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Abstract: Dead standing trees (DSTs) generally decompose slower than wood in contact with the
forest floor. In many regions, DSTs are being created at an increasing rate due to accelerating tree
mortality caused by climate change. Therefore, factors determining DST fall are crucial for predicting
dead wood turnover time but remain poorly constrained. Here, we conduct a re-analysis of published
DST fall data to provide standardized information on the mean time to fall (MTF) of DSTs across
biomes. We used multiple linear regression to test covariates considered important for DST fall, while
controlling for mortality and management effects. DSTs of species killed by fire, insects and other
causes stood on average for 48, 13 and 19 years, but MTF calculations were sensitive to how tree
size was accounted for. Species’ MTFs differed significantly between DSTs killed by fire and other
causes, between coniferous and broadleaved plant functional types (PFTs) and between managed
and unmanaged sites, but management did not explain MTFs when we distinguished by mortality
cause. Mean annual temperature (MAT) negatively affected MTFs, whereas larger tree size or being
coniferous caused DSTs to stand longer. The most important explanatory variables were MAT and
tree size, with minor contributions of management and plant functional type depending on mortality
cause. Our results provide a basis to improve the representation of dead wood decomposition in
carbon cycle assessments.

Keywords: standing dead wood; snag fall; woody decomposition; literature review; re-analysis

1. Introduction

Global forest ecosystems are a significant part of the global carbon cycle, mitigating
climate change with a net carbon uptake between 4.2 Pg C year−1 (2001–2007 [1]) and
2.2 Pg C year−1 (2001–2010 [2]). However, recent data from the South American and
African tropics indicate that this sink strength may decline in the future due to increased
tree mortality [3,4]. Additionally, in other biomes, dead wood production is projected
to increase due to greater intensity and frequency of disturbance from fire, insects and
storms driven by climate change [5]. Globally, dead wood has been estimated to store
∼8% (73 Pg C) of total global forest carbon [1] and dead wood can remain in forests from
years to centuries depending on its position, size, species and environmental conditions
influencing decomposition rates [6–8]. However, there is insufficient knowledge about how
these drivers influence storage and turnover of carbon in dead wood on larger spatial scales,
and biogeochemical cycling in general, which is an obstacle to mapping and modelling
terrestrial carbon storage and turnover in global forests.

Dead wood needs to be distinguished by its position relative to the forest floor, because
decomposition rates of standing dead wood can be substantially lower than for downed
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dead wood [9–15]. Dead standing trees (DSTs) alone hold ∼1 Pg C in US forests [16],
5%–35% of total above-ground forest biomass across North America [17], 8%–14% of
standing volume in Sweden’s pristine boreal forests [18,19], ∼11% in northern Australian
savannas [20] and 2%–8% across the tropical forests of Panama and Venezuela [21,22].
Lower decomposition rates in DSTs compared to downed dead wood have been linked
to restricted access for decomposers and lower moisture availability relative to the forest
floor, inhibiting microbial and fungal growth [14,23,24]. Dead standing trees and their mass
therefore generally stay in the forest longer than trees that fall to the forest floor at time of
death [10,12,25–28].

This has implications for the models used to make assessments of the global carbon
cycle [29] because global terrestrial biosphere models generally do not distinguish between
dead wood position, but rather treat dead wood as either part of the litter or part of the soil
carbon pools [8]. The simulated carbon release caused by tree mortality thereby returns to
the atmosphere faster than observed, contributing to the uncertainty in estimated carbon
release from global forests [8]. This uncertainty is also likely to increase in the future because
of accelerated tree mortality due to climate change [30,31]. To address this uncertainty with
more accurate models of dead wood carbon dynamics, it is important to quantify drivers
of DST fall.

Dead standing tree (DST) fall, often referred to as snag fall, is ultimately driven by
decomposition which weakens the structural resistance to proximate breaking forces such as
wind, water and ice [32]. Decomposition in DSTs is concentrated in roots and at the stem base
because wood shows limited vertical conductivity to soil moisture, which accelerates woody
decomposition at the stem–soil interface by an order of magnitude compared to suspended
wood [15]. Moisture availability is therefore a critical prerequisite for DST decomposition [33].
Decomposition rates also increase along mean annual temperature gradients [8]. However,
there is mounting evidence that wood traits may be more important controls of decomposition
than exogenous factors such as climate and edaphic factors [24,34,35]. These wood traits can
be subdivided into factors controlled by wood chemical composition and size, wherein stems
of larger diameter decompose slower than smaller-diameter stems of the same wood [15,36].
Wood chemical composition and thus wood decay resistance differs between species and
species groups, causing coniferous wood to decompose slower than wood from broadleaved
species at the same site [37–39]. Wood decay resistance has been expressed as wood dura-
bility [40,41] and was identified as a key parameter to predict DST fall in a recent regional
analysis [42]. Additionally, management and mortality by fire and insect attacks may influence
the decomposability of DST wood by changing decomposer community diversity [39,43,44],
stand density, moisture retention (fire and management; [45,46]), wood chemical composition
(fire; [46]), nitrogen availability for decomposers (fire; [47]) and inoculation of wood with
decomposing fungi [48].

Studies of DST fall so far have concentrated on local to regional scales [12,42,49], but
an analysis of the drivers of DST fall at the scale of biomes or the globe is missing. Here, we
collect previously published data on DST fall globally using a literature search. Studies of
DST fall present their findings using different model forms and measures which cannot be
compared directly; therefore, we standardize study results into the mean time to fall (MTF),
which is the average time DSTs remain standing before falling. The main aim of this study
is to determine large-scale relationships of the MTF with explanatory variables, to inform
the modelling of dead wood carbon dynamics in terrestrial biosphere models. Based on the
literature, we hypothesized that we could describe the MTF of DSTs by a combination of
factors driving decomposition such as temperature, moisture availability, wood chemical
composition and DST size. We expected that tree size would be one of the most important
explanatory variables and that climate data over the period of the observations would be a
better explanatory variable than climate data averaged over a standardized reference period.
Therefore, here we test a range of datasets describing temperature, moisture availability
and wood chemical composition for their ability to explain DST fall, while controlling for
confounding factors such as mortality cause and management.
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2. Materials and Methods
2.1. Data Collection
2.1.1. Literature Search and Data Extraction

We searched titles, keywords and abstracts in all databases of the Web of Science on the
11 November 2021, using the following combination of keywords and search operators: snag
fall OR snag persistence OR snag fall rate* OR snag* longevity OR snag survival OR time
from death to fall OR time since death snag OR snag survival OR standing snags dynamics
OR dead wood abundance snag OR snag characteristics. We considered three types of studies
applicable to derive the mean time to fall (MTF), ordered by increasing complexity:

1. Studies based on counts of dead standing trees (DSTs) not distinguishing size classes;
2. Studies based on counts of DSTs distinguished by size classes;
3. Studies based on volume/dry mass of DSTs.

The MTF based on counts are hereinafter referred to as MTFcount (Section 2.3.1). For
studies of DST counts distinguishing size classes, we calculated MTFcount and MTFsize,
wherein the latter incorporates the total DST mass at time of death (Section 2.3.2), whereas
the MTF based on volume/dry mass is referred to as MTFm (Section 2.3.3).

The search resulted in 203 papers, of which 16 were duplicates, and we added another
7 papers from reference lists (Figure 1). We screened the abstracts of 194 papers and
excluded 109 papers because they did not contain relevant data. Therefore, we assessed the
full text of 85 publications, of which we excluded 15 because they were located at the same
study location, had irrelevant outcomes or missed crucial data. In total, 70 papers were
included in the analysis [7,10,22,26,28,45,48–111]. From each paper, we collected data that
could be converted into the MTF (Section 2.2).

1 

 

 

 

Figure 1. PRISMA diagram [112] of the literature search and subsequent screening and selection
procedure used in this article.

We assembled site geographical information such as country, region, site name and
site coordinates. If exact coordinates were not presented, we estimated the study locations



Forests 2023, 14, 1017 4 of 32

from maps or location descriptions. However, where information about fall times was only
reported for regions or countries, we treated the location as missing.

Site properties recorded from studies included forest management history, elevation,
dominant mortality cause and species characteristics. Authors reporting mean site data
did not present individual species information. In these cases, we recorded the dominant
species and the percentage of the dominant species’ contribution to the total species mix.
Species were categorized into coniferous or broadleaved plant functional types (PFTs), and
we determined the dominant PFT for sites by the prevalence of coniferous or broadleaved
species (>50% of all DSTs on site).

Information on tree size was recorded as the mean diameter at breast height (DBH) per
site, species or species size classes (number of publications (np) = 49). For papers reporting
size classes of DSTs (np = 21), we calculated the mean DBH of species or sites using the
average DBH of size classes and the number of DSTs per size class. If the maximum DBH
of the largest DBH class was not reported, we estimated the mean of the largest DBH
class by adding the average difference between size class means and the largest size class
(np = 15). For publications wherein DBH was only given for all species or sites combined
(np = 9), we assumed the same DBH class distribution (np = 9) for all sites and species,
while maintaining relative species contributions to the total number of trees (e.g., [113]).
We evaluated this assumption using data where the DBH distribution was reported by
species individually and found that the mean absolute deviation of the mean DBH at the
same site was on average 4 cm for the range of DBH (12–51 cm) when we applied this
simplification, which we judged to be adequate for this analysis. If DBH class distribution
was not reported by the authors, we estimated species DBH class distribution from other
papers or published data from databases at the same location (np = 3; Table A1) that were
either based on the same dataset (np = 1; [114]) or conducted within 1–2 years of the
MTF studies (np = 2 [115,116]), requested data from the studies’ principal investigators
(np = 3; [74,78,94]) or estimated the DBH class distribution by using published generalized
stand structure parameters which were applied by the authors themselves (np = 1; [111]).

Finally, we collected information about the authors’ methodology: the number of plots,
plot size, number of DSTs included in the analysis and minimum DBH of dead standing
trees to be included in the survey, total survey duration and re-measurement interval and
the model form used by the authors to describe the fraction of DSTs remaining over time.

2.1.2. Ancillary Data

For each study site, we collected a range of supplementary variables considered im-
portant for decomposition: climate (temperature, soil moisture) and wood traits (substrate
quality, tree size; Table 1). We extracted mean annual air temperature (MAT) and mean
annual precipitation (MAP) for each study site with reported location coordinates from
three commonly used global gridded climate datasets of different resolutions and time
periods. We aggregated six-hourly CRUNCEPv7 data (1901–2016; [117]) with a resolu-
tion of 0.5◦ × 0.5◦ over the standardized reference period, 1981–2010 (CRUclim), and
over the observation period of each study if start and end year were reported (CRUobs;
np = 56; Figure A1). We treated extensions of the observation periods beyond the tem-
poral coverage of CRUNCEPv7 as missing data (np = 1; [100]) and used CRUclim for
studies with location coordinates but missing information about the observation period
(np = 9). We used bioclimatic data of different standardized reference periods of MAT
and MAP from CHELSA (Climatologies at high resolution for the Earth’s land surface
areas) aggregated for 1981–2010 at 30 arc seconds [118,119] and WorldClim2 at 10 m and
30 arc seconds over the standardized reference period, 1970–2000 [120]. Mean annual
soil temperature (MATsoil) of the topsoil (0–5 cm) was extracted from the SoilTemp maps
version 1 [121,122]. Mean and maximum annual soil water saturation of the topsoil layer
(0–30 cm depth) covering the standardized reference period 1970–2014 were collected from
SOIL-WATERGRIDS [123,124].
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Table 1. Multiple linear regression covariates grouped by their effect on decomposition: climate
(temperature, moisture) and wood traits (substrate quality, tree size) to avoid correlations of |r| > 0.7
between variables and thereby multicollinearity in regression models [125]. MAT—Mean annual
air temperature. MAP—Mean annual precipitation. DBH—Diameter at breast height. DBH refers
to the mean site and mean species DBH at site and species level, respectively (Figure 2). * PFT
(plant functional type) is 1 if sites were dominated by coniferous trees (>50% trees) or 0 if sites were
dominated by broadleaved trees. For species, PFT classified species as coniferous or broadleaved.
† Variables only available for subset of observations at species level and analyzed separately.
‡ Variables only for a subset at both site and species level and analyzed separately.

Climate Wood Traits
Temperature Moisture Substrate Quality Tree Size

MAT MAP PFT * DBH
MATsoil Soil water ‡ Wood durability †

Soil water max ‡

1 

 

 

 

Figure 2. Scheme illustrating analysis flow of MTF input and auxiliary data depending on MTF
properties at site and species level. Green boxes refer to MTF properties and lead to decision points
(grey diamonds): if “yes” is the only possible decision than “no” is not applicable. Dark blue triangles
refer to the primary calculation of MTF from input using Equation (1) or Equation (3), which are
described in Section 2.1. Remaining blue-colored boxes represent aggregations to species- and site-
level MTF using weighted means. Dashed yellow boxes are input for the scheme. Remaining yellow
boxes show auxiliary calculations of DST total carbon mass (Ci), the total number of DSTs (N) and
mean diameter at breast height (DBH) and species’ wood carbon fraction (fcs). Red boxes refer to
loops over species’ size classes (i) or species (s) per site. Variables with solid black outlines are input
for MTF regression analysis.

To capture wood substrate quality by species, we calculated species-specific mean values
over all species entries for stem carbon content (mg/g) from the TRY Database [126]. We
also used a wood durability dataset which rates species’ wood microbial and insect decay
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resistance from zero (not durable/non-resistant) to four (very durable/resistant) [40–42]. We
used the methodology described by Oberle et al. [42] to fill gaps in the dataset. Wood durability
could only be used in combination with species-specific MTFs (Supplementary Data S1).

2.2. Primary MTF Calculation and Pre-Processing of Collected Data

The mean time to fall (MTF) of DSTs is analogous to the mean residence time (MRT).
The MRT is based on the individual residence times of DSTs, which form a frequency–
time distribution, the mean of which is the MRT. In cases of the single exponential model
presented by Olson [127],

f = e−k∗td (1)

where k is the rate constant describing the fraction of DSTs falling, td is time since death in
years and f is the fraction of DSTs remaining standing over time, the MRT and MTF can be
calculated as the following:

MTF = MRT =
1
k

(2)

However, for studies using model forms other than the single exponential model, we
approximated the MTF from interpolated time series of the fraction of DSTs remaining with
time since death until 99% of DSTs had fallen, as follows:

MTF ≈ ∑n
i=0[∆td ∗ fi] (3)

where ∆td = 0.001 is the time step of the interpolation in years, f is the fraction of DSTs
remaining for 0.01 ≤ f ≤ 1 and n is the number of time steps required such that fn ≈ 0.01.
We evaluated the possible prediction bias of defining time series of the fraction of DSTs for
0.01 ≤ f ≤ 1 compared to the analytical solution in Equation (2) for different k and found
that, independent of the order of magnitude of k, prediction bias was ~1% (Figure A2). We
processed the collected data such that we could calculate the MTF using either Equation (2)
or Equation (3), which required pre-processing depending on the type of the reported data
(Table 2).

Table 2. Reporting types, corresponding key assumptions and number of papers included from the
literature search. Reporting types 1–4 were based on Olson [70]. Survival curves were based on
statistical survival analysis using different model forms, persistence curves used different model
forms fitted to the data and data simply reporting the number of DSTs remaining at each census
interval. Number of papers (np) is not equal to papers in Figure 1 because two publications used
different methods. Reporting types by reference are reported in Supplementary Data S1.

Reporting Type Key Assumption np

1 mean residence time steady state 4
2 decay constant k

single negative
exponential decay

12
3 mean annual fall rate (F, % y−1) 8

4
single observations of percent of dead standing tree
count, volume or mass remaining; single estimate
of the probability to remain after n years (f )

15

5 survival or persistence curves; data other 33

Studies were considered applicable if they reported information about how long dead
trees remained standing since time of death, DST fall rates or the probability of DSTs
to remain standing since time of death using one of the reporting types in Table 2. We
considered the probability of one DST to remain standing at time t to be the fraction of the
DST population to remain at time t. The MTF reporting types in Table 2 can be separated
into two groups: (1) studies using single exponential decay dynamics originally presented
by Olson ([70]; categories 1–4) and (2) studies publishing DST persistence over time by
presenting raw data or persistence curves based on different models or statistical techniques
(category 5). For the latter group to be considered applicable, we required that the data
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could be expressed as a fraction of dead tree count or volume/mass still standing since
time of death. If authors reported the fraction of DSTs remaining over time, we required
that at the end of the observation period DST fall had started. However, in cases where DST
fall had started for all tree size classes except for the largest tree size class, we assumed the
mean time to fall of the largest size class to be equal to the next smallest size class (np = 1;
one species [96]).

Estimates of reporting type 1 and 2 did not require any pre-processing. Estimates based
on reporting types 3 and 4 were converted to the fall rate k using the single exponential model
(Equation (1) [70]). In cases where annual percentage fall rates (category 3, Table 2; F% y−1)
were reported, we assumed Equation (1) applied and converted fall rates to k as follows:

k = ln
(
− 100

F − 100

)
(4)

In cases where the fraction of DSTs remaining after a fixed observation period or
half-lives were reported, we assumed single exponential decline following Equation (1)
and converted the observations to annual fall rates:

F = 100 ∗ (1 − f
1
td ) (5)

If authors reported no more dead standing trees at time since death (np = 6), we
assumed that time since death was equal to the time when ~99% of DST had fallen
(t99), which can be approximated as t99 = 5

k , where t99 using Equation (1) results in
f (t99) = 0.0067 ≈ 1% for k > 0. Therefore, we approximated k in these cases as k = 5

t99
.

We tested the sensitivity of late observations on the estimated MTF using a range of k and
time intervals of 5–15 years post t99. Values of the MTF that were observed post t99 differed
1–3 years in absolute terms from k-based MTF, independent of the order of magnitude of k.
Therefore, the percentage bias to actual MTF decreased with increasing MTF, approaching
0 (Figure A3). In our collected data, mean survey intervals were 4 years with a maximum
of 12.5 years; therefore, the probable mean prediction bias using t99 to estimate k is <25% of
the MTF or 1 year in absolute terms (Figure A3).

If authors, in addition to DST fall rates, reported lag times, i.e., the time before dead
trees started falling, we assumed no falling of dead trees during that period and used
Equations (1) and (4) to generate time series of the fraction of DSTs remaining since time of
death and linearly interpolated between points such that ∆td = 0.001 (cf. Equation (3)). Lag
times then preceded time series of the fraction of DSTs, which were then processed further
to MTF using Equation (3).

The reporting type category 5 consisted of persistence or survival curves of DST
counts or volume/mass based on fitted models (including generalized mixed linear models,
logistic models, Weibull functions and survival analysis) applied to field data or tree counts
by time since death. We first digitized the published data [128] and transformed the data to
fractions of DST counts or mass/volume remaining over time, and linearly interpolated
between points (∆td = 0.001) to yield time series of the fraction of DSTs remaining since
time of death. If data were collected at discrete intervals, we assumed that dead trees had
fallen at the midpoint between measurement intervals. In cases where the data indicated
that >10% DSTs were still standing at the end of the study period (np = 9), we fitted a
logistic model of the following form:

f =
1

a + ec∗(td−b)
(6)

where a, b and c are fitted parameters and f is the fraction of DSTs remaining at time since
death (td [years]). The resulting time series of the fraction of DSTs remaining was then
generated for 0.01 ≤ f ≤ 1, i.e., until 1% of DSTs were remaining. Rate constants (k) and
time series of the fraction of DSTs remaining since times of death were then processed to
estimates of MTF using Equations (2) and (3).
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2.3. MTF Calculation at Site and Species Level

We calculated the MTF at site and species levels, wherein site-level MTF is the mean
site MTF and species-level MTF is the MTF averaged per individual species per site
(Figure 2). We report all MTF values at site and species levels, as well as covariates and
data citations, in Supplementary Data S1. Site-level MTFs were based on reported mean
values by authors, or we aggregated all species-specific MTFs per site by weighing species’
MTFs by the number of DSTs of each species (Figure 2). Whilst we aimed to test species-
level differences in MTF, not all studies report this level of information; thus, to maximize
the geographic representation and overall sample size, we also investigated the site-level
values. Furthermore, site- and species-level MTFs represent two levels of aggregation, and
presenting both in this study enables assessment of how the level of aggregation might
impact MTF predictions.

Based on rate constants (k) and the time series of the fraction of DST counts remaining
over time, we determined the mean time for DSTs to fall (MTFcount; Figure 2; c.f. Section 2.2).
When tree count data distinguished by size classes was available, we also calculated MTFsize,
which better accounts for size effects on mean time to fall than MTFcount. When DST volume
or mass was reported with time since death (np = 8), we determined MTFm, which also
incorporates mass loss with time since death. A total of 21 studies reported size classes
and the remaining 41 studies reported tree counts at site or species levels. We found
significant linear relationships (p < 0.05) between MTFcount and MTFsize at site and species
levels (Figure A4), as well as when we separated species data by plant functional type
(PFT; coniferous and broadleaved; Figure A5) using ordinary least squares regression. The
linear regressions were forced through zero [129] and bootstrapped to estimate the 95%
confidence interval of the mean slope using repeated sampling with replacement (n = 1000).
We used site (Figure A4a) and plant-functional-type-specific (Figure A5) regression slopes
to convert MTFcount to MTFsize for 44 studies at site and species levels, respectively.

2.3.1. Studies Based on Counts of Dead Standing Trees (MTFcount)

Dead standing tree (DST) fall rate constants (k) were converted to the mean time to
fall (MTFcount) by taking the inverse of k (Equation (2)). For time series of digitized data in
reporting category 5 (Table 2), which included site, species and species-size-class-specific
data (Figure 2), MTFcount was calculated using Equation (3). Where we had size class
data, we determined species-level MTFcount from species size class’ MTFcount by taking
a weighted average using the number of dead standing trees of these size classes and
similarly determined a mean site MTFcount by weighting individual species on site by their
number of DSTs (Figure 2). We consider these mean-species and mean-site MTFcounts as
equivalent to the estimates calculated from studies that did not distinguish by size classes
(Figure 2).

2.3.2. Studies Based on Counts of Dead Standing Trees Distinguished by Size Classes (MTFsize)

For studies reporting DST fractions distinguished by size classes, we determined
MTFcount as described in the previous section and then aggregated MTFcount by taking a
weighted mean of size-class-specific MTFcount and the respective total carbon mass of each
size class (Ci; Figure 2) at time of death to determine MTFsize by species and site, which we
consider a better representation of the average time carbon remains in DSTs than MTFcount.

To determine MTFsize, we assumed DSTs to be whole trees at time of death and
estimated total dry weight biomass of size classes from the mean DBH per size class using
the generalized biomass equation and species-group-specific parameters presented by
Chojnacky et al. [130]. We then applied species-specific mean carbon concentrations from
the TRY Database [126] to estimate standing dead wood carbon of the average tree for each
size class [131]. Using the number of DSTs within size classes per species, we estimated
total species carbon mass at time of death for each site (Cs; Figure 2). We also used the
mean DBH of species’ size classes (DBHi; Figure 2) and the number of trees per size class
(Ni; Figure 2) to calculate the mean weighted site-level DBH (DBHs; Figure 2).
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2.3.3. Studies Based on Volume/Dry Mass of the Dead Standing Trees (MTFm)

Studies based on the volume/dry mass of DSTs report their findings as mean residence
times of DST volume/dry mass (category 1, Table 2, e.g., Chambers et al., Palace et al.,
Gora et al. [22,95,132]) or as the mass/volume of DSTs remaining over time (category 5,
Table 2, e.g., Akala [103]). These studies incorporate density loss due to decomposition either
by measuring wood density of DSTs in decay classes [103] or by applying the steady-state
assumption to measurements of influx into the dead standing wood pool (mortality), size of
the standing dead wood pool and transfer of standing dead wood mass to downed woody
debris [22]. Therefore, the studies in these categories incorporate mass loss and could be
considered the closest estimate of the mean residence time of biomass in standing dead wood.
None of the studies, however, converted their dry mass to carbon, and therefore we call the
mean time to fall based on these studies MTFm.

2.4. Relationships of MTF to Explanatory Variables

We analyzed the MTF of DST at site and species levels separately and distinguished
between MTFcount and MTFsize due to autocorrelation caused by the conversion from
MTFcount to MTFsize (Figures A4 and A5). Since our aim in this study is to identify large-
scale dynamics of DST fall, we considered all species per site as individual data points
described by their plant functional type (PFT) and tree size (DBH), to find relationships
that explain the species-level MTF on a generalized level.

All MTF data were log-transformed to meet the requirements of a normal distribution
for statistical tests and linear regressions. We classified sites and species by their dominant
mortality causes: fire (MFire), insects and associated fungi (MInsects) or other mortality
(MOther), as well as by plant functional type (PFT) and if forests had a reported history of
management or not. If authors had indicated that both managed and unmanaged forest
stands had been used in their analysis, we treated their data as managed. Not-reported
categories were treated as missing.

At site and species levels, we first tested whether the log-transformed MTF signifi-
cantly differed (p < 0.05) between mortality causes (MFire, MInsects, MOther), management or
PFT using pair-wise statistical testing, assuming independent samples. We confirmed the
homogeneity of variances using the Levene test before performing t-tests (scipy v1.7.3 [129]),
or if the prerequisite of homogeneity of variances was not fulfilled, we performed a Kruskal–
Wallis test (scipy v1.7.3 [129]), to determine whether groups differed significantly from
each other.

Next, we trained regression models to further explore the drivers and control for
differences in background climate. To ensure comparability between them, we identified
the largest data subset including no missing data across variable groups, shown in Table 1,
and management. Wood durability was only available for a subset of our data, and
therefore we used PFTs as proxies for wood substrate quality differences [37] for 64 and
107 data points at site and species levels, respectively. We grouped potential covariates
by whether they described the temperature, moisture availability or substrate quality
effect on decomposition (Table 1) to keep correlations between groups of variables to
below |r| < 0.7 [125], and tested all possible variable combinations between groups using
ordinary least squares multiple linear regression (statsmodels v0.13.2 [133]). We treated all
covariates as fixed effects because interaction effects between covariates shown in Table 1,
mortality cause and management, led to non-valid regression models, as judged by the
variance inflation factor (VIF ≥ 5). To ensure homoscedasticity of model residuals, we
performed post hoc White tests (scipy v1.7.3 [129], p < 0.05) and excluded all models that
did not pass the test. If a variable combination included MAT or MAP, we determined the
best model for each climate dataset (n = 5, CRUclim, CRUobs, CHELSA30s, WorldClim30s
and WorldClim10m).

We retained models when covariates were significant, with p < 0.01, and ranked
models by the difference in Akaike Information Criterion (∆AIC [134]) with the model
with lowest AIC. A ∆AIC of 2 is often used as a rule of thumb to identify models that
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are indistinguishable from each other. However, Richards [135] showed that there is 32%
chance of the best model having a ∆AIC of more than 2, but this chance is reduced to
17%–5% when ∆AIC thresholds of 4–7 are used; therefore, we retain models with ∆AIC < 6.
We then sorted and ranked models by ∆AIC, adjusted the coefficient of determination (R2)
and the root-mean-squared error (RMSE) and preferred models with a lower number of
covariates and lower RMSEs. Additionally, we standardized covariates to determine their
relative effect on MTFs using their standard score and error.

We tested regression results for highly influential data points using Cook’s distance
(statsmodels v0.13.2 [133]) and checked the data points with the highest leverage on
regressions. Two data points with the highest leverage on species-level regressions were
removed from the analysis because they were anomalous in several respects. Specifically,
for both references, DSTs had died by fire, with one reference reporting re-burnt DST
data [85], and for the other, the data was based on patches of DSTs with varying levels of
retained basal area within an otherwise completely salvage-logged landscape [97], which
was not reported by any other publication included in this study.

Using dominant mortality cause as a covariate in regression models did not lead
to valid regression models (see above); therefore, we tested whether grouping data by
mortality would result in a different model selection. We did not have enough data to
consider MInsects individually, and therefore tested whether MInsects inclusion or exclusion
would change resulting regression models. We tested 4 mortality groups: MAll, which
included all mortality causes, MFire, which only included sites and species where trees died
by fire, MNoFire, which includes sites and species where the mortality was caused by insects
and other causes, and MOther, where insect and fire mortality were removed. To simplify
the analysis, we analyzed MFire, MNoFire, MOther results only for MAT and MAP based on
the best-performing climate dataset for MAll, for which we had the highest data availability.

The substrate quality variable wood durability was not available for all data points of
the species subset; we therefore compared wood durability with plant functional type for
the mortality cause where we had found a significant relationship with PFT and CRUobs.
We determined the best regression model for the substrate quality subset following the
model selection method outlined above.

As a last step, we used the species regression model of the mortality group that
excludes fire as well as insects (MOther) to estimate the MTF at our 2 tropical sites (Figure 3)
for which the DBH was missing and compare this with the reported MTF at these sites.
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Figure 3. Geographical extent of study locations in this re-analysis distinguished by DSTs that died
by fire (MFire) and other causes than fire (MNoFire): (a) world map and (b) Whittaker biome model
using CRU climate data over the observation period (CRUobs). Data points only shown for local
study sites (n = 115). Whittaker biome model redrawn from Whittaker and others [136].
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3. Results
3.1. Overview the of Mean Time to Fall (MTF) for Dead Standing Trees (DST)

Of the 70 applicable publications identified (Figure 1, Table 3), 80% reported data
from North American sites, followed by Europe (16%), Asia (1.4%), South America (1.4%)
and Oceania (1.4%), but we did not find any studies of DST fall in Africa (Figure 3a).
Study locations were predominantly classified as taiga and temperate deciduous forest
or grassland, with only two sites located in tropical forests based on the Whittaker biome
model (Figure 3b). The most abundant coniferous tree families were spruce (Picea spp.),
pine (Pinus spp.) and fir (Abies spp.), and broadleaved trees were mainly birch (Betula spp.)
and poplar (Populus spp.).

Table 3. Overview of the MTF database (Supplementary Data S1) by continent for site and species
levels. np is the number of publications. “All” is the number of sites or species (n). Plant functional
type (PFT) is the fraction of sites dominated by conifers and the fraction of species that are coniferous
at site and species levels, respectively. The percentage of sites and species impacted by fire mortality
and management is presented. DBH is the mean site- or species-level DBH by continent. Values
include regional studies which did not report exact locations but where we could assign continents
based on countries. Missing values omitted. Regression analysis presented in Tables 4 and 5 based on
the largest data subset where MAT, PFT and DBH were reported (cf. Section 2.4).

Continent
np

Site Species

All
PFT Mortality Managed DBH All

PFT Mortality Managed DBHConifer Fire Conifer Fire
(n) (n) (%) (%) (%) (cm) (n) (%) (%) (%) (cm)

North
America 57 113 84.1 25.7 15.9 23.2 153 68.6 40.5 22.2 26.9

Europe 10 15 93.3 13.3 33.3 26.2 17 70.6 11.8 23.5 23.6
Asia 1 1 100 0 0 27.6 7 28.6 0 0 26.4

Oceania 1 1 0 0 0 - 2 0 0 0 -
South

America 1 1 0 0 0 - - - - - -

All 70 131.0 84.0 23.7 17.6 23.5 179.0 66.5 35.8 24.1 26.8

For the entire dataset, the average species’ MTFcount was 48, 13 and 19 years for DSTs
that died by fire, insects and other causes, respectively. When we accounted for the total
DST carbon mass at time of death to calculate MTFsize (Figure 2), we found about two
times longer standing times compared to count-based MTFs (Figure A4), indicating that
residence times for standing carbon might not be well represented by MTFcount. The longer
standing times for MTFsize compared to MTFcount were driven predominantly by coniferous
species, for which we predicted 48% longer standing times when we accounted for tree
size. However, broadleaved species only stood 23% longer when we accounted for tree size,
which is caused by a smaller average size of broadleaved DSTs compared to coniferous
trees in our dataset.

MTF data characterized by plant functional type (PFT) representing broadleaved and
coniferous trees’ mortality cause (fire, insects and other causes) as well as management were
unevenly distributed in the dataset (Figure 4; Table A2), increasing difficulty for statistical
inference. However, when testing for statistically significant differences between categories,
we found that site-level MTFcount and MTFsize differed significantly between sites with a
known management history and unmanaged or old-growth sites, but not between conifer-
and broadleaf-dominated sites, or for sites where mortality of the DSTs was caused by fire
versus other causes (Figure 4a; t-test, p < 0.05).
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Figure 4. Observed data distributions and kernel density estimate of log-transformed MTFcount at
(a) site and (b) species level distinguished by the categorical variables plant functional type (PFT,
coniferous or broadleaved), mortality (fire or other causes including insect mortality) or management
(managed; yes or no). Y-axis values backtransformed and rounded to years. At site level, plant
functional type (PFT) refers to the dominance of either broadleaved or coniferous species. Dashed
and dotted lines show the median and quartiles, respectively. Statistical difference within categories
tested for data subsets with no missing values of MAT, DBH and PFT using two-sample t-tests (n = 5)
or Kruskal–Wallis (n = 1; species mortality category): * significant with p < 0.05; *** significant with
p < 0.001; ns—not significant. Kernel density estimate smoothed with a bandwidth of 0.4.

We refer to the MTF of species on a site as species-level MTF (Figure 2), which is
characterized by its mean DBH and PFT and site properties such as mortality cause,
management and climate. We found statistically significant differences between the species-
level MTF of coniferous and broadleaved DSTs (Figure 4b; t-test, p < 0.001; Table A2),
DSTs that died by fire or other causes (Kruskal–Wallis, p < 0.001; Table A2) and DSTs from
managed and unmanaged sites (t-test, p < 0.001; Table A2).

The highest MTFs and tree sizes were generally connected to mortality by fire and the
coniferous PFT (Figures 4, 5 and A8; Table A2). However, when we used pair-wise statistical
tests to test mortality caused by insects (MInsects) and other mortality causes (MOther) against
fire mortality (MFire), we found no significant difference (p < 0.05; Figure A6). There were,
however, significant differences between the species’ MTFs that died by insect attack
(MInsects) and other causes (MOther; Figure A6), where MInsects had a lower mean and range
than MOther, suggesting that pooling mortality causes might obscure relationships of the
MTF with mortality cause.

Generally, site-level MTFs and species-specific MTFs increased linearly with increasing
tree size (DBH) after log transformation, whereas MTFs at MATs below 2 ◦C diverged
markedly from this trend, showing high MTFs for small tree sizes (Figure 5).

3.2. Drivers of Mean Time to Fall for Dead Standing Trees

We analyzed the drivers of the MTF of DSTs using multiple linear regression models
using variables linked to decomposition and species traits (Table 1). We further distin-
guished by mortality group by way of analyzing all mortality causes together (MAll), fire
mortality (MFire), mortality caused by other causes than fire including insects (MNoFire) and
other causes (MOther). Species-level regression models of the MTF explained more variation
than site-level models (Tables 5, A3 and A4). DSTs that died by fire (MFire) generally showed



Forests 2023, 14, 1017 13 of 32

the best-performing models and explained more variation than other mortality groups.
Prediction errors (RMSEs) for MTFsize were a factor of ~2 higher than RMSEs of MTFcount
(Table 4), corresponding to the relative differences in regression slope in Figure A4.
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 Figure 5. Log-transformed MTFcount at (a) site and (b) species level. Mortality indicates whether
dead standing trees (DSTs) died by fire, insects or other causes, and DBH is the mean DST DBH at
site and species levels. Number of data points (n) by mortality cause given in each subplot. Mean
annual temperature (MAT) shown in size and color of markers. MTFsize showed the same pattern.

Table 4. Best models for species and site by mortality group for log-transformed MTFcount and
MTFsize. All models and covariates significant at p < 0.01. Corresponding coefficient values of the
covariates are specified in Table 5. Coefficient of determination (R2) and root-mean-squared error
RMSE (years) and number of observations (Nobs) as well as climate dataset for MAT. Covariate mean
and range at site and species levels and by mortality group displayed in Table A2.

Nobs Mortality Model
R2 RMSE

ClimateCount Size Count Size

Site

64 All MAT + DBH + Managed 0.36 0.42 23.4 49.2 CRUobs
17 Fire DBH 0.54 0.47 21.0 54.9 -
47 No Fire MAT 0.32 0.37 23.0 45.0 CRUobs
37 Other MAT 0.36 0.43 24.4 47.8 CRUobs

Species

107 All MAT + DBH + Managed 0.61 0.60 25.9 43.9 CRU
37 Fire DBH 0.70 0.65 38.4 67.8 -
70 No Fire MAT + DBH + PFT 0.54 0.54 12.4 18.8 CRUobs
61 Other MAT + DBH + PFT 0.58 0.58 12.5 19.0 CRUobs

MAT had a negative effect on the MTF across site and species levels (Tables 4 and 5,
Figure 6) and was included as a covariate in all site- and species-level mortality models except
for DSTs that died by fire (MFire). Mean annual temperature (MAT) from CRU (CRUclim,
CRUobs) and MAT of the soil (MATSoil; Table A3; Figure A7) explained similar levels of
variance, but explained more variance compared to other climate datasets for both MTFcount
and MTFsize. Models including MAT of the soil (MATSoil) explained similar levels of variance
to MAT over the observation period (CRUobs) but consistently showed higher RMSEs than
models using MAT over the observation period and were therefore not selected as final models
(Tables A3 and A4).

Mean annual precipitation (MAP) had a negative influence on the MTF but was not a
significant explanatory factor independent of the climate dataset. Similarly, increasing mean
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and maximum water saturation of the topsoil shortened the MTF, but were non-significant for
the subset of data where it was available at site (n = 57) and species (n = 100) levels.

Tree size (DBH) and coniferous plant functional type (PFT) increased MTFs, but the
importance of covariates differed between mortality groups (Table 4; Figure 6). Additionally,
models of MTF mortality groups differed between site and species levels but not between
MTFcount and MTFsize (Table 4).

Table 5. Species- and site-level coefficients and standard errors of best models for log-transformed
MTFcount and MTFsize by mortality groups for models presented in Table 4. PFT categorizes sites
into dominated by coniferous (PFT = 1) or broadleaved species (PFT = 0) and species whether they
are coniferous (PFT = 1) or broadleaved (PFT = 0). Management indicated whether sites had a
known history of management (management = 1) or were reported as unmanaged or old growth
(management = 0). Covariate mean and range at site and species levels and by mortality group
displayed in Table A2.

Mortality Intercept DBH MAT PFT Managed
Count Size Count Size Count Size Count Size Count Size

Si
te

All 2.64 (0.22) 3.25 (0.23) 0.03 (0.01) 0.03 (0.01) −0.09 (0.02) −0.11 (0.02) - - −0.69 (0.21) −0.78 (0.22)
Fire 1.44 (0.37) 2.13 (0.41) 0.05 (0.01) 0.05 (0.01) - - - - - -

No Fire 3.25 (0.15) 3.90 (0.16) - - −0.11 (0.02) −0.13 (0.02) - - - -
Other 3.40 (0.16) 4.07 (0.17) - - −0.12 (0.03) −0.15 (0.03) - - - -

Sp
ec

ie
s All 2.40 (0.13) 2.71 (0.15) 0.04 (0.00) 0.04 (0.00) −0.12 (0.02) −0.13 (0.02) - - −0.45 (0.13) −0.49 (0.15)

Fire 1.51 (0.22) 1.83 (0.25) 0.05 (0.00) 0.05 (0.01) - - - - - -
No Fire 2.52 (0.16) 2.83 (0.18) 0.02 (0.01) 0.02 (0.01) −0.13 (0.02) −0.14 (0.02) 0.44 (0.14) 0.43 (0.15) - -
Other 2.54 (0.17) 2.87 (0.19) 0.02 (0.01) 0.02 (0.01) −0.14 (0.02) −0.15 (0.02) 0.52 (0.14) 0.52 (0.15) - -
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Figure 6. Standardized coefficients and standard errors of best model covariates by mortality group
at species level for MTFcount (Table 4). Corresponding unstandardized coefficients shown in Table 5.
MAll includes data of all mortality causes; MFire includes only DSTs that died by fire. MNoFire excludes
fire mortality but includes DSTs that died by insects and associated fungi, and MOther excludes both
fire and insect mortality. MTFsize showed same pattern (not shown).

3.3. Driving Factors of the MTF Differ by DST Mortality Cause

The best model wherein all causes of mortality (MAll) were considered explained
MTFs at site and species levels with MAT, average DBH of DSTs and management (Table 4).
Management had a negative effect on the MTF but was only selected as part of regression
models when we did not distinguish by mortality causes (Tables 4, 5 and A5). However,
for mortality caused by fire (MFire), managed sites were only represented by one site and
species at site and species levels, respectively (Table A2); therefore, our results cannot assess
a management effect on the MTF if DSTs died by fire (MFire).

The inclusion or exclusion of mortality by insects did not affect resulting regression
models (MNoFire and MOther), but increased the model performance (R2), suggesting that
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insect mortality might confound results and should be treated separately from other DST
mortality causes (Table 4).

MAT was a driver of the MTF in all models of MAll, MNoFire and MOther but not MFire.
DSTs killed by fire covered a narrower temperature range than DSTs killed by other causes
than fire (MNoFire and MOther), but when we re-ran the regression analysis at site and
species levels for MNoFire and MOther within the MFire temperature range, we found that
MAT remained a significant explanatory variable (Table A5). Replicating the MAT response
of DSTs killed by other causes than fire (MNoFire, MOther) for the temperature range of MFire
provides evidence of a robust response of the MTF to changes in MAT.

The MTF of fire-killed DSTs was instead explained by tree size (DBH), which showed
an about four times larger z-score compared to DBH in MTF models for MNoFire and MOther
at the species level (Figure 6). The large effect of DBH is caused by the very large species-
level MTF and DBH values connected to fire mortality (Figure 5) that were not present
for other causes of mortality (Table A2, Figure A8). Fire models at site and species levels
explained the highest share of variation in the data, although these results were based
on the lowest number of data points and showed the largest RMSEs (Table 4). Species-
level models excluding fire mortality (MNoFire and MOther) had the lowest RMSEs and
explained 54%–58% of the variation in MTFcount and MTFsize, using MAT, DBH and PFT as
explanatory variables (Table 4). For MNoFire and MOther, MAT had the largest effect on the
MTF as shown by its z-score (Figures 6 and 7).
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Figure 7. MTFcount species-level models of DSTs that died by fire (MFire) and DSTs that died by other
causes than fire and insects (MOther) by (a) DBH and (b) MAT (CRUobs). Displayed models minimize
confounding between mortality causes. For detailed information about models, refer to Tables 4 and 5.
Standard errors (S.E.) shown by shading. MTFsize exhibited the same patterns.

For mortality by other agents than fire (MOther) where PFT was a significant covariate
at the species level, we tested if wood durability was an explanatory variable where
this variable was available (n = 60; Table 1). For this wood substrate quality subset and
MOther, the best-performing models were the same as those presented in Table 4, and wood
durability was not included in the top models (Table A6).

3.4. Comparison of Regression Results with MTFm Data from the Tropics

Two tropical sites in Panama and Brazil reported the MTFm of DSTs, including data
regarding fragmentation and decomposition, but provided no supporting site information
such as mean site DBH [22]. At the sites in Panama and Brazil, MTFm were 1.9 and
4.2 years, respectively, for a MAT of 26 ◦C, i.e., outside the range MAT in this study. Using
the coefficients reported in Table 5 for the mortality group MOther and a MAT of 26 ◦C,
assuming broadleaved PFT and a mean DBH range of 80–200 cm, these models predict
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MTFs of ~3 and ~2 years for MTFcount and MTFsize, respectively, which is roughly consistent
with the observed MTFm estimates.

4. Discussion

We explained the mean time to fall (MTF) of dead standing trees (DSTs) using a com-
bination of covariates considered important for woody decomposition. The most important
explanatory variables were mean annual temperature (MAT) and tree size (DBH), with addi-
tional contributions from management and coniferous or broadleaved PFT. All things being
equal, DSTs fell faster along gradients of increasing MAT and MAT had the largest influence on
MTFs when DSTs died by other causes than fire (Figures 6 and 7). However, we did not find
a temperature effect on the MTF when DSTs’ mortality was caused by fire (Figures 6 and 7).
Larger tree size caused DSTs to stand longer, and this effect was especially strong when DSTs’
mortality cause was fire, but it influenced MTFs independently of mortality cause when we
analyzed individual species’ MTFs across sites (Figures 6 and 7).

We found that explaining DST fall is sensitive to aggregation level (site and species
level), with species-level models explaining more variation than site-level models. There-
fore, we recommend that species-level models should be used when modelling MTFs of
DSTs. We further found indications that MTF drivers differed between mortality causes
(Table 4, Figure 6).

4.1. Site- and Species-Level Differences

In our analysis, we considered mean site MTFs, which are means of all species on a
site, and MTFs of individual species per site separately, which we refer to as site and species
levels, respectively. Across mortality groups, species-level models explained 15%–29% more
variation in the data compared to site-level models (Table 4), which is likely explained by
site-level MTFs being aggregated over species’ MTFs (Figure 2). As such, Bradford et al. [24]
showed that aggregating individual woody decomposition rates to the site level means
reduced explanatory power, because within-site variation is averaged and the large-scale
climate becomes more important relative to variation at the site scale, leading to overall lower
explained variation.

For species-level MTFs, we explained 70 and 58% of the variation for mortality by fire
(MFire) and other mortality (MOther), respectively. It is possible that we can explain more
variation of the MTF data compared to decomposition studies which only use climate and
wood traits as predictors [137], because DST fall is also a function of the mechanical strength
of the stem [42,138]. Mechanical strength, in turn, is a function of the mean DBH and a
species’ or plant functional types’ decay resistance, which is typically higher in conifers
than broadleaved species at the same site [37–39], and where tree size can even increase
the decay resistance due to larger shares of heartwood and decay-resistant compounds
within [15,36]. Additionally, decomposition rates are generally lower in DSTs than in wood
that is in contact with the ground due to low moisture levels [15,139].

4.2. Management Effect on the MTF

Management-influenced MTFs were statistically significantly different from, and
showed lower overall means than MTFs from unmanaged or old-growth sites at both site
and species levels (Figure 4), where managed data points made up 28 and 29% of the data
(Table A2), respectively. Management was also a significant covariate when we analyzed all
mortality causes together (Table 4) and explained 10% and 4% of additional variation in the
data at site and species levels, respectively. However, when we distinguished by mortality
cause, management was not a driver of the MTF (Table 4). That management was not an
effect when we distinguished by mortality cause either indicates that mortality cause may
confound drivers of the MTF or that our dataset was too small to reliably distinguish a
management effect.

Management might primarily affect MTFs through stand density and mean stand or
species DBH, which was an important explanatory variable across groups and the only
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explanatory variable for MTFs that died by fire (Table 4, Figure 5). Individual studies
have reported that management had either no effect on fall rates of DSTs [26,45] or that
it accelerated fall rates [69,100,111,140], but none of these studies controlled for mortality
cause. It is possible that other sites, which were reported as unmanaged, still influenced
the MTF through legacy effects of management in the past, obscuring a larger management
effect in the data. Importantly, the form and intensity of what is defined as management can
also differ greatly. Accelerated fall rates of DSTs have been linked to increased management
intensity [39,69], which we did not distinguish here. It would be valuable for future studies
to investigate if management influences the MTF while controlling for tree size, mortality
cause and stand density [39,44].

4.3. Climate Influence on the MTF

MAT accelerated DST fall, and MAT was the most important explanatory factor of
the MTF for DSTs that died by other causes than fire (Table 4, Figure 6). In the literature,
evidence is mixed. Two recent regional studies from Canada and Switzerland did not find
a temperature effect on fall rates of DSTs [12], whereas a regional study from the western
US also found that DSTs fell faster with increasing temperatures [42]. However, overall,
the temperature range analyzed in this study is larger than in any of the cited regional
studies, and temperature remained a significant explanatory variable when we tested it
for the narrower temperature range of <10 ◦C, which is consistent with the subset of DSTs
that died by fire (Figure 3; Tables A2 and A5). We therefore find strong evidence for a
temperature effect on the MTF of DSTs that died by other causes than fire. It is important
to note, however, that at the species level, the MAT was only a significant covariate in
combination with tree size (DBH).

As expected by our hypothesis, MAT over the observation period of the MTF (CRUobs,
Figure A1; Table A3) was generally a better explanatory variable than MAT from datasets
of two different standardized reference periods (1981–2010 and 1970–2000) and different
resolutions (Table A1; Figure A7), as well as soil temperature (MATsoil; Tables A3 and A4).
Differences between CRUclim and CRUobs were marginal, with up to 2% additional ex-
plained variation when compared directly for MAll. CRUobs explained up to 6% more
variation than other climate datasets (Table A3). When we distinguished by mortality cause,
CRUobs reliably explained the largest variance in the data (Table A4). CRUobs possibly
performed better than MAT from climate reference periods because survey durations gen-
erally only covered a fraction of these standardized reference periods (cf. Figure A1). It is
important to note that MATsoil often explained similar variations in the data compared to
CRU but consistently showed a higher RMSE (Table A3), and it was therefore not selected
for the final models in Table 4. The high agreement between air and soil temperature has
been explained by a generally linear correlation between these variables and the fact that
the largest differences in MAT in the air and soil occur at higher latitudes due to snow cover,
which insulates the soil from sub-zero temperatures [123]. However, since decomposition
is slow at low temperatures, the differences between air and soil temperatures might not be
substantial enough to affect DST fall. Wang et al. [141] measured the temperature of woody
debris and found that the linear correlation between wood and air temperature broke down
only in later decay stages, which are generally not reached for DSTs [7,42,49,77,142].

In this study, using large-scale gridded climate data, we did not detect any influence
of moisture availability on the MTF. Of the regional scale DST fall studies [7,42,49,142],
only one study explicitly analyzed precipitation as a driver of fall rates, but it did not
find an effect [7]. The influence of moisture availability on the MTF in our dataset is not
well resolved. Bradford et al. [139] found that soil moisture and wood moisture of wood
samples were significant predictors of woody decomposition in DSTs and influenced fall
rates. Importantly, wood moisture differed less between the two sites, but was mainly
driven by the position of the wood relative to the soil. The variability of decomposition
rates within plots has been shown by many studies [8,24] and is likely caused by soil
moisture variability, which shows a much higher variation than does temperature at fine
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scales [24,143], making mean moisture availability from large-scale climate products such
as precipitation a weak predictor of woody decomposition [24].

4.4. Substrate Quality Influence on the MTF

Larger tree sizes (DBHs) increased MTFs and, consistent with our expectation, was one
of the most important explanatory variables, and was included in all selected species-level
regression models independent of mortality group (Tables 4 and 5; Figures 5 and 6). DSTs
standing longer with increasing tree size has been widely reported for local study sites and
regions [33,42,74,78,94] and has been connected to lower surface-to-volume ratios, higher
amounts of decay-resistant heart wood and higher resistance to breaking forces [15,36], but
some studies also found no significant effect or found positive effects of tree size on fall
rates [7,10,55]. Our dataset included studies reporting negative, positive and zero effect
of tree size [10,55] leading us to conclude that the overall size effect on the MTF is robust
when studies are considered together.

For DSTs killed by fire, tree size was the only explanatory factor, and was four times
more important for explaining MTFs than for DSTs killed by other causes (MOther and
MNoFire; Figure 6). It is important to note that the largest tree sizes in this dataset were
reported for fire-killed DSTs, wherein the maximum tree size was almost twice as large
as for DSTs killed by other causes (Table A2). However, Figure 7 reveals that, all other
factors being equal, the MTF response of DSTs killed by fire and mortality by other causes
diverge markedly from a DBH of 25 cm, which might suggest that mechanical strength
to resist breaking forces is more important than factors driving decomposition for DSTs
killed by fire. This interpretation is supported by abundant evidence that fire changes
wood properties through heating and charring, which results in generally adverse effects
on woody decomposition [144–146]. The heating-induced chemical changes of wood have
been shown to lower moisture retention capacity [145,147], change wood chemical compo-
sition [144,145,148–150] and lower nitrogen availability for decomposers [47,147,151]]. In
response to these changes, fungi showed lower colonization rates and growth on affected
wood, and the negative effects on fungal growth and wood decay generally increased with
fire intensity as well as the duration of heating [144,145,148,152,153]. However, the effect
on decomposition rates depended on the species of fungi and trees and could range from
no effect to substantially lower decomposition rates [152–154]. Importantly, increasing fire
intensity has also been directly connected to both lower DST fall rates and decomposition
rates in DST [75,91,155].

We found statistically significant differences between coniferous and broadleaved
plant functional types and mortality causes at the species, but not at the site, level. Although
our tests did not control for unbalanced sampling in the dataset, the differences in our
regression models, which control for differences in MAT, support the robustness of the
effects of fire, tree size and coniferous vs. broadleaved classification.

At the site level, no mortality group indicated plant functional type as a significant
covariate. This is likely due to 90%–100% of sites being dominated by coniferous trees
across mortality groups (Table A2). Our representation of the PFT at the site level was
restricted to PFT dominance due to limited reported information about species composition
when authors reported mean site MTFs (Section 2.1.1); therefore, it is possible that a more
detailed representation of broadleaved DSTs could have revealed an effect. At the species
level, however, the mortality groups MNoFire and MOther included plant functional type as
a significant covariate, and PFT explained 9% of additional variation for these data groups.
In these datasets, the share of coniferous species was 62%–78% (MNoFire, MOther; Table A2).
Conversely, whereas MFire did not include PFT as a covariate, the dataset only included
2% of broadleaved species, making the relationships found for DSTs that died by fire only
applicable to coniferous trees.

Coniferous species had higher MTF values than broadleaved species (Figure 4), al-
though there is evidence that broadleaved species can have high decay resistance [40,41,49].
We tested decay resistance as a predictor of MTF for mortality caused by other causes
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than fire and insects at the species level (n = 60, Table A6) using a published dataset of
wood durability, which we expanded using the same methodology (Section 2.1.2; [42]).
Wood durability was not a significant covariate for any model; instead, PFT remained the
most significant explanatory driver of substrate quality in this direct comparison, further
supporting using the distinction into PFTs to explain MTFs (Table 4).

4.5. Analysis Limitations and Outlook

Our study was limited by a lack of reporting of data of DST fall that could be converted
to the MTF for all continents except North America. As a result, the best applicability of
the regression equations is for the areas of the northern hemisphere which are covered by
the range of reported covariates (Table A2). We were able to estimate the MTF across our
two tropical sites; however, further data is necessary to support these relationships. Our
study was further limited by unstandardized reporting of DST fall data, a low number of
observations of trees that died by fire from broadleaf-dominated sites, and short observation
periods, which required that we make a range of assumptions. These assumptions might
have influenced the estimated MTFs between 1 and 25% across the range reported here
(see Equations (4) and (5)), in addition to errors from the original investigations. These
uncertainties probably also contributed to high RMSEs, which could be reduced in future
DST fall studies with longer observation periods and the reporting of variables that have
explained much variation in DST fall in other studies, such as stand density [42,84]. Future
studies could also benefit from consistent reporting of DST DBH resolved at the species
level, which we suggest should always be part of DST fall studies when feasible.

5. Conclusions

We conducted the first large-scale re-analysis of dead standing tree (DST) fall data,
which we express as the mean time to fall (MTF) based on DST counts (MTFcount) and DST
counts weighted by the carbon mass at time of death (MTFsize). We presented regression
models for different mortality groups, wherein species-level regressions described more
variation than site-level regressions. The multiple linear regressions described the MTF
as a function of variables important for mechanical resistance to breaking forces and
decomposition, i.e., tree size (DBH) and mean annual temperature (MAT). Additional
variation was explained by plant functional type and management, though we were unable
to test this definitively due to low data availability of broadleaved DST fall and difficulty
controlling for potential confounding factors not included here. Further investigation
would be valuable to help identify the magnitude of any management effect, and more
studies on DST fall of broadleaved trees are needed. The database on DST fall is relatively
small in a global context, and a large-scale understanding of DST fall would benefit from
data outside North America, especially from the tropics.
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1 

 

 

 Figure A1. Survey duration of standing dead tree fall by publications used in this study that reported
this information (n = 59 [7,10,22,28,45,48,50–102]) other publications omitted (n = 11). Publications
sorted by ascending survey start year. Start and end year of the survey period were used to extract
temperature and precipitation data from CRUNCEPv7 data (1901–2016) to calculate mean annual
temperature (MAT) and mean annual cumulative precipitation (MAP) over the survey duration when
approximate coordinates could be identified (CRUobs; n = 56). We treated observation periods beyond
the temporal coverage of CRUNCEPv7 as missing data for averaging (n = 1; [60]). For publications
where survey information was missing but locations were reported we used values from the CRU
climatology (CRUclim; n = 9).

https://doi.org/10.5281/zenodo.7891972
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Figure A2. Comparison of time series of the fraction of DSTs remaining (f ) with time since death
(td) for k = 0.1 (blue line), k = 0.01 (yellow line) and k = 0.005 (green line) and corresponding MTF
calculated using Equation (2) and approximated MTF (MTFa) by using Equation (3) where we define
time series of the fraction of DSTs remaining for 0.01 ≤ f ≤ 1. The bias is the percentage difference
between MTF(k) and MTFa.

 

2 

 

 

 

 Figure A3. Prediction bias as percentage of MTF when assuming that the year when all DSTs were
gone is equal to t99 (i.e., the year 99% of DST had fallen) and DSTs observed to be gone in the same
year (blue line), 5 years later (yellow line), 10 years later (green line) and 15 years later (turquoise) for
different fall rates of the single exponential model (Equation (1); k). Prediction bias (B) calculated as:

B =

∣∣∣ 1
k −

5
t99

∣∣∣
1
k

∗ 100.
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Figure A4. Linear regression between MTFcount and MTFsize at (a) site (n = 22) and (b) species-level
(n = 78). Regressions were forced through zero because intercept estimates were not significantly
different from zero (p > 0.05). Blue line is the regression line and the blue shaded area is the
bootstrapped 95% confidence interval (CI) of the mean (sampled with replacement (n = 1000)). R2 is
the coefficient of determination.
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Figure A5. Linear regression between MTFcount and MTFsize for (a) coniferous (n = 60) and
(b) broadleaved species (n = 18). Regressions were forced through zero because intercept esti-
mates were not significantly different from zero (p > 0.05). Blue line is the regression line and the
blue shaded area is the bootstrapped 95% confidence interval (CI) of the mean. R2 is the coefficient
of determination.

Table A1. Source publications of MTF data for which we used additional references to determine the
DBH distribution. We only selected studies that were conducted at the same locations. Time frames
between MTF and DBH distribution source studies [114–116] did not overlap for 2 of 3 studies but
were started within 1–2 years of studies from which we derived the MTF [52,65,69].

MTF Source
Description

DBH Distribution Source

Reference Survey Duration Reference Survey Year(s) Used

Everett et al. (1999) 1914–1995 *

Same dataset. Number of
trees/DBH class and species

digitized from Figure 3 in
Lehmkul et al. (2003).

Lehmkuhl et al.
(2003) 1914–1995 *
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Table A1. Cont.

MTF Source
Description

DBH Distribution Source

Reference Survey Duration Reference Survey Year(s) Used

Garber et al. (2005) 1981–1997

Tree based data from the NAT
treatment (no intervention)
from the 1999 inventory to

estimate mean DBH by species
for which Garber reported
DBH specific DST survival

curves and model coefficients
(category 5; Table 2). DBH

classes from grouping species’
DSTs into equally sized bins.
Stand density to model DBH
specific MTF by species also

based on Kenefic et al. (2015).

Kenefic et al. (2015) 1999

Bull (1983) 1975–1982
DBH distribution based on
Table 2 in Bull (1975) which

includes all species.
Bull (1975) 1973–1974

* Based on time since fire.

Table A2. Covariate mean and range of multiple linear regressions for mortality groups at site and
species levels distinguished by management presence which we report as managed “Yes” or “No”.
MAT based on CRUobs. The PFT value represents the fraction of sites dominated by conifers and
species categorized as coniferous at site and species levels, respectively. Number of observations
(Nobs) is the number of data points by mortality group used to derive mean and range of covariates.

Mortality Managed MTFcount [Years] DBH [cm] MAT [◦C] PFT [-] Nobs

Site

All No 22.0 (4.0–148.0) 25.5 (9.4–73.6) 3.95 (−3.1–9.8) 0.93 46
Yes 9.0 (3.0–49.0) 27.52 (14.7–49.0) 6.66 (−0.3–19.2) 0.89 18

Fire No 20.0 (4.0–110.0) 32.1 (14.5–73.6) 5.81 (0.3–8.5) 1.0 16
Yes 7.0 (7.0–7.0) 14.73 (14.7–14.7) 0.9 (0.9–0.9) 1.0 1

Insects No 10.0 (7.0–18.0) 27.52 (11.7–35.4) 5.82 (1.0–9.1) 0.80 5
Yes 9.0 (7.0–27.0) 29.81 (21.9–49.0) 6.8 (−0.3–19.2) 1.0 5

No Fire No 22.0 (7.0–148.0) 21.98 (9.4–50.9) 2.96 (−3.1–9.8) 0.90 30
Yes 9.0 (3.0–49.0) 28.27 (18.7–49.0) 7.0 (−0.3–19.2) 0.88 17

Other No 26.0 (8.0–148.0) 20.87 (9.4–50.9) 2.38 (−3.1–9.8) 0.92 25
Yes 9.0 (3.0–49.0) 27.63 (18.7–46.9) 7.08 (3.1–18.0) 0.83 12

Species

All No 22.0 (4.0–299.0) 30.44 (8.9–91.1) 4.93 (−3.1–9.8) 0.87 75
Yes 9.0 (2.0–49.0) 25.69 (14.7–52.4) 6.51 (−0.3–19.2) 0.53 32

Fire No 28.0 (6.0–299.0) 40.18 (11.9–91.1) 6.34 (1.3–8.5) 0.97 36
Yes 7.0 (7.0–7.0) 14.73 (14.7–14.7) 0.9 (0.9–0.9) 1.0 1

Insects No 10.0 (9.0–11.0) 15.84 (11.7–20.0) 7.8 (6.5–9.1) 0.5 2
Yes 11.0 (7.0–37.0) 28.68 (21.1–49.0) 5.71 (−0.3–19.2) 1.0 7

No Fire No 18.0 (4.0–74.0) 21.44 (8.9–50.9) 3.64 (−3.1–9.8) 0.77 39
Yes 9.0 (2.0–49.0) 26.04 (16.6–52.4) 6.69 (−0.3–19.2) 0.52 31

Other No 18.0 (4.0–74.0) 21.74 (8.9–50.9) 3.41 (−3.1–9.8) 0.78 37
Yes 9.0 (2.0–49.0) 25.27 (16.6–52.4) 6.98 (3.1–18.0) 0.38 24
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Figure A6. Boxplots of log-transformed MTFcount, MTFsize and MTFm at (a) site- and (b) species-level
by mortality cause. Means not sharing letters differ significantly from each other (p < 0.05). Mortality
groups were tested pair-wise adjusting the overall p-value using the Bonferroni correction by the
number of comparisons (n = 3) to maintain the overall significance level (α < 0.05). For site- and
species-level MTFcount, MTFsize and MTFm fire and other mortality shared homogeneity of variances
and we used a t-Test. For the remaining pair-wise comparisons we used the Kruskal–Wallis test.

Table A3. Best performing multiple linear regression models for data including all mortality causes
(MOther) at site (n = 37) and species-level (n = 107) for log-transformed MTFcount and MTFsize

(Tables 4 and A4) for 6 different climate datasets (p < 0.01). CRUobs is the mean over the observation
period while CRUclim, CHELSA30s and WorldClim230s and WorldClim10m are based on climate
periods. R2 is the coefficient of determination and RMSE is the root mean squared error in years.

Model Climate
MTFcount MTFsize

R2 RMSE R2 RMSE

Site
MAT + DBH + Managed

CRUclim 0.34 23.7 0.40 49.6
CRUobs 0.36 23.4 0.42 49.3

CHELSA30s 0.30 24.6 0.35 51.2
WorldClim30s 0.34 24.5 0.40 51.2
WorldClim10m 0.32 24.5 0.39 50.9

MATSoil + DBH + Managed SoilTemps 0.34 24.4 0.40 51.1

Species MAT + DBH + Managed

CRUclim 0.61 26.0 0.57 44.0
CRUobs 0.61 26.0 0.59 44.0

CHELSA30s 0.58 26.3 0.57 43.3
WorldClim30s 0.58 27.3 0.56 46.4
WorldClim10m 0.55 27.4 0.54 45.4

MATsoil + DBH + Managed SoilTemps 0.62 27.4 0.59 45.9
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Figure A7. Standardized coefficients and standard errors for the best species model
(log(MTF) = MAT + DBH + Managed) including all mortality causes (MAll, Tables A3 and A4)
for (a) MTFcount and (b) MTFsize across climate datasets. CRUobs is the mean over the observation
period while CRUclim, CHELSA30s and WorldClim230s and WorldClim10m are based on climate
reference periods.

Table A4. Multiple linear regression result for log-transformed MTFcount and MTFsize at site and
species levels for the best performing variable combinations with significant parameters (p < 0.01)
and ∆AIC < 6, ranked by R2 and RMSE. Selected model shown in bold. R2 is the coefficient of
determination, AIC is the Akaike information criterion, ∆AIC is the difference in AIC to the best
performing model and RMSE is the root mean squared error in years. Nobs is the number of
observations by mortality type that included entries for MAT, tree size (DBH), management and plant
functional type (PFT).

Mortality
Group Model

R2 ∆AIC RMSE Nobs ClimateCount Size Count Size Count Size

Site

All MAT + DBH + Managed 0.36 0.42 0 0 23.4 49.2
64

CRUobs
MATsoil + DBH + Managed 0.34 0.40 1.6 1.3 24.4 51.1 -

Fire DBH 0.40 0.29 0 0 20.8 54.0 17 -

No Fire MATSoil 0.32 0.38 0 0 23.9 47.1 47 -
MAT 0.32 0.37 0.1 0.8 23.0 45.0 CRUobs

Other MATSoil 0.37 0.46 0 0 25.9 51.1 37 -
MAT 0.36 0.43 1.5 1.9 24.4 47.8 CRUobs

Species

All
MATSoil + DBH + Managed 0.62 0.59 0 0.2 26.8 46.0

107MAT + DBH + Managed 0.61 0.59 3.6 0 26.0 44.0 CRU

Fire DBH 0.76 0.72 0 0 34.0 58.8 37 -

No Fire
MAT + DBH + PFT 0.54 0.54 0 0 12.4 18.8

70
CRUobs

MAT + PFT 0.49 - 5.6 - 12.4 - CRUobs

Other MAT + DBH + PFT 0.58 0.58 0 0 12.8 19.3 61 CRUobs
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Figure A8. Boxplots of covariates in multiple linear regression models by mortality group at site
(left panel) and species-level (right panel). (a,b) DBH [cm] and (c,d) MAT [◦C] based on CRUobs.
Corresponding mean and range of covariates as well as number of observations by mortality group
presented in Table A2.

Table A5. Best models for DSTs that died by fire, other causes than fire (MNoFire) and DSTs that
died by other causes than fire and insects (MOther) for the temperature range of DSTst that died by
fire (MFire MAT subset; Table A2). MFire models equivalent to models shown in Table 4. Models
for MNoFire and MOther maintain MAT as a significant predictor at site and species levels compared
to models for the full temperature range covered by MNoFire and MOther (Table A2). Covariates
significant for alpha = 0.01.

Level Nobs Mortality Model
R2 RMSE

ClimateCount Size Count Size

MFire
MAT
range

Site
17 Fire DBH 0.54 0.47 21.0 54.9 -
38 No Fire MATSoil 0.24 0.29 25.6 50.4 -
29 Other MATSoil 0.22 0.28 18.7 37.6 -

Species

37 Fire DBH 0.70 0.65 38.4 67.8 -
53 No Fire MAT + DBH 0.36 0.40 12.0 18.1 CRUobs

49 Other
MAT + DBH + PFT 0.43 - 11.4 - CRUobs

MAT + DBH 0.35 0.38 12.4 18.8 CRUobs

Table A6. Best species-level models (∆AIC < 6) for the wood quality subset (Table 1) of PFT, wood
durability and C:N ratio. Covariates significant for alpha = 0.01.

Mortality Model
R2 ∆AIC RMSE Nobs ClimateCount Size Count Size Count Size

Species Other
MAT + PFT + DBH 0.55 0.55 0 0 13.0 19.7

60
CRUobs

MATSoil + DBH - 0.50 - 5.2 - 21.8 -
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