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Abstract: Accurate, efficient, impersonal harvesting models play a very important role in optimizing
stand spatial structural and guiding forest harvest practices. However, existing studies mainly focus
on the single-objective optimization and evaluation of forest at the stand- or landscape-level, lacking
considerations of tree-level neighborhood interactions. Therefore, the study explored the combination
of the PSO algorithm and neighborhood indices to construct a tree-level multi-objective forest harvest
model (MO-PSO) covering multi-dimensional spatial characteristics of stands. Taking five natural
secondary forest plots and thirty simulated plots as the study area, the MO-PSO was used to simulate
and evaluate the process of thinning operations. The results showed that the MO-PSO model was
superior to the basic PSO model (PSO) and random thinning model Monte Carlo-based (RD-TH),
DBH dominance (DOMI), uniform angle (ANGL), and species mingling (MING) were better than
those before thinning. The multi-dimensional stand spatial structure index (L-index) increased
by 1.0%~11.3%, indicating that the forest planning model (MO-PSO) could significantly improve
the spatial distribution pattern, increase the tree species mixing, and reduce the degree of stand
competition. In addition, under the four thinning intensities of 0% (T1), 15% (T2), 30% (T3), and
45% (T4), L-index increased and T2 was the optimal thinning intensity from the perspective of stand
spatial structure overall optimization. The study explored the effect of thinning on forest spatial
structure by constructing a multi-objective harvesting model, which can help to make reasonable and
scientific forest management decisions under the concept of multi-objective forest management.

Keywords: forest planning; stand spatial structure; selection thinning priority; PSO algorithm;
neighborhood-based indices

1. Introduction

Forest planning mainly consists of three stages: assessment, planning, and monitor-
ing [1,2]. It is a complex task highly dependent on mathematical planning and information
technology [3], which provides a decision-making framework for forest managers: when,
where, how, and how much to harvest [4]. Modern forest planning involves the coordi-
nation of multi-function relationships. The trade-offs between forest ecosystem services
supply and forest management costs may especially complicate the decision-making pro-
cess [5,6]. Therefore, combinatorial optimization is the key to optimizing stand structure,
maintaining species diversity, improving forest productivity, and increasing habitat hetero-
geneity [7–9].

Characterization of stand spatial structure is an essential part of sustainable forest
management [10–12]. Among them, neighborhood indexes that consider the location of
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individual trees and interactions between neighboring trees have received widespread
attention. For instance, DBH (diameter at breast height) dominance, species mingling, and
uniform angle are distance-dependent, neighborhood-based indices. DBH dominance is
widely used to describe tree competition, Species mingling is used to evaluate the degree
of tree species mixing, and uniform angle represents tree spatial distribution pattern [11].
Some studies evaluated forest spatial structure using neighborhood indices and developed
corresponding strategies to increase the diversity of tree species, optimize stand spatial dis-
tribution pattern, and reduce the degree of competition, thus enhancing forest quality [11].
Unfortunately, few studies use the multi-dimensions neighborhood indices to develop
forest planning strategies.

Thinning, as a silvicultural treatment in forest planning, can promote forest growth,
improve stand structure, maintain biodiversity, and prevent pests and fires [12]. Trees
should be removed, and strategies should be taken in tree-level forest planning. These
are the key elements, as the thinning process is limited by multiple factors. Previous
studies focused on constructing thinning models using stem quality attributes [13], tree
species diversity [11], adjacencies between trees [14], and economic criteria [15,16] as
the criteria for selecting harvested trees, which have certain limitations, including the
ignoration of the potential impact of the spatial distribution characteristics [17,18]. Multi-
dimension optimization objectives often conflict with each other, showing nonlinearity
and discontinuity characteristics. Therefore, multi-objective optimization algorithms are
needed in tree-level forest planning.

Recently, heuristics are increasingly being used to solve forest planning problems [19,20].
For instance, Fotakis et al. [21] proposed the constrained NSGA-II, which is used for
multi-objective forest planning problems, including maximization of timber volume, min-
imization of division levels, and even the flows and minimum timber yield. Bettinger
and Tang [11] combined the threshold accepting heuristic and the species mingling index
to achieve tree-level operational harvest scheduling optimization. Compared with other
algorithms, the particle swarm optimization (PSO) algorithm has significant advantages
in solving large-scale mathematical optimization problems by using memory and feed-
back mechanisms: (1) fast calculation speed and strong global search ability; (2) faster
convergence than evolutionary algorithms and genetic algorithms; (3) simple parameter
setting, strong local search ability, and low possibility of falling into local optimum [22,23].
Multi-objective forest planning is also a similar optimization process: calculate the changes
of comprehensive indices before- and after-harvesting under the constraints of multiple
management objectives and in a given solution space (e.g., trees in the plot) to determine
the optimal harvesting intensity.

However, the application of PSO in tree-level forest planning has not been explored
in depth. Therefore, from the perspective of tree-level multi-objective forest planning,
it is a novel concept and method to combine particle swarm optimization (PSO) with
multi-dimensional stand structure indices to construct a harvest model. It contributes
to the expansion and extension of sustainable forest management. Based on five natural
secondary forest plots in South Dongting Lake and thirty simulated plots, the following
studies were conducted: (1) develop a tree-level multi-objective forest planning model
by integrating PSO algorithm and neighborhood indexes (DOMI, ANGL, and MING).
(2) explore the response of species diversity, competition, and forest spatial distribution
pattern to forest thinning, as well as the optimal thinning intensity.

2. Materials and Methods
2.1. Data
2.1.1. Natural Plots

The natural plots were located in the Dongting Lake region in Hunan province,
China. Dongting Lake is the second largest freshwater lake in China, located in the
middle of the Yangtze River (28◦39′ N–30◦14′ N, 111◦42′ E–113◦93′ E). The zonal vegetation
in the area was the subtropical evergreen broad-leaved forest in the middle subtropics.
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Cyclobalanopsis glauca and Schima superb were dominant tree species. The frost-free
period was 263~277 d. The mean annual rainfall was 1400~1500 mm. The mean annual
temperature was 16.6~17.0 ◦C, the lowest temperature in January was 4.1~4.5 ◦C, and the
highest temperature in July was 28.7~29.2 ◦C.

We prepared five natural plots, which were located in Lutou Forest Farm (LT), Daweis-
han Nature Reserve (DW), Longhushan Forest Farm (LH), Dashanchong Forest Farm (DS),
and Wuyunjie Nature Reserve (WT). The area of each plot was 20 m × 30 m. The tree
height, DBH (≥5 cm), tree position, tree crown width, and tree species of all surveyed trees
were recorded. The tree species were recorded and provided by forest farm staff. The area
of each plot was 20 m × 30 m. The tree height, DBH (≥5 cm), tree position, tree crown
width, and tree species of all surveyed trees were recorded. The DBH was measured using
a ruler. Tree height was measured using a laser altimeter. The crown width was measured
with a tape measure and the spatial position (x,y) of each tree was recorded using RTK.
The spatial distributions of five natural plots and the statistical characteristics of trees are
illustrated in Figure 1 and Table 1.
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Figure 1. Location of the natural plots.

Table 1. Basic statistical characteristics of the five studied plots.

Site DW LH DS LT WT

Altitude (m) 1300 68 217 335 713
Slope (◦) 47 35 27 15 38
Aspect E W ES EN S

Canopy density 0.75 0.65 0.70 0.80 0.60
Mean DBH (cm) 12.7 10.3 14.7 11.3 9.4
Mean Height (m) 11.3 9.1 13.8 9.7 7.1
Mean Crown (m) 2.4 2.7 2.0 3.1 2.5

Number of species 8 7 10 6 8

2.1.2. Simulated Plots

The study sample plots included two parts: simulated plot and natural plot. The
spatial distribution pattern of simulated plots was divided into three types: uniform
distribution (A), random distribution (B), and aggregated distribution (C). Each type
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contained ten plots, for a total of 30 plots (Figure 2). In our study, Python (version 3.6.0)
was used to generate 30 plots for each type, numbered 1–30, with 30–70 trees per plot,
and a plot area was 20 m × 30 m, the dominant species were Cyclobalanopsis glauca and
Schima superb. The standard deviation of tree size (DBH, tree height, crown) in each group
increased as the number of groups increased: the minimum standard deviation of tree size
of group 1 was 0.014, and for group 30, the standard deviation of tree size was at 0.613,
which was the largest.
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2.2. Neighborhood Indices

In order to accurately demonstrate the relationship of neighboring trees, such as the
degree of tree species mixing, tree competition, and tree spatial distribution pattern, we
compiled the widely used and representative stand spatial structure indices (Table 2).
Hui et al. proposed the “Structure-based Forest Management” theory. Among them, the
division of forest spatial structure units by “1 + 4” had been recognized by the international
public and widely used. According to the recommendation and the “1 + 4” criterion, the
number of neighboring trees n selected in this paper was 4 in our study [24,25]. The index
distribution of five natural plots was shown in Figure 3.

Table 2. Stand spatial structure index.

Index Calculation Formula Variable Definition

Uniform angle
(ANGL) Wi =

1
n

n
∑

j=1
Zij

Wi is the uniform angle of central tree i, n is the
number of neighboring trees, Zij is the variable

of uniform angle. When the angle between
central tree i and neighboring tree j is less than
the standard angle, Zij = 1, otherwise, Zij = 0.

DBH Dominance
(DOMI) Ui =

1
n

n
∑

j=1
kij

Ui is the neighborhood comparison of central
tree i, kij is the value variable of neighborhood

comparison. When the DBH of neighboring tree j
is smaller than that of central tree i, kij = 0,

otherwise, kij = 1.

Species mingling
(MING) Mi =

1
n

n
∑

j=1
vij

Mi is the species mingling of central tree i, vij is
the value variable of the mingling degree. When
the central tree i and neighboring tree j are the

same trees, vij = 0, otherwise vij = 1.
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2.3. Construction of Dynamic Multi-Objective Optimization Model of Forest Spatial Structure

The multi-objective optimization of forest spatial structure is a dynamic optimization
problem. Each goal is independent and affects the others. It is necessary to consider the tree
species diversity, the inter- and intra-specific competition, and the tree distribution to make
the overall forest structure healthy and stable. Therefore, no matter which forest manage-
ment mode is chosen, stand spatial structure should be evaluated comprehensively instead
of depending on a single structure index. Considering that tree species mixing, competition,
and distribution pattern of trees are the main influencing factors of forest spatial structure,
three objective functions of MING, DOMI, and ANGL are selected as the constraints of
the evaluation method. In addition, the stand spatial structure optimization strategy first
adjusts the horizontal distribution pattern of stands, and judges the horizontal distribution
pattern of stands according to the average value of uniform angle index. It is generally
believed that if the stand is not seriously disturbed, the horizontal distribution pattern
should be random distribution after long-term forest development and succession [26–28].
Therefore, when making forest harvested strategy, we should first analyze the uniform
angle index of the stand, and give priority to adjusting the horizontal distribution pattern
of the stand from non-random distribution to random distribution.

The purpose of constructing the multi-objective optimization model is to optimize
the stand structure, so the output is the target trees that affect the stand structure. The
trees with small MING, large DOMI, and large ANGL significantly affect the overall stand
structure [29,30], which needs to be removed to optimize the stand structure. Our study
was based on utility theory [31,32], with the constraints of maximizing MING, minimizing
DOMI and ANGL, and then constructing a multi-dimensional stand spatial structure index
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(L) to evaluate the overall stand spatial structure after optimization. The L is constructed
as follows:

maximize Mi =
1
n ∑n

j=1 vij, (1)

minimize Ui =
1
n ∑n

j=1 kij, (2)

minimize Wi =
1
n ∑n

j=1 Zij, (3)

Li = f (Mi, Wi, Ui), (4)

L =
1
N
· ωm

ωw·ωu
∑N

i=1
(1 + Mi)·

(
1 + σMi

)
(1 + Wi)·

(
1 + σWi

)
·(1 + Ui)·

(
1 + σUi

) , (5)

where Mi, Wi and Ui are the species mingling, uniform angle, DBH dominance of the
target tree i, respectively; N is the total number of trees in the stand; n is the number of
the neighbors of the target tree i; σMi , σWi and σUi are the standard deviation of species
mingling, uniform angle, DBH dominance of the target tree i, respectively; ωm, ωw, and ωu
are the weights corresponding to the three optimization constraint objectives, respectively;
L represents the overall level of stand spatial structure. The smaller L, the simpler the
composition of tree species, the greater the competition among trees in certain areas, and
the spatial distribution of stands is closer to non-random distribution.

The more ideal the stand spatial structure, the higher the degree of tree species mixing,
the lower the degree of competition, and the more random the spatial distribution of trees.
In addition, the thinning intensity is also an essential part of the forest harvest scheduling
model. Therefore, quantitative evaluation of the impact of different harvesting intensities
on the stand spatial structure characteristics plays an important role in the early stages of
forest development and succession. In this study, according to the Technical Regulations
on the Investigation and Design of Forest Cutting Areas in Hunan Province, the cutting
intensity should be considered according to the comprehensive factors such as the forest
management objectives, site conditions, and stand conditions (http://www.hunan.gov.cn,
accessed on 2 December 2022). The tending cutting intensity was less than 20%~25%; the
release cutting intensity was less than 40%, and the accretion cutting intensity was less
than 30%. The cutting intensity varied in different regions. The plots in our study were in
Hunan Province. In order to meet the actual thinning intensity and situation, we set four
different levels of cutting intensity, namely 0% (T1), 15% (T2), 30% (T3), and 45% (T4), to
explore the impact of harvesting intensity on the stand spatial structure.

2.4. Construction of Tree-Level Multi-Objective Forest Harvest Model (MO-PSO)
2.4.1. Particle Swarm Optimization

Particle swarm optimization (PSO) is an efficient and powerful population-based
stochastic search technique for solving global optimization problems. PSO algorithm
abstracts each solution of the problem to be solved as a particle in the solution space. The
solution process is actually an iterative optimization process in the solution space by a
particle swarm composed of m particles. Particles search for new positions by constantly
updating their positions and speeds and determining whether the searched positions are
optimal by using the fitness function.

vid = ωvid + c1r1(pid − xid) + c2r2

(
pgd − xid

)
, (6)

xid = xid + vid + min
√
(xi − x′)2 + (yi − y′)2, (7)

where Xi = (xi1, xi2, · · · , xiD) represents the position of the ith particle in a D-dimensional
search space, Vi = (vi1, vi2, · · · , viD) is the velocity of ith particle, Pbesti = (pi1, . . . , piD) is ith

particle’s personal best position, Pgbest =
(

pg1, . . . , pgD
)

is global best position. Acceleration

http://www.hunan.gov.cn
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constants c1, c2 and inertia weight ω are predefined by the user, and r1 and r2 are the
uniformly generated random numbers in the range (0, 1).

When the particle position is updated according to Equation (7), it is possible that the
particle position is not within the definition domain. Such particles are called transboundary-
particles. When the transboundary-particles appear, we multiply the speed in Equation (7)
by the adjustment coefficient β to pull the transboundary-particles back into the definition
domain. The new location formula is shown in Equation (8). If the particles remain outside
the boundary after adjustment, reduce the β value according to Equation (9) until the
particles return to the decision space.

xi
k = xi

k + βvi
k + min

√
(xi − x′)2 + (yi − y′)2, (8)

β = 1/
(

δ2 + 1
)

, (9)

where δ is the number of adjustments.

2.4.2. The Method of MO-PSO Model Construction

In this study, each tree in the forest was regarded as a solution in the solution space,
the forest space corresponded to the target solution space of the PSO algorithm, and the
spatial coordinates of trees in the forest corresponded to the position of particles, and the
Function was taken as the fitness function, thus transforming the multi-objective planning
problem of stand spatial structure into an iterative optimization process of the particle
swarm in the solution space.

For an ordinary particle swarm, N particles are randomly initialized, and then these
particles are divided into M sub-swarm by K-means algorithm. In each sub-swarm, the
particle with the shortest distance from other particles in the particle swarm is selected
as the central particle of the particle swarm. The central particle is calculated by the
following formula:

xCenter
k = arg

(
min ∑

N
M
j=1 ‖ xi

k − xj
k ‖
)

, i ∈
[

1,
N
M

]
, (10)

dis
(

xi
k, xj

k

)
=‖ xi

k − xj
k ‖=

√(
∑n

l=1

(
xil

k − xjl
k

)2
)

/n, (11)

in which xCenter
k represents the central position of each particle swarm, dis is the distance

between ith particle and jth particle, xi
k and xj

k, respectively, represented as ith particle and
jth particle in the particle swarm, and n is the dimension of the decision variable x. If the
distance between the xi

k and other particles in the same swarm is the smallest, then the
central particle of the kth swarm xCenter

k = xi
k.

After determining the center particle of the M sub-swarm, the distance between the
sub-swarm k and other sub-swarms is calculated, respectively, and the dynamic particle
group is constructed according to the results obtained. The upper limit and lower limit
of the distance between particle swarms are Dmax and Dmin, respectively, and the particle
swarm with the smallest distance from the particle swarm k is a particle swarm a. If
dis(xk, xa) > Dmax, a new particle swarm xM+1 is generated. If the minimum distance
between a particle swarm and another particle swarm is less than Dmin, a particle swarm is
deleted. The calculation formula of the newly generated particle swarm is:

xil
M+1 =

(
xil

k + xil
a

)
/2 + c1(−1)round(0.5+c2)

∣∣∣xil
k − xil

a

∣∣∣/2, (12)

where xil
M+1 represents the l dimension component of the ith particle in the particle swarm

M + 1, c1, c2 is the random number in [0, 1], and round (·) represents the rounding function.
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The particle swarm searches for trees that meet the optimization objectives in the
stand space using a parallel mechanism, and the final output of the algorithm is the target
tree that needs to be regulated or logged in the stand. The construction process of the
multi-objective optimization harvesting model (MO-PSO) integrating neighborhood indices
and PSO algorithm is shown in Figures 4 and 5. The simulation of the tree-level harvesting
process was performed by c++ and Python.
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generate the initial position and velocity of each particle—initial population.

Step 3: Calculate the Euclidean distance {Di}Q
i=1 from each particle to the tree, adjust

the position of the particle to make it fall on the nearest tree, and calculate the individual
fitness value according to the initial particle—Calculate distance.

Step 4: Initialize the external solution set pi
k of ith particle in particle swarm k to be

empty, the external set Lk of particle swarm k to be empty, and the external set G of the
global optimal solution of all particles to be empty—initialize the external solution set.

Step 5: Store the non-dominated solution in the external set and update the optimal
position—update particle position.

(1) The current position of each particle and the current position of all particles in
each particle swarm are stored in the external set of each particle and the external set of
the swarm, respectively, according to the non-dominated solution rules, and the optimal
position pbesti

k(t) of ith particle at the time t and the optimal position lbestk(t) of the particle
swarm k are calculated.
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(2) The current positions of all particles are stored in the external set G of the global
particle swarm according to non-dominated rules, and then the optimal particle of the
population is found from the external set G of the global optimal solutions of all particles,
and its position is the global optimal position gbest(t).

Step 6: Update the speed and position of particles according to Equation (6) and
Equation (7), adjust the position of particles, and calculate the current fitness value. If
the new position exceeds the boundary of the definition domain, the out-of-boundary
particles shall be treated according to Equation (8) and Equation (9)—calculate the current
fitness value.

Step 7: Calculate the distance between particle swarm, insert or delete particle swarm
according to the method described in Section 2.4.2—insert or delete particle swarm.

Step 8: For the inserted new particle swarm, initialize its particles and generate particle
external set and group external set—update new particle swarm.

Step 9: Judge the change of L-index. If the L-index does not change, stop searching and
output the target tree. Otherwise, return to Step 6 and continue to search for the optimal
solution—judge the value of L-index.
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3. Results
3.1. Model Performance

The simulated harvesting results in Table 3 show that the MO-PSO model was superior
to the basic PSO model (PSO) and random thinning model Monte Carlo-based (RD-TH). For
the uniform distribution, random distribution, and aggregated distribution stand, under
the MO-PSO model, the average of the relative increased proportion (RIP) were as large
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as 31.94%, 29.51%, and 24.71%, respectively, which were slightly larger than PSO model.
However, they were far larger than RD-TH model. At the same time, the average iterations
of MO-PSO (AITE) were about 26~43 times, which was far less than RD-TH (10,000 times
simulating). As far as MO-PSO and PSO models, when the MO-PSO model integrated
the multi-swarm objectives strategy, the ALIV and AITE were also evidently better than
PSO. Obviously, our proposed approach has advantages in multi-dimensional stand spatial
structure optimization.

Table 3. The model performance for the MO-PSO model, PSO model, and the RD-TH model.

Distribution Pattern
MO-PSO PSO RD-TH

AITE ALIV RIP/% AITE ALIV RIP/% RUNN ALIV RIP/%

Uniform 26.9 0.697 31.94 34.2 0.664 30.34 100,000 0.631 27.01
Random 37.4 0.702 29.51 49.6 0.693 27.72 100,000 0.676 24.36

Aggregated 43.9 0.604 24.71 54.3 0.597 20.33 100,000 0.554 19.77

RIP: the relative increased proportion; RIP: average of relatively increased proportion; AITE: average iterations;
ALIV: average of L-index; RD-TH: random thinning model Monte Carlo-based; RUNN: random cutting times.

In scheduling individual tree harvests in our study, compared with the conventional
single-objective optimization model, the MO-PSO model performed better in improving the
stand multi-dimensional spatial structure before- and after-thinning. As shown in Figure 6
and Table 4, with the number of algorithm iterations increasing (Figure 6), the L index of
five plots increased significantly, ranging from 1.0% to 11.3%. Under different thinning
intensities, the average of MING increased by about 2.77% and showed an upward trend
in all plots after thinning, and the variation in DS was the highest (about 4.86%). ANGL
and DOMI decreased compared with those before thinning, and all five plots showed the
same trend.
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Table 4. The statistical characteristics (mean (std)) for the five plots with alternative thinning intensity.

Plot Code Intensity DBH/cm MING RIP/% DOMI RIP/% ANGL RIP/% L-Index RIP/%

DW

0% 12.710
(3.143)

0.473
(0.223)

0.590
(0.351)

0.560
(0.259)

0.612
(0.225)

15% 13.107
(2.967)

0.491
(0.201) 3.81 0.425

(0.332) −27.97 0.484
(0.246) −13.57 0.671

(0.203) 9.60

30% 13.412
(2.762)

0.502
(0.198) 2.24 0.336

(0.303) −20.94 0.442
(0.246) −8.68 0.719

(0.213) 7.19

45% 13.430
(2.784)

0.515
(0.190) 2.59 0.303

(0.278) −9.82 0.407
(0.224) −7.92 0.749

(0.197) 4.15

LH

0% 10.360
(3.853)

0.572
(0.210)

0.485
(0.350)

0.550
(0.275)

0.594
(0.198)

15% 11.797
(3.521)

0.589
(0.199) 2.97 0.431

(0.338) −11.13 0.514
(0.265) −6.55 0.661

(0.176) 11.32

30% 11.903
(3.326)

0.603
(0.192) 2.38 0.342

(0.314) −20.65 0.474
(0.257) −7.78 0.708

(0.188) 7.07

45% 12.001
(3.117)

0.612
(0.189) 1.49 0.290

(0.283) −15.20 0.447
(0.245) −5.70 0.732

(0.172) 3.33

DS

0% 6.710
(2.976)

0.514
(0.223)

0.499
(0.357)

0.529
(0.250)

0.607
(0.215)

15% 7.286
(2.853)

0.539
(0.192) 4.86 0.447

(0.346) −10.42 0.498
(0.240) −5.86 0.672

(0.197) 10.63

30% 7.074
(2.793)

0.548
(0.189) 1.67 0.350

(0.315) −21.70 0.470
(0.246) −5.62 0.708

(0.201) 5.44

45% 7.295
(2.707)

0.564
(0.167) 2.92 0.311

(0.292) −11.14 0.452
(0.242) −3.83 0.738

(0.193) 4.23

LT

0% 11.320
(3.194)

0.604
(0.231)

0.493
(0.349)

0.531
(0.265)

0.605
(0.208)

15% 12.036
(3.013)

0.630
(0.203) 4.30 0.445

(0.339) −9.74 0.493
(0.252) −7.16 0.672

(0.184) 11.02

30% 12.213
(2.936)

0.641
(0.204) 1.75 0.357

(0.316) −19.78 0.449
(0.249) −8.92 0.715

(0.194) 6.45

45% 12.501
(2.903)

0.657
(0.189) 2.50 0.312

(0.291) −12.61 0.431
(0.246) −4.01 0.722

(0.177) 1.01

WT

0% 8.430
(3.723)

0.511
(0.231)

0.506
(0.356)

0.504
(0.274)

0.615
(0.225)

15% 8.989
(3.237)

0.533
(0.206) 4.35 0.456

(0.349) −9.88 0.467
(0.262) −7.34 0.681

(0.208) 10.75

30% 9.035
(2.898)

0.540
(0.197) 1.16 0.370

(0.319) −18.86 0.423
(0.262) −9.42 0.721

(0.211) 5.85

45% 9.127
(2.836)

0.549
(0.194) 1.83 0.312

(0.292) −15.68 0.409
(0.261) −3.31 0.746

(0.205) 3.49

RIP: the relative increased proportion; DBH: diameter at breast; W-index: uniform angle; U-index: DBH domi-
nance; M-index: species mingling.

In addition, we also conducted simulated thinning on 30 simulated plots with uniform
distribution (A), random distribution (B), and aggregated distribution (C). As shown in
Figure 6, in the process of algorithm solution, the L index of A, B, and C all increased. The
magnitude of fitness value (L index) change in A and B stands was slightly larger than that
in C. The optimization time of A and B was shorter. The result showed that the optimized
stand spatial structure was significantly better than before, and the PSO algorithm was
feasible in solving the multi-objective optimization problem of stand spatial structure.

3.2. Thinning Intensities

As shown in Figure 7 and Table 4, the MING increased significantly with the thinning
intensity increases for all the natural plots. However, the DOMI and ANGL values for all
plots between two successive thinning intensities decreased significantly with the increase
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in thinning intensity. For the relatively increased proportion (RIP) of MING, DOMI, and
ANGL, three similar inverse U-shaped tendencies were observed with the gradual increases
in thinning intensity, L-index represents a multi-dimensional comprehensive stand spatial
structure index, covering MING, DOMI, and ANG. L-index increased and the maximum
values of the RIP of L-index usually appeared under the intensity of T2, indicating that the
overall stand spatial structure was affected to varying degrees under different thinning
intensities, and removing 15% of the trees (T2) was the optimal thinning intensity from the
perspective of stand spatial structure overall optimization in our study.
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3.3. Competition, Structure and Spatial Distribution Pattern

To explore the effects of MING, DOMI, and ANGL on the selection of harvested trees,
we analyzed the distribution of MING, DOMI, and ANGL of harvested trees. As shown in
Figure 8, the spatial structure indices distribution of harvested trees is different among the
five plots. Of all five levels of the MING index distribution (Mi = 0, 0.25, 0.5, 0.75, 1), trees
with lower values of MING index were more likely to be harvested (Mi = 0 or Mi = 0.25,
that is, 1 or 0 of the nearest four neighboring trees are the same as the target tree), and
the mean value of relative frequency was 33.7%. However, trees with higher or moderate
MING index (Mi = 0.75 or Mi = 1) were relatively fewer. Similarly, trees with higher DBH
dominance (Ui = 0.75 or Ui = 1) or the trees showed aggregated distribution (Wi = 0.75 or
Wi = 1) were more likely to be harvested, and the mean values of the relative frequency
of DOMI and ANGL were 47.3% and 35.6%, respectively. The results showed that the
individual trees with higher DBH dominance, lower species mingling, and horizontal
distribution aggregation were more likely to be harvested, indicating that these trees could
have a negative influence on stand structure, tree species composition, or the intensification
of tree competition.

In addition, changes in DOMI were the largest, indicating that thinning may signifi-
cantly impact the competition among neighboring trees, followed by distribution pattern
and tree species composition (Figure 9 and Table 4). Tree competition, tree diversity, and
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horizontal spatial distribution of trees should be fully considered in the forest spatial
structure optimization.

Forests 2023, 14, x 14 of 19 
 

 

 
Figure 8. The frequency distribution of DOMI, ANGL, and MING of harvested trees. 

 
Figure 9. The RIP of DOMI, ANGL, MING, and L of five natural plots before and after thinning: 
RIP: average relative change rate; DOMI: DBH dominance; ANGL: uniform angle; MING: species 
mingling. 

 

 

Figure 8. The frequency distribution of DOMI, ANGL, and MING of harvested trees.

Forests 2023, 14, x 14 of 19 
 

 

 
Figure 8. The frequency distribution of DOMI, ANGL, and MING of harvested trees. 

 
Figure 9. The RIP of DOMI, ANGL, MING, and L of five natural plots before and after thinning: 
RIP: average relative change rate; DOMI: DBH dominance; ANGL: uniform angle; MING: species 
mingling. 

 

 

Figure 9. The RIP of DOMI, ANGL, MING, and L of five natural plots before and after thin-
ning: RIP: average relative change rate; DOMI: DBH dominance; ANGL: uniform angle; MING:
species mingling.



Forests 2023, 14, 441 14 of 17

4. Discussion

In the mixed forest, the stand spatial distribution pattern, tree species mixing. and
competition are important criteria in the harvested tree selection, and they are key endoge-
nous constraints to tree growth. For instance, same- and different-species of trees through
asymmetrical competition for light or symmetrical competition for water and nutrients
affect the stand spatial structure and its succession process [33,34]. However, the traditional
indices describing competition, stand distribution pattern. and tree species mixing, such
as total basal area, tree density, Weibull distribution. and Gini coefficient, are all distance-
independent, and cannot accurately quantify the impact of neighborhood interaction on the
stand spatial structure [35,36]. Therefore, in this study, three distance-independent neigh-
borhood indices, DBH dominance (DOMI), uniform angle (ANGL), and species mingling
(MING), were selected to describe the degree of stand competition, spatial distribution of
forest, and tree species diversity, respectively. DOMI measures the proportion of n (n = 4
in our study) nearest neighbors larger than the target tree, ANGL is used to describe the
angular uniformity of the n nearest neighbors around the target tree, and MING is used to
measure the proportion of n (n = 4) nearest neighbors not belonging to the same species as
the target tree [10]. In order to explore the impact of thinning on forest spatial distribution
pattern, mixing and competition, this study attempted to combine the PSO algorithm with
multi-dimensional stand spatial structure indices (MING, DOMI, and ANGL) to construct
a tree-level multi-objective forest planning model (MO-PSO), which is used to evaluate
and simulate the impact of different thinning intensities on different stands. The results
indicated that the MING, DOMI, and ANGL of different stands indices were better than
those before thinning under alternative thinning intensities, and the multi-dimensional
stand spatial structure (L-index) had been improved to varying degrees. Therefore, the
model can provide guidance and help for multi-objects forest planning of natural secondary
mixed forests.

In addition, the results indicated that DOMI, ANGL, and MING were better criteria to
optimize tree selection. Obviously, the competition between target trees and neighboring
trees and the degree of forest aggregation are important factors affecting forest growth.
Trees in high aggregation and fierce competition environments have smaller tree size
characteristics (DBH, height, crown) than those in free-growing (or less competitive) envi-
ronments [30]. In our study, trees with larger size neighboring trees (DOMI > 0.5), highly
aggregated distribution (ANGL > 0.5), and lower tree species mixing degree (MING < 0.5)
were more likely to be harvested. The simulation thinning analysis results also showed that
thinning had a greater impact on the degree of stand competition. Under different thinning
intensities, with the improvement of the overall stand structure (L-index increases), the
individual trees were more evenly distributed. Our results were consistent with some
previous studies [11,12,37,38].

In previous studies, when the complexity of forest spatial management planning
problems increased, showing nonlinear or discontinuous characteristics, the multiple opti-
mization objectives conflicted. Researchers proposed to combine the heuristic algorithm
with a single structure index for a solution [11,39], but the processing capacity and ap-
plication scope of this technology is seriously limited. Therefore, in our study, the PSO
algorithm was used to construct a multi-objective forest planning model, which quickly and
fairly sought approximate optimal solutions and excellent local search ability. In addition,
the initialization particle swarm generated randomly by the PSO algorithm avoids the
subjectivity of harvesting tree selection and makes the solution more objective. The results
indicated that the model had a significant effect on the optimization of multiple objectives,
such as improving the degree of tree species mixing and reducing the aggregation degree of
tree horizontal distribution and competition pressure, which are consistent with previous
studies [12,40,41]. However, forest planning is affected by various factors such as topog-
raphy, climate, and soil properties. Due to the limitations of research conditions and data
accessibility, this study only incorporated the stand spatial structure characteristics into the
model. At the same time, the logging gaps will produce naturally regenerated tree species
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over time [11], thus the model is unsuitable for monitoring and analyzing the dynamics in
forest ecosystems. Therefore, further perfecting the forest planning model to improve the
applicability and evaluation accuracy of the model under dynamic conditions will be the
core and difficulty of the subsequent research.

Thinning reduces the number of trees, decreases the competition for resources in
limited supply (e.g., light, nutrients, and water) among trees and expands the living
space of individual trees [42]. However, the optimal thinning intensity varied greatly
under different optimization objectives. In this study, the multi-dimensional stand spatial
structure index (L-index) increased significantly under all four thinning intensities, and the
value of some forest structural attributes showed certain fluctuations. Compared to the
unharvested, L-index increased by 23.7% or more, but the relatively increased proportion
(RIP) increased and then decreased significantly with increasing thinning intensity. When
15% of the trees were removed from the studied plots, the RIP values all reached the
maximum, indicating that removing 30% of the trees might be the most effective thinning
intensity to improve the multi-dimensional stand spatial structure. However, other studies
have shown that the optimal thinning intensity to increase species diversity is about 60%,
sustainable wood production is about 25~40%, promote stand growth and yield are 45%
and 38%~52%, and improve soil physicochemical properties and microbial community are
about 30%–45% [43–47]. Compared with other intensities, the optimal thinning intensity of
stand structure optimization in this study was much less than other intensities. Therefore,
whether removing 30% of the trees is the optimal thinning intensity, its impact on various
aspects of the forest ecosystem and its differences, and whether it complies with relevant
local forest management laws and regulations need further research.

In addition, some studies reported that advanced remote sensing technologies such as
airborne laser scanning (ALS), ground laser scanning (TLS), and digital aerial photogram-
metry (DAP) have been widely used in forest inventory and management. Integrating
ALS and DAP data (data fusion) will help habitat modeling or drawing the forest attribute
map [48], which might be of great help in calculating DOMI, ANGL, and MING. Combined
with the MO-PSO model in this study, real-time tree-level forest planning decision-making
will be possible. Although there are still many challenges in integrating ALS and DAP
data to quantify three-dimensional spatial structure and attributes of stands [49], taking
into account the synergy among MO-PSO, ALS, and DAP are crucial for making tree-level
decisions, which will help to maintain or increase species diversity, bird habitat composition
diversity, and habitat suitability.

5. Conclusions

Under the guidelines of the structure-considered forest management strategy, we
presented an accurate, efficient, and comprehensive thinning model for the selection of
harvesting trees by integrating the PSO algorithm and stand spatial structure indices with
species diversity, competition, and spatial distribution pattern. The simulated cutting
results showed that the MO-PSO model was superior to the basic PSO model (PSO) and
random thinning model Monte Carlo-based (RD-TH). The analysis of the effects of MING,
DOMI, and ANGL index on the selection of harvested trees showed that the individual
trees with higher DBH dominance, lower species mingling, and horizontal distribution
aggregation were more likely to be harvested. Thinning especially had a significant in-
fluence on tree competition from neighboring trees. A comprehensive analysis of four
thinning intensities on the overall forest structure showed that removing 15% of the trees
is the optimal thinning intensity in our study. The multi-dimensional stand spatial struc-
ture index increased by approximately 1.0% ~ 11.3% in the five natural plots. However,
forest management and planning is a continuous, multi-factorial, and cyclic optimization
process. The stand structure characteristics and research scope covered in our study were
limited. Therefore, further research will consider more factors, such as the environment,
temperature, and terrain.
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