer the wavelength, the deeper the penetra-
tion [15,16]. Therefore, long-wavelength SAR systems (L- and P-band) can interact with the
main components of forest AGB (i.e., branches and stems), making them more sensitive to
forest AGB than short wavelengths (X- and C-band) [17–19]. Currently, the SAR techniques
used to estimate forest biomass are SAR interferometry (InSAR), polarimetric SAR (PolSAR),
polarimetric interferometry (PolInSAR), etc. [20]. Among them, the PolSAR technique uses
different polarization states of electromagnetic waves to extract information from different
scattering targets. The analysis of PolSAR data sometimes makes it possible to separate
the contributions of different scattering mechanisms in a single SAR resolution cell. In
forest research, these scattering elements commonly refer to surface scattering, volume
scattering, and double-bounce scattering [17]. Compared to InSAR or PolInSAR variables,
the variables decomposed by the PolSAR technique have lower saturation for biomass but
are widely used as estimation parameters because of their large-scale availability [21]. In
addition, because of the specialized side-looking imaging method and strong penetrating
characteristics, the advantage of long-wavelength PolSAR for forest parameters depends on
canopy moisture, forest structure and topography, etc. [22,23]. Among these, the complex
terrain conditions can have an impact on both the azimuthal and distance directions of
PolSAR data. Specifically, they mainly include three aspects: polarization orientation angle
(POA), effective scattering area (ESA), and angle variation effect (AVE). Therefore, the
influence of topography should be considered when inverting forest parameters using
PolSAR data in subtropical mountainous areas. In this paper, a fine terrain correction
strategy is attempted by considering different polarization channels and different forest
cover types on the correction coefficient effects.

At present, there are many models for estimating forest AGB based on PolSAR data,
including parametric and non-parametric models [24–26]. Among them, the empirical
models are generally used to estimate forest AGB by establishing a function between in
situ AGB samples and variables derived from SAR data (e.g., backscatter coefficient) [27].
Although it has been reported that the expected results can be achieved using the empirical
models in some test areas [28,29], up to now, there is not a consensus on determining an
optimal and universal empirical model. In addition, the accuracy of the model parameters
fitting mainly depends on the accuracy of the measured data. This means that a large
number of field test data of different vegetation types, vertical structures, and growth
environment conditions need to be collected for large-scale inversions, which is often
difficult [30]. Instead of relying on measured data, the physical models derived based
on physical principles are ideal for large-scale estimation [31]. However, the physical
models are difficult to use directly for forest AGB estimation because of the need to input
large numbers of complex parameters [32]. Therefore, in order to achieve flexibility in
applications, the physical models developed for forest parameter retrieval are usually
limited in the influencing factors and the types of scattering mechanisms that can be
considered. A reasonable compromise between these opposing requirements is to use semi-
empirical models. One of the most widely employed semi-empirical models is the water
cloud model (WCM) [33]. The backscatter signal is interpreted in terms of direct scattering
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mechanisms from the ground and the vegetation canopy. Each scattering mechanism is
modeled in the original WCM as a straightforward function connected to the structural or
biophysical characteristics of the vegetation and ground. The WCM has been frequently
utilized to express the correlation between SAR backscatter coefficients and forest AGB for
space-borne SAR data at various wavelengths because of its simplicity [33,34].

However, because of the weak ability of shortwave SAR to penetrate vegetation
canopy, coupled with the strong attenuation of vegetation canopy and the diffuse scattering
from rough ground, when expressing parameters in the WCM, mostly only the single
scattering mechanisms (i.e., volume scattering and surface scattering) were considered,
and the interaction of SAR signal between ground and tree trunk was ignored [35–37]. The
absence of the higher-order scattering mechanisms limits the application areas of the WCM
at longer wavelengths, for example, over areas with sparse vegetation. Therefore, one of
the concerns of this study is to extend the traditional WCM by introducing higher-order
scattering to make it more compatible with long wavelength SAR application scenarios.
In addition, in order to estimate forest AGB from the WCM, it is necessary to obtain
the scattering contribution of different scattering mechanisms in a single pixel of SAR
data. One way is to use the single- or dual-polarization SAR data to identify the amount of
vegetation scattering and surface scattering in the total backscattering value of a single pixel
by setting a canopy cover threshold [33,38,39]. The process of calculating the scattering
approximation for different scatters is very complex. Another way is to use the fully
polarimetric SAR data to obtain the decomposition components of different scatters within
a single-resolution cell, and these decomposition components are obtained using the
PolSAR decomposition model [40,41]. However, this approach does not establish a direct
link between the decomposition model and the forest AGB, leading to a limited range
of applications. Therefore, how to establish a direct link between vegetation scattering
mechanisms and forest AGB parameters is another concern of this paper.

To extend the potential of PolSAR for large-scale estimation of forest AGB, we perform
terrain correction of the PolSAR data based on the polarization covariance matrix in
this study. Then, the semi-empirical WCM is improved by introducing a high-order
scattering mechanism, which enhances the stability of the model for characterizing the
scattering process of long-wave SAR signal. Third, based on the improved WCM, a pix-
scale forest AGB estimation method is proposed, which firstly constructs the relationship
equation between the PolSAR decomposition model and the improved WCM based on the
topography correction and establishes a direct connection between the vegetation scattering
mechanism and forest AGB parameters. Then, a nonlinear iterative method is used to solve
the problem of the model parameters estimation at the pixel scale. This method is based on
the physical model, which can make the method robust in practical applications.

2. Study Site and Dataset
2.1. Study Site

The study area for this work is the Huangfengqiao state-owned forest farm, located in
the northeastern of Youxian County, Hunan Province (Figure 1), ranging from 27◦05′ to
27◦24′ N and 113◦35′ to 113◦55′ E. It is a field site ground for forest research at Central South
University of Forestry and Technology. The ground elevation ranges from 60 m to 1386 m,
and the slope ranges from 0 to 84 degrees. This area is located in the subtropical monsoon
climate zone, with an annual average temperature of 17.8 ◦C and an average annual
precipitation of 1410.8 mm. The tree species are mainly Chinese fir (Cunninghamia lanceolata),
Pinus massoniana Lamb, bamboo, Liriodendron chinense, and Cinnamomum camphora, with
the planted Chinese fir being the dominant tree species.
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Figure 1. Study area and the corresponding polarimetric RGB image.

2.2. Ground Data

From June to July 2016, we investigated 60 sample plots with a size of 30 m × 30 m.
Each plot, including the central point and corner point, was located using the real-time
dynamic measurement global positioning system. In each sample plot, all trees equal to or
greater than 5 cm in diameter at breast height (DBH) were measured for their height and
DBH. Then, the stem volume of each tree was retrieved as follows [42]:

Vi = ∑ π ×
(

1
2

DBHi

)2
× (hi + 3)× fε (1)

where Vi represents the stem volume of each tree, hi denotes the height of ith tree, ε is the
tree species, and f is a form factor associated with the tree species [43]. After that, the stem
volume of each tree was converted to biomass using the wood density factor, and then, the
forest AGB was calculated by combining the number of trees per plot with the following
equation [44]:

AGBj = n×Vi × ρ (2)

where AGBj is the forest aboveground biomass of the jth plot, n is the number of trees
within the plot, and ρ denotes the wood density factor of different tree species [45]. After
these computations, the total AGB value for individual plots ranged from 2.46 t/ha to
155.52 t/ha, with an average value of 71.67 t/ha. The sample plots were divided into two
groups of training samples (n = 44) and validation samples (n = 16) by random sampling.
The main parameters of ground-measured plots are provided in Table 1.

2.3. SAR Data and Ancillary Data

The L-band SAR data over this study area were acquired by the Japanese Aerospace
Exploration Agency (JAXA) using the Advanced Land Observing Satellite-2 (ALOS-2) in the
polarimetric mode (PLR). The data was acquired along a descending orbit at approximately
4:22 a.m. local time on 14 July 2016. To improve data quality, basic image preprocessing was
implemented, including radiometric calibration, multi-look processing (7× 10), a 7 × 7 Lee
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filter, and geocoding. The ancillary data mainly include Shuttle Radar Topographic Mission
(SRTM) DEM with a resolution of 30 m and a land-use data product. SRTM data were used
to assist in geocoding, resampling, and obtaining the angle factor in the terrain correction.
The land-use data product was downloaded from the China Geographic State Monitoring
Cloud Platform (https://www.dsac.cn/, accessed on 15 August 2023) and was used to
assist in terrain correction. According to the secondary land-use classification, forest was
subdivided into four types: woodland, shrubbery, spare woodland, and other forest.

Table 1. Main parameters of ground-measured plots.

Parameter Range Mean

DBH (cm) 4.06 to 30.10 17.84
Height (m) 4.60 to 20.20 13.24

Number of stems 30 to 350 96
AGB (t/ha) 2.46 to 155.52 71.67

3. Method

The main flow of this paper is shown in Figure 2. There are five main steps: (1) basic
preprocessing on the original L-band fully polarized SAR data was performed using
PolSARpro software (Version 5.1.3, European Space Agency, Paris, France), and the po-
larization covariance matrix was generated; (2) we carried out topographic correction for
the PolSAR data based on the polarization covariance matrix, including POA compen-
sation, ESA correction, and AVE correction; (3) the traditional water cloud model was
improved by taking into account the higher-order scattering and the canopy gap; (4) we
constructed the relationship between the PolSAR decomposition model and the improved
water cloud model and then solved the parameterization by a nonlinear iterative method;
(5) the estimation result was verified and compared.
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3.1. Polarimetric SAR Terrain Correction

According to the specific influence of terrain on SAR image [46,47], PolSAR data were
corrected from three aspects, i.e., POA compensation, ESA correction, and AVE correction
based on the polarimetric covariance matrix (C3) [48,49]. The POA compensation was used
to reduce the impacts of azimuth slope, as shown in Equation (3):

[CPOA] = [U3(η)][C3][U3(η)]
T (3)

https://www.dsac.cn/
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where CPOA represents a new rotated polarization covariance matrix and U3(η) is a rotation
matrix. The shift angle η can be estimated by the circular polarization algorithm [44].

The ESA correction for the backscattering coefficient of a single-polarization channel
is expressed as follows [46]:

σ0 = β0 × cos(ϕ) (4)

where ϕ is the projection angle, which can be determined by means of DEM and orbit infor-
mation. cos(ϕ) is a correction factor of the ESA correction and is used for the polarimetric
covariance matrix correction as follows:

[C3]ESA = [C3]× cos(ϕ) (5)

where C3 is the polarimetric covariance matrix after being compensated by POA.
For the single-polarization backscatter coefficient, the simple cosine model proposed

by Ulaby is commonly used for AVE correction [50], which can be expressed as

σ0
AVE(θloc) = σ0 × k(n), k(n) =

(
cos θre f / cos θloc

)n
(6)

where θloc is the local incidence, θre f is the radar incidence angle, k(n) is the correction
coefficient, and the correction factor n is an unknown parameter. For the PolSAR data,
referring to Equation (6), the correction coefficient matrix needs to be constructed, and the
equation is given as

[C3]AVE = [C3]ESAΘ
[
Ki
(
npq
)]

(7)

where Θ refers to the Hadamard product of two matrices, i is the different types of forest
cover, and p and q are incident and scattered wave polarization, respectively. [Ki(npq)]
refers to the correction coefficient matrix corresponding to the polarization covariance
matrix, which is denoted as

[
Ki(npq)

]
=


k(nhh)

√
k(nhh) · k(nhv)

√
k(nhh) · k(nvv)√

k(nhh) · k(nhv) k(nhv)
√

k(nhv) · k(nvv)√
k(nhh) · k(nvv)

√
k(nhv) · k(nvv) K(nvv)

 (8)

where nhh, nhv, and nvv represent the correction factor of HH, HV, and VV polarization
channels, respectively.

From Equation (6), the optimal value of n can be obtained by evaluating the minimum
correlation between the local incidence angles and the corrected backscatter coefficients.
In addition, for the surface covered by vegetation, n represents the change of scattering
mechanism caused by the presence of vegetation on the inclined surface [32], which indi-
cates that the value n depends on polarization states and the characteristics of vegetation
canopy structure. Thus, we consider the influence of vegetation types and polarization
states, which can be expressed as

npq(z) = argmin
{∣∣∣ρ(θloc, σ0

AVE(θloc)
)∣∣∣} (9)

where ρ is the correlation between the local incidence angles and the backscatter coefficients
and npq denotes the optimal correction factor of different polarization. Note that, according
to Equation (8), in order to obtain the correction coefficient matrix, we only need to obtain
the optimal value of n corresponding to the primary diagonal elements. The results of the
optimal n values for different vegetation cover types are shown in Table 2.
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Table 2. The optimal n values for the four vegetation cover types.

Channel Woodland Shrubbery Spare Woodland Other Forest

HH 1.24 1.23 1.52 1.42
HV 0.82 0.74 0.82 0.63
VV 1.09 1.20 1.39 1.29

3.2. AGB Estimation Model

The WCM with gaps in Equation (10) extends the traditional model to consider vertical
and horizontal discontinuities in the canopy [51]. In the WCM, the backscatter of a single
pixel is contributed by three parts, which are components a, b, and c in Figure 3.

σ0
f or = (1− η)σ0

gr + ησ0
grTtree + ησ0

veg(1− Ttree) (10)

where σ0
f or represents the backscatter of a single pixel in the forest area, σ0

gr is the backscatter

coefficient of the ground, σ0
veg is the direct backscatter coefficient of the forest in the same

pixel, the area-fill factor η denotes the proportion of vegetation cover in a resolution unit,
and Ttree is the two-way tree transmissivity.
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Figure 3. The total backscattering composition of the IM-WCM; a is the backscatter from the canopy,
b is the ground backscatter attenuated by the canopy; c is the direct ground backscatter through
gaps in the vegetation; d is the double-bounce scattering through gaps in the vegetation; e is the
double-bounce scattering attenuated by the canopy.

According to Equation (10), the WCM with gaps is more consistent with the actual
situation of forest distribution than the traditional WCM, but the higher-order scattering
component is still neglected. After considering the gaps between vegetation layers, the
double-bounce scattering component within a resolution cell mainly comes from two possi-
ble sources: one is the ground–trunk interaction caused by electromagnetic waves through
the vegetation gaps; the other is the ground–trunk interaction caused by electromagnetic
waves through the vegetation canopy. The two higher-order scattering contributions can be
modeled separately with reference to the modeling method of the original WCM. The total
backscatter of the improved water cloud model (IM-WCM) consists of five components,
and the expression is as follows:

σ0
f or = (1− η)σ0

gr + ησ0
grTtree + ησ0

veg(1− Ttree) + (1− η)σ0
gs + ησ0

gsTtree (11)

where σ0
gs is the backscatter coefficient of the double-bounce scattering, (1− η)σ0

gs represents
the double-bounce scattering contribution of the ground–trunk interaction caused by
electromagnetic waves through the vegetation gaps, and ησ0

gsTtree is the double-bounce
scattering of electromagnetic waves after two-way attenuation through the vegetation
canopy. Because of the complex distribution of vegetation and gaps, other types of higher-
order scattering may exist, such as only one side of the incident and reflected waves being
attenuated by the vegetation canopy while the other side does not attenuate. These cases
can be regarded as special cases of the double-bounce scattering from ground and trunk
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interaction and, therefore, can be excluded from the model. For retrieval of the forest AGB,
Equation (11) should be expressed as a function related to the forest AGB. Referring to the
derivation process of the original WCM [39], Equation (11) can be rewritten as follows:

σ0
f or = σ0

gre−βB + σ0
veg(1− e−βB) + σ0

gse−βB (12)

where B represents forest AGB and β is the forest transmissivity parameter.

3.3. Model Inversion

The IM-WCM has three scattering contributions to the total forest backscatter of a
single pixel. The polarimetric decomposition technique provides the ability to retrieve the
three scattering contributions from the PolSAR data, so we rewrite Equation (12) as follows:

C3 = C3se−βB + C3v(1− e−βB) + C3De−βB (13)

where C3 is the covariance matrix of the total backscatter of the forest and C3s, C3v, and
C3D represent the surface scattering, volume scattering, and double-bounce scattering
covariance matrices, respectively. e−βB and (1− e−βB) are the transmissivity terms of the
forest. To obtain an estimate of forest AGB from Equation (13), the Freeman component
scattering model is used to retrieve different scattering contributions [52].

Based on the surface scattering model, the surface scattering contribution in Equation (13)
is defined as follows:

w_c3s = fG

 1 0 α
0 0 0
α∗ 0 |α|2

e−βB, |α| ≥ 1 and arg(α) ≈ 2φ (14)

where fG and α represent the contribution of the surface scattering component.
Based on the double-bounce scattering model, the double-bounce scattering contribu-

tion in Equation (13) is defined as follows:

w_c3D = fG

 1 0 α
0 0 0
α∗ 0 |α|2

e−βB, |α| ≤ 1 and arg(α) ≈ ±π (15)

where fG and α represent the contribution of the double-bounce scattering component.
Based on the volume scattering model, the volume scattering contribution in Equation (13)

is defined as follows:

w_c3V =
fV
8

3 0 1
0 2 0
1 0 3

(1− e−βB
)

(16)

where fV represents the contribution of the volume scattering component.
By replacing the corresponding scattering contribution term in Equation (13) with

Equations (14)–(16), Equation (13) is rewritten as follows:

C3 =

 3
8 fV(1− e−β B) + fGe−β B 0 1

8 fV(1− e−β B) + fGα e−β B

0 1
4 fV(1− e−β B) 0

1
8 fV(1− e−β B) + fGα∗e−β B 0 3

8 fV(1− e−β B) + fG|α|2e−β B

 (17)

According to Equation (17), five independent observations and five equations are
provided; i.e., the C3 diagonal provides three, and the C13 term provides two. But,
there are six unknown parameters in total, whose vector forms can be expressed as
X = { fV , fG, Re(α), Im(α), β, B}. Mathematically, the system of equations is underdeter-
mined. However, among the six unknown parameters, the forest transmittance parameter
β is an empirical coefficient whose value is usually fixed in studies that use WCM to invert
forest parameters. In this paper, we first use a nonlinear iterative algorithm to calculate
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the β value of each training sample and take the average value to fix the β value. Then,
the parameter B is estimated again using the nonlinear iterative algorithm. In the param-
eter solution process, the results obtained with the traditional Freeman decomposition
algorithm are used as the initial values of fV , fG, Re(α), and Im(α). The initial values
of B are determined based on the parameters acquired from the parameterized WCM.
The optimization algorithm is the trust domain algorithm, and the parameter boundary
conditions are defined as follows:

0 ≤ fV , fG ≤ SPAN

−4.5 ≤ Re(α), Im(α) ≤ 4.5

0 ≤ B ≤ Bmax

(18)

where SPAN is the total power, α boundary reference existing studies [53], and the upper
and lower bounds of biomass parameter B refer to the research results of Guo Qinghua’s
team [54].

3.4. Model Accuracy Evaluation

The parameterized WCM was utilized to compare with the proposed method in
order to assess its inverse accuracy. Equation (12) was parameterized and can be written
as follows:

σ0 = β1 + β2e(β3B) (19)

where β1, β2, and β3 are the unknown parameters of the equation, representing σ0
veg,

σ0
gr + σ0

gs − σ0
veg, and −β, respectively. Their values are obtained by fitting the training

samples. σ0, instead of σ0
f or, usually refers to the backscatter coefficient for different

polarization channels.
In addition, the study used the root mean square error (RMSE) and determinant coeffi-

cient (R2) as model evaluation factors to reflect the predictive ability of different models.

4. Results and Analysis
4.1. Effect of Terrain Correction on Scattering Mechanism

In order to evaluate the correction effect of the full polarization SAR data, we analyzed
the changes in various polarized scattering mechanisms in the test area. Figure 4 presents
the decomposition results from the three-component decomposition after each correction
step, where Figure 4a shows the decomposition result of the original data. The different
colors represent different decomposition components: the volume scattering component
in green, the double scattering component in red, and the surface scattering component
in blue.

From the visual perspective of Figure 4, the topographic effect can still be clearly ob-
served after POA compensation (Figure 4b). One of the leading factors is that the influence
of the range direction slope is stronger than the azimuth direction for the PolSAR data,
while the POA compensation mainly reduces the topographic effect in the azimuth direc-
tion. Therefore, this means that the effect of POA compensation on reducing topographic
effect is limited. However, compared to the uncompensated case (Figure 4a), it can be
seen that the green component of the image in the forest area is reduced. This reflects the
inhibition of HV polarization. The ESA correction result is shown in Figure 4b. Obviously,
the fluctuation of scattered power with the terrain is improved. However, in areas with
more undulating topography, such as ridges, there are still significant topographic effects.
The main reason is that these areas usually have large local incidence angles, which re-
quire further AVE corrections. In the AVE correction step, the accurate construction of 3D
correction coefficient matrix is the key to improving the influence of topography on the
scattering mechanism. Substituting the optimal n values in Table 2 into Equation (8), we
obtain the correction coefficient matrix for different vegetation types, and the results are
shown in Table 3. Figure 4d shows the result of AVE correction, which shows that the



Forests 2023, 14, 2303 10 of 17

topographic effect is further removed, and the spatial distribution of the scattered power
trend is smooth.
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Table 3. The correction coefficient matrices for different vegetation cover types.

Types K11 K12 K13 K21 K22 K23 K31 K32 K33

Woodland 1.24 2.06 2.35 2.26 0.82 1.91 2.35 1.91 1.09
Shrubbery 1.23 1.97 2.43 1.97 0.74 1.94 2.43 1.94 1.20

Spare woodland 1.52 2.34 2.91 2.34 0.82 2.21 2.91 2.21 1.39
Other forest 1.42 2.05 2.71 2.05 0.63 1.92 2.71 1.92 1.29

K(ij) is the element of the correction coefficient matrices; i and j represent the rows and columns of the element in
the matrix, respectively.

In addition, the color of each image in Figure 4 is different, which may be because
terrain correction has different effects on the scattering mechanism of target polariza-
tion, primarily by altering the ratio of volume, double, and surface scattering. In this
paper, the non-vegetated areas were first masked using the land-use data. Next, using the
Freeman–Durden three-component decomposition, surface scattering, volume scattering,
and double-bounce scattering mechanisms were obtained. Finally, the scattering power
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contributions of different scattering mechanisms were counted. The statistical results are
shown in Figure 5. After POA compensation (Figure 5b), the proportion of the volume
scattering component is 65.01%, the double-bounce scattering component is 10.38%, and
the surface scattering component is 24.61%. Compared to POA compensation (Figure 5a),
the volume scattering component is reduced by 5.7%, and the double-bounce scattering
component increased by 3.33%. This shows that, prior to POA compensation, the volume
scattering components are overestimated, and the double-bounce scattering components
are underestimated. This phenomenon occurs mainly because the horizontal polarization
component received by the radar is no longer parallel to the scattering surface when the
radar is imaged on an inclined surface, thus creating excess cross-polarization. Figure 4c
shows the percentage of scattering components after ESA correction. Compared to POA
compensation, the volume scattering component increases by 3.16%, the surface scattering
decreases by 2.88%, and the double-bounce scattering only changes by 0.28%. It is clear
that the ESA correction has a greater effect on the volume scattering and surface scatter-
ing components, which may depend on the change in the effective scattering area. The
AVE correction (Figure 5d) has a smaller effect on the percentage of the volume scattering
and surface scattering components, and the double-bounce scattering component has a
relatively larger effect, with an increase of 1.26%.

Forests 2023, 14, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 5. Scattering component power statistics: (a) Original data; (b) after POA compensation; (c) 
after ESA correction; (d) after AVE correction. Pv: volume scattering power, Ps: surface scattering 
power, Pd: double-bounce scattering power. 

From the overall proportion, the volume scattering component has an absolute ad-
vantage in different correction stages, and the proportion is above 60%. The double-
bounce scattering component is the smallest among the three components but is still about 
10%, which means that the contribution of the double-bounce scattering component is not 
negligible in forest areas because of the strong penetrating ability of long-wave SAR. 

4.2. Forest AGB Estimation 
In order to make the system of equations in Equation (17) solvable, the empirical co-

efficients β  need to be fixed. The results of β  value for the training samples is shown 
in Figure 6. The values of β  vary mainly within a narrow range between 0.0026 ha/t and 
0.0157 ha/t (average of 0.0081 ha/t), with no apparent regional differences. As can be seen 
from Figure 6, the values β  may not be the same from one plot to another because the 
β  value, as a coefficient of the forest two-way transmittance, is related to vegetation di-
electric properties and forest structure, which are often different between individual pix-
els. Therefore, ideally, the β  value within the study area may vary per pixel. However, 
in practice, the lack of detailed meteorological data and forest structure information 
makes it unrealistic to fine-tune model parameters to accommodate local environmental 
conditions and forest structure characteristics. This means that under existing conditions, 
the β  values are difficult to estimate automatically. In this paper, the β  value is fixed 
by taking the average value without considering the influence of external conditions. 

Figure 5. Scattering component power statistics: (a) Original data; (b) after POA compensation;
(c) after ESA correction; (d) after AVE correction. Pv: volume scattering power, Ps: surface scattering
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From the overall proportion, the volume scattering component has an absolute advan-
tage in different correction stages, and the proportion is above 60%. The double-bounce
scattering component is the smallest among the three components but is still about 10%,
which means that the contribution of the double-bounce scattering component is not
negligible in forest areas because of the strong penetrating ability of long-wave SAR.

4.2. Forest AGB Estimation

In order to make the system of equations in Equation (17) solvable, the empirical
coefficients β need to be fixed. The results of β value for the training samples is shown
in Figure 6. The values of β vary mainly within a narrow range between 0.0026 ha/t and
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0.0157 ha/t (average of 0.0081 ha/t), with no apparent regional differences. As can be
seen from Figure 6, the values β may not be the same from one plot to another because
the β value, as a coefficient of the forest two-way transmittance, is related to vegetation
dielectric properties and forest structure, which are often different between individual
pixels. Therefore, ideally, the β value within the study area may vary per pixel. However, in
practice, the lack of detailed meteorological data and forest structure information makes it
unrealistic to fine-tune model parameters to accommodate local environmental conditions
and forest structure characteristics. This means that under existing conditions, the β values
are difficult to estimate automatically. In this paper, the β value is fixed by taking the
average value without considering the influence of external conditions.
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Figure 6. Distribution of empirical coefficient β.

After determining the empirical coefficient, the value was substituted into the nonlin-
ear equation system of Equation (17), and the spatial distribution of forest AGB in the test
area at the pixel scale could be obtained directly through the nonlinear iterative method.
Then, the non-vegetated areas were masked with the help of vegetation cover type data
for statistical purposes. Figure 6 presents the ultimate outcomes. The predicted values
for the forest AGB range from roughly 0 to 235 t/ha, as shown in Figure 7a, which is a
schematic figure for the regional distribution of the forest AGB. The histogram statistics
of the estimation findings are shown in Figure 7b. In the test region, the forest AGB has a
mean of 69.664 t/ha and a standard deviation of 29.07 t/ha.

According to Equation (19), the parameters of the parameterized WCM usually refer
to the backscatter coefficient for different polarization channels. To obtain the optimal
backscatter coefficients, we examined the relationship between forest AGB of all sample
plots and the polarization channel backscatter using correlation coefficients. Table 4 is a list
of the outcomes. We discovered that compared to HH or VV, the HV polarization channel
exhibited a greater association with the forest AGB. Therefore, the HV backscatter is used
as an individual measurement for the parameterized WCM.

Table 4. Correlation coefficients between AGB and backscatter coefficients.

HH HV VV

Forest AGB 0.395 0.550 0.439

The estimation accuracy was verified by validation samples, and the validation results
are displayed in Figure 8. The validated plot produced by the conventional nonlinear
fitting method has an R2 value of 0.384, RMSE of 34.449 t/ha, and RRMSE of 41.398%.
For the method proposed in this paper, the correlation coefficient R2 value is 0.655, whose
RMSE and RRMSE are 21.902 t/ha and 26.321%, respectively. Obviously, the accuracy of
the method proposed in this paper is higher than the traditional method, and the accuracy
is improved by 15.077%.
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5. Discussion

The long-wave SAR backscatter is sensitive to the physical parameters of vegetation
and is, therefore, widely used to estimate forest parameters. The water cloud model is one of
the most widely used models for estimating forest AGB from SAR backscatter observations
because of its ease of use and physical significance. Nevertheless, forest AGB estimation
using the WCM is mostly based on simplified assumptions and empirical fitting, leading
to results that tend to overestimate or underestimate. One of the underlying assumptions
is that higher-order scattering (e.g., double-bounce scattering) can be neglected [33]. In
this study, we analyzed the share of three common decomposition components (volume
scattering, surface scattering, and double-bounce scattering). Even though it makes up the
least amount of the three components, the double-bounce scattering component still con-
tributes roughly 10%, proving that it is not insignificant because of the powerful penetrating
power of the long-wave SAR. Therefore, improving the estimation model by introducing
the double-bounce scattering can enhance the stability of the model for characterizing the
scattering process.

In previous studies, the backscatter contribution of the ground surface and the forest
vegetation was obtained as the WCM parameters for the forest AGB inversion using single-
polarization or dual-polarization data [55,56]. Estimating the backscatter contribution using
single-polarization or dual-polarization SAR data was mathematically rigorous, but the
reliability was poor [57,58]. In addition, there were also a few studies based on PolSAR
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data using polarimetric decomposition techniques to obtain the scattering parameters of
the WCM [41]. However, the direct link between decomposition modeling and forest
AGB had still not been established. In this study, the Freeman decomposition model was
used to create the relationship equation between the scattering model and the improved
water cloud model to realize the forest AGB parameter extraction. The volume scattering
model in the Freeman decomposition model was performed under the assumption of
reflection symmetry. In fact, this symmetry is often observed in forest scattering, especially
in planted forests, which is in line with the actual situation of the study area dominated
by plantation forests [59]. For some non-uniformly distributed areas of vegetation, such
as some natural vegetation with complex trunk and branch shapes and orientations, it
is possible that the assumption of reflection symmetry is not met. In this case, other
volume scattering models can be considered as the modeling basis [53]. We note that
considering the reflection asymmetric case leads to an increase in the number of unknowns
in Equation (17). For example, using the volume scattering model in the Yamaguchi
four-component decomposition, Equation (17) would have eight unknowns. However,
Equation (17) only provides five equations. Therefore, how to balance the number of
model unknowns with the number of equations set in the region of non-uniform vegetation
structure needs to be further investigated.

The forest transmissivity parameter β in the WCM, which is a parameter related to the
vegetation dielectric attributes and forest structure, describes the trend of the backscatter
with increasing biomass. Since accurate forest structural information within individual
resolution units cannot be obtained, it is difficult to estimate the value of each pixel adap-
tively. In order to identify plausible ranges of values, the WCM is often initially fitted to
the observed relationship of SAR data backscatters and forest biomass using a regression
method. Then, a certain value is taken within the value range to fix β [32]. In order to assess
the impact of employing a fixed value on retrieval performance, researchers have conducted
sensitivity analyses by inverting the model using different values for β and believed that
using an average value for biomass retrieval represents a justifiable compromise [33]. In this
paper, we draw on this approach. Firstly, the measured forest AGB values of the samples
were substituted into the constructed scattering model–water cloud model relationship
equation. Then, the nonlinear iterative method was used to estimate the β value. From our
results, we can see that the variation range of β value is relatively narrow, and the use of
the average value can achieve a better forest AGB estimation result by using a fixed value
for β of an average value. It should be noted that since the forest transmissivity depends on
the forest structure and the external environment, the average value varies with the study
area. For example, in a boreal forest, Santoro et al. found that the variation range of β value
was concentrated at 0.004 to 0.008, with a localized range of 0.016 and an average value of
0.006 [38]. In the northeastern United States, Cartus et al. found that the variation range
was concentrated at 0.006 to 0.01, with an average value of 0.008 [33]. Therefore, when
inverting forest AGB at a larger scale, in order to obtain more desirable estimation results,
it can be considered to obtain the range of β value based on different regions or different
forest types and then fixed separately. In addition, combining multi-source remote sensing
data to obtain forest structure information within the resolution unit and then adaptively
estimating the β value at the pixel scale comprise another direction for future effort.

6. Conclusions

In this study, we proposed a method for estimating forest AGB based on an improved
water cloud model and polarization decomposition model using L-band PolSAR data in
subtropical mountain areas. Prior to the estimation, the polarization covariance matrix
was corrected in three steps—POA compensation, ESA correction, and AVE correction—to
reduce the influence of complex terrain on PolSAR data in subtropical mountain areas.
Then, the relative contributions of the three main scattering mechanisms were analyzed
to understand the scattering process of long-wave SAR signals. The results showed that
the double-bounce scattering accounted for the smallest but still about 10%, which means
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that the contribution of the double-bounce scattering component in forested areas is not
negligible because of the strong penetration capability of long-wave SAR and the different
density distribution structure of the forest. On this basis, in order to establish the direct
relationship between the vegetation scattering mechanism and forest AGB, a relationship
equation between the PolSAR decomposition model and the improved water cloud model
was constructed without the help of external data. Then, a nonlinear iterative method was
used to obtain the forest parameters. Compared to the traditional empirical method, the
method proposed in this work showed a higher inversion accuracy, with a 36.42% improve-
ment in accuracy. The study explores the ability of the physical model-based inversion
of forest AGB at large scales using the long-wave PolSAR technique, and the method has
some generality that is helpful and valuable for mapping biomass at large scales.
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