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Abstract: At COP26, the Glasgow Leaders Declaration committed to ending deforestation by 2030.
Implementing deforestation-free supply chains is of growing importance to importers and exporters
but challenging due to the complexity of supply chains for agricultural commodities which are driving
tropical deforestation. Monitoring tools are needed that alert companies of forest losses around their
source farms. ForestMind has developed compliance monitoring tools for deforestation-free supply
chains. The system delivers reports to companies based on automated satellite image analysis of
forest loss around farms. We describe an algorithm based on the Python for Earth Observation
(PyEO) package to deliver near-real-time forest alerts from Sentinel-2 imagery and machine learning.
A Forest Analyst interprets the multi-layer raster analyst report and creates company reports for
monitoring supply chains. We conclude that the ForestMind extension of PyEO with its hybrid
change detection from a random forest model and NDVI differencing produces actionable farm-scale
reports in support of the EU Deforestation Regulation. The user accuracy of the random forest model
was 96.5% in Guatemala and 93.5% in Brazil. The system provides operational insights into forest
loss around source farms in countries from which commodities are imported.

Keywords: environmental and social responsibility; forestry; climate mitigation

1. Introduction

At the COP 26 Climate Conference in Glasgow in 2021, world leaders endorsed the
Glasgow Leaders Declaration on Forests and Land Use, which has the goal of halting and
reversing deforestation and forest degradation by 2030. Chakravarty et al. [1] identify the
expansion of farmland in the tropics as the primary cause of deforestation worldwide and
review its effects and control strategies. To create transparency on the deforestation impacts
of supply chains, large trading blocks, including the US, EU, and UK, are in the process
of introducing legislation to tackle deforestation in food supply chains that will place due
diligence requirements on various supply chain actors trading in certain deforestation
related commodities [2–4].

The European Council and the European Parliament reached a provisional political
agreement on an EU Regulation on deforestation-free supply chains on 6 December 2022 [2].
On 29 June 2023, the EU Regulation on deforestation-free products (EU) 2023/1115 entered
into force. It aims to ensure that certain key goods on the EU single market will no longer
contribute to deforestation and forest degradation. All relevant companies have to conduct
strict due diligence if they import or export any product from the following list to/from
the EU single market: palm oil, cattle, soy, coffee, cocoa, timber, and rubber as well as
derived products such as beef, furniture, or chocolate [2]. Any trader wishing to sell listed

Forests 2024, 15, 617. https://doi.org/10.3390/f15040617 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f15040617
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0003-3267-2963
https://orcid.org/0000-0002-9053-4684
https://doi.org/10.3390/f15040617
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f15040617?type=check_update&version=3


Forests 2024, 15, 617 2 of 20

commodities on the EU single market or export from within it must prove that the products
do not originate from recently deforested land or have contributed to forest degradation.

Due to the inaccessibility and cost of inspecting distant and often large forest areas
through field visits to meet the due diligence requirements of importers and exporters,
Earth observation (EO) from space is required to allow companies to demonstrate that they
meet the EU Deforestation Regulation. Ideally, businesses want to receive information
on any possible violation of their zero-deforestation policies in source regions for these
products as soon as practicable, so they can intervene in deforestation and degradation in a
timely manner. Hence, near-real-time EO data streams from operational satellite missions
can provide solutions towards enabling such a due diligence system.

In addition to legislative pressures, commodity traders, retailers and brands are vol-
untarily making deforestation-free commitments with their products and seeking to verify
these claims. Accurate, scalable solutions are required to assist companies in removing
deforestation from their supply chains both to meet these commitments and to assist in
corporate responsibility reporting more broadly.

A number of different solutions towards operational deforestation monitoring have
been developed [5–7]. Strictly speaking, EO provides only information on the loss of
tree cover, but not on deforestation as defined in international laws. The United Nations
Framework Convention on Climate Change (UNFCCC) has a definition of deforestation
that was adopted in 2001 by its Conference of the Parties (COP) 7 (11/CP.7). According
to the UNFCCC (Decision 11/CP.7, 2001), deforestation is ‘the direct human-induced
conversion of forested land to non-forested land’ [8]. This definition implies that the
conversion of forested land to non-forested land must be human induced. It excludes
natural disturbances, for example. The UN Food and Agriculture Organisation (FAO), in
the same year, defined deforestation as ‘The conversion of forest to another land use or the
long-term reduction of the tree canopy cover below the minimum 10 percent threshold’ [8].
The inclusion of a minimum tree canopy cover is appealing from an operational point
of view, but the 10 percent tree cover threshold is not universally accepted in national
forest definitions—there is in fact a huge spread of definitions [9]. The FAO definition
also includes a reference to a long-term reduction in tree cover, which, strictly speaking,
excludes certain types of forest cover loss from the definition of deforestation, e.g., if a
primary forest is logged and then replanted by other trees. A more precise terminology for
EO-derived information services is, therefore, to use forest cover loss or tree cover loss to
describe the observed loss of trees, without making any assumptions about the drivers of
the loss (human or natural) and about the longevity of this loss.

Forest cover loss monitoring from EO data has been demonstrated from a variety
of sensors and satellite platforms. The two primary sensor types are Synthetic Aperture
Radar (SAR) and multispectral imaging sensors. The main SAR applications for detecting
forest cover loss include the JJFAST algorithm (‘JICA-JAXA Forest Early Warning System
in the Tropics’) [10] from the Advanced Land Observation Satellite (ALOS-2) Phased Array
L-band Synthetic Aperture Radar (PALSAR-2) and the RAdar for Detecting Deforestation
(RADD) alerts [11,12] based on Sentinel-1, a C-band radar satellite constellation by the
European Space Agency under the Copernicus Programme. Multispectral forest cover
loss applications include the Global Land Analysis and Discovery (GLAD) alert system
by Global Forest Watch [7] based on Hansen et al.’s [13] global tree cover change moni-
toring method at 30 m resolution, and the Sentinel-2-based Python for Earth Observation
(PyEO) forest alert system [14], which was developed by the UK National Centre for Earth
Observation at the University of Leicester together with the Kenya Forest Service and the
REDD+ Stakeholder Round Table in Kenya. PyEO has been adopted by the Government of
Kenya under its National Forest Monitoring Programme. The PyEO forest alert system has
also been applied in other countries including Mexico and Colombia [15] and Brazil and
Guatemala (this paper). Recently, some authors have suggested the adoption of combined
SAR/multispectral forest cover loss monitoring systems [16,17].
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While many of the published forest cover loss detection systems described above aim
at large-scale or global mapping, forest monitoring solutions from space are still lacking for
many parts of the world (e.g., [18]). This is especially the case for farm-scale monitoring
of forest cover loss. This study in the ForestMind project aimed to answer the research
question of whether an adaptation of PyEO’s forest alerts system is usable for supply chain
monitoring at the farm scale. The objectives of the study were to (i) train a random forest
machine learning model of forest cover, (ii) enhance the quality of the forest loss detections
from post-classification change detection by combining the algorithm with differential
NDVI data, (iii) produce forest loss reports in an operational scenario, and (iv) assess the
accuracy of the company reports provided by the system.

2. Materials and Methods
2.1. Study Areas

The study areas were located in nine Sentinel-2 tiles in Mato Grosso State in Brazil
and in one 100 km × 100 km Sentinel-2 tile in Guatemala (Figure 1). Guatemala is a major
coffee exporter. The State of Mato Grosso exports primarily soybeans, but also timber, meat,
and cotton. Historically, forest clearance has served the expansion of cattle ranching and
agricultural production, which constitutes the largest part of Mato Grosso’s economy.
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Figure 1. Overview map of the study areas in Guatemala and Brazil described in this paper. The red
tiles (squares) are the Sentinel-2 tile footprints of the 100 km × 100 km area. The grid shows latitude
and longitude coordinates. Background map © OpenStreetMap.

2.2. Software Development and Image Analysis

The software package developed in the ForestMind project for monitoring deforesta-
tion extends the capabilities of the Python for Earth Observation (PyEO) package [14,19].
PyEO was developed primarily as an implementation of automated near-real-time satellite



Forests 2024, 15, 617 4 of 20

image processing chains to provide timely forest alerts, which show forest cover loss detec-
tions based on two land cover maps that have been classified by a trained machine learning
model. PyEO contains many useful generic functions that can also be used for other im-
age analysis and change detection tasks. As a source of imagery, Sentinel-2 products are
currently supported as the primary data source, but other satellite constellations such as
Planet and Landsat have been used in past trials. Sentinel-1 Synthetic Aperture Radar
(SAR) images could be accommodated within the same framework in future developments.
Working from the Sentinel-2 image data stream, PyEO can deliver forest cover loss alerts
every 5 days at 10 m spatial resolution, subject to possible occlusion by cloud cover and
haze in the imagery.

A flowchart of the PyEO-based image processing pipeline is given in Figure 2. For
ForestMind, we introduced several methodological developments to our earlier PyEO
forest alerts algorithm [14] to meet the project’s requirements. These are described below.
The version of PyEO in this paper has been released as the ‘ForestMind Extensions’ of PyEO,
version 0.8.0 on GitHub (https://github.com/clcr/pyeo/releases/tag/v0.8.0, accessed on
27 November 2023) and Zenodo [20].
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Figure 2. Overview of the ForestMind image processing pipeline for monitoring the extent of forest
cover loss (‘deforestation’) in user-selected farm locations. Referencing a set of user specifications
(left-hand column) the pipeline and tools enable a random forest classifier model to be built from
user-supplied training data (second column), the generation of a temporal median over a chosen time
period as a cloud-free composite reference image (third column), the use of the random forest model
to classify incoming live imagery and compare it to the composite reference to detect changes (fourth
column) and analysis of the time series of detected changes to generate reports for the analyst and
company (righthand column).

https://github.com/clcr/pyeo/releases/tag/v0.8.0
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The machine learning approach taken in this work has evolved from earlier work [14].
Previously, change detection was based on direct, single-step differential detection of
transitions between land cover classes by classifying forest change directly based on a
vector of spectral reflectances from two time points from image pairs with a random forest
classifier. The classifier was trained, pixel by pixel, on examples of inter-class land cover
changes, such that a class label could be ‘forest cover to non-forest cover’ between the
image pairs, for example. In practice, however, the relatively rare nature of the forest cover
loss classes in some areas made it very difficult to collect consistent, high-quality training
data to provide good coverage over all transitions of interest—ultimately limiting change
detection capability. Creating a multi-temporal training dataset was challenging and time-
consuming because it is harder to visually find areas of a particular type of change. A single
image is much easier to understand by a human interpreter. Based on this experience,
the PyEO forest alerts algorithm now adopts a direct classification of land cover classes
(instead of land cover change classes), followed by post-classification change detection
through cross-tabulation of land cover classes at times 1 and 2.

First, a baseline image composite is created over a user-defined reference period. The
composite is then classified into a land cover baseline map. For the change detection, a
sequence of more recent single Sentinel-2 images is downloaded and classified into single-
date land cover maps using the same model. A post-classification change detection process
then compares the land cover class of the baseline composite to those of each change
detection image to detect land cover changes.

To provide robustness to the effect of clouds, the PyEO forest alerts algorithm masks
out clouds and cloud shadows based on the Scene Classification Layer (SCL) provided
as part of the Sentinel-2 product. The cloud mask can optionally be dilated by ap-
plying a morphological filter to mask out the fringes of clouds and cloud shadows in
neighbouring pixels.

To support this revised machine learning approach, a standardised set of land cover
classes were defined (Table 1) and used as the basis for training the machine learning model
using manually defined polygons of known land cover types.

Table 1. Generic specification of land cover classes that can be used in the change detection algorithm.
Classes shown in italics were not used in the model training for this specific application and are only
shown for completeness.

Class Number Description

1 Primary forest
2 Plantation forest
3 Bare soil
4 Crops
5 Grassland
6 Open water
7 Burn scar
8 Cloud
9 Cloud shadow
10 Haze
11 Sparse woodland
12 Dense woodland

In the evaluation of the forest cover loss detections from the post-classification change
detection with the random forest model, under certain circumstances, forest cover loss
was confused with spectrally similar landscape features. An example is a case of hillsides
illuminated by the sun. To improve the quality of the forest cover loss detections, an
optional additional classification test was introduced to the change detection process.
When a change between a single-date Sentinel-2 image and the baseline image composite
is detected, the difference in their Normalised Difference Vegetation Index (dNDVI) is
calculated for each pixel. dNDVI is a measure of the decrease in vegetation greenness,
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which is often related to the loss of vegetation cover. The resulting dNDVI image can then
be classified into two classes based on a simple threshold to create a map of areas where
forest loss is likely to have occurred. Based on visual histogram analysis of dNDVI images
of forest and non-forest areas, a dNDVI threshold of −0.2 was adopted as a default for
generating this map. The output from this step is a hybrid change detection. Switching on
this hybrid change detection option combines the change detections from dNDVI with the
machine learning outputs through a logical AND operation with the aim to produce fewer
false positive forest loss detections and a higher-quality change map.

Once the hybrid post-classification change detection has been performed for each
Sentinel-2 change detection image relative to the baseline composite, a time-series analysis
of the resulting sequence of binary change images (forest loss/no forest loss) is performed
to build the analyst report as a multi-layered GeoTIFF file. The analyst report layers are
updated when a new monitoring image is processed by the pipeline and contain aggregated
information for each pixel, including the date of the earliest change detection, the number
of confirmed subsequent change detections, the consistency of any change detection over
time, and, derived from these, a binarised output layer that can quickly guide the analyst
to the most likely areas of forest loss.

Following the image analysis stage, Python interfacing with the API of the Agrimetrics
agricultural data-sharing platform was used to disseminate the resulting analyst reports
across the ForestMind project team to make them available for assessment by forest analysts.
Figure 3 illustrates the overall workflow by showing how the PyEO forest alerts form a
component of the wider system.

Figure 3. High-level workflow from the Sentinel-2 Earth observation data through the PyEO algo-
rithm, generating an analyst report. The report is uploaded to the Agrimetrics platform where it is
merged with the farm location data by a customer, producing a company report with input from a
ForestMind Analyst.

The report data uploaded to the Agrimetrics platform are queryable via a RESTful
API, which allows the deforestation information surrounding each farm to be requested
automatically by a Python script. Based on such queries from Agrimetrics, company
reports were compiled using a series of Python scripts executed in a Jupyter notebook by
the ForestMind Analysts. The company reports made use of point or polygon data which
indicated the precise location of farms as shared by the particular company. The resulting
company report for customers was presented at farm scale, i.e., a tabulated row for each of
their farms providing an approximate measure of deforestation surrounding the farm in
hectares, a summary of calculated statistics, and a created overview map.

2.3. Model Training

To train the machine learning model for the random forest classification of land cover
types, Sentinel-2 image composites were created for 12 Sentinel-2 tiles (Table 2) from the
least cloud-covered images acquired in the calendar year 2019 over Mato Grosso (Figure 4).
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Each tile has an area of 100 km × 100 km = 10,000 km2. To collect training data, polygons of
known land cover types were visually delineated using the QGIS geographic information
system [21] and a land cover class was assigned to the attribute table (Table 1).
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The training polygons were saved in a shapefile for each Sentinel-2 image tile. During
the model training step, all polygons from all Sentinel-2 image composites across the
12 tiles were read into a data table together with their assigned land cover class codes and
rasterised to the Sentinel-2 spatial resolution of 10 m. Random forest model training was
carried out for 500 decision trees with the scikit-learn library [22], and the trained model
was saved to a Python standard pkl file.
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Table 2. List of Tile IDs of the Sentinel-2 image composites used for training the random forest model
‘mato_rf_toby_1’. All image composites were made from the median bottom-of-atmosphere radiance
of the RGB and NIR bands at 10 m resolution from the 30 least cloud-covered images acquired during
the calendar year 2019.

Granule ID

T21LTD
T21LTE
T21LTF
T21LTG
T21LUD
T21LUE
T21LUF
T21LUG
T21LVD
T21LVE
T21LVF
T21LVG

In total, 75% of the training pixels were used for random forest model training, and 25%
were held back for validation. An initial model training with all pixels from all polygons
resulted in a low classification accuracy of 56% for the independent validation pixels, even
though the accuracy of the 75% training pixels was 99.9%. The distribution of training
pixels by class was found to be heavily unbalanced: class 1 had 1,708,257 training pixels,
class 3 had 1,464,283, class 4 had 838,431, class 5 had 57,269, class 11 had 540,293, and class
12 had as few as 36,085 training pixels. To achieve a more balanced distribution of training
pixels per class, a limit of a factor of 10 in the sample size ratios was introduced. From each
land cover class that had more than 10 times the number of training pixels compared to
the least frequent class, a random sample of pixels was drawn; in this case, 360,850 pixels.
This more balanced random forest classification model achieved a validation accuracy of
92.8% when compared to the 25% of independent validation pixels, and 99.9% for the 75%
of pixels that were used to train the model.

The feature importance f of the model shows that band 4 was the most impor-
tant spectral band for discrimination of the land cover types (f 4 = 0.38), followed by
band 8 (f 8 = 0.29), band 3 (f 3 = 0.19), and band 2 (f 2 = 0.13). Table 3 shows the confu-
sion matrix and Table 4 the spectral signatures of the classes from the training data. The
achieved accuracy of 92.8% was considered sufficiently high to use this model in the due
diligence application.

Table 3. Confusion matrix of the balanced random forest classification model from the comparison
with the 25% of training pixels that were held back for the independent validation. UA = User
Accuracy, PA = Producer Accuracy, OA = Overall Accuracy.

Reference Class →
Predicted

Class ↓ 1 3 4 5 11 12 UA ↓

1 84,955 2 210 56 4650 9 94.5%
3 0 87,159 1092 109 1017 524 96.9%
4 73 1332 85,147 1977 611 1250 94.2%
5 53 93 2000 11,005 959 272 76.5%
11 4730 650 374 545 84,214 87 93.0%
12 53 871 2958 534 508 4110 45.5%

PA → 94.5% 96.7% 92.8% 77.4% 91.6% 65.7% OA = 92.8%
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Table 4. Spectral signatures of the training classes for the four selected Sentinel-2 image bands derived
from the random forest model ‘mato_rf_toby_1’. Sentinel-2 bands: 2 = B, 3 = G, 4 = R, 8 = NIR.

Class Band Min Max Mean Stdev

1

2 74 668 207.49 31.83
3 130 1130 398.40 57.63
4 86 1352 229.00 49.20
8 912 5144 2726.92 371.26

3

2 211 2113 477.09 216.21
3 391 2655 741.56 279.71
4 323 3348 1034.24 453.30
8 1160 4087 2246.23 632.23

4

2 203 1872 415.48 97.21
3 411 2334 724.29 145.90
4 267 2837 621.16 241.67
8 1723 5684 3644.23 646.96

5

2 184 771 429.65 106.77
3 340 1129 771.52 154.28
4 214 1393 746.34 237.52
8 1742 4003 2813.10 311.96

11

2 146 626 300.66 55.23
3 298 914 536.95 62.15
4 176 1214 430.51 145.68
8 1530 4324 2468.49 289.34

12

2 189 906 466.51 99.30
3 361 1336 774.15 133.53
4 225 1798 815.29 240.96
8 1320 4628 2897.72 362.87

2.4. Pilot Operational Application

A pilot period was run in operational production mode from January to August 2022
during which company reports were generated monthly in step with the forest cover loss
analyst reports being updated with the latest Sentinel-2 change detection images. These
reports incorporate farm location data obtained from UK coffee importers with the aim of
detecting and reporting on any forest cover loss happening in the vicinity of the farms as
part of their environmental due diligence. The data supplied by the coffee importer were
in the form of point locations, recorded by handheld GPS devices. Polygons for the farm
extent were not available as the importers had not collected these data.

3. Results

This section reports on the forest cover loss detection results from Sentinel-2 for a
region in the Huehuetenango Department, Guatemala, and another region in the State of
Mato Grosso, Brazil. The presented forest cover loss maps were generated from a baseline
image composite for the reference year 2019 compared to change detection images from
Sentinel-2 acquired from January to August 2022. Multiple such change detections are
aggregated into a raster file (the analyst report) incorporating a number of ‘report layers’
of spatial information about each pixel in the raster. These reports are designed to be
easily understandable by non-experts and are intended to be used to demonstrate due
diligence by importers and exporters to show that their trade does not inadvertently cause
deforestation in the source regions of their produce.

3.1. Median Image Composite Creation

Figure 5 shows the median composites for a Sentinel-2 tile in Guatemala and Mato
Grosso derived from cloud-free images acquired in 2019 with cloud cover <10%, and the
corresponding sample change detection images acquired in July 2022 for Guatemala and
April 2022 for Mato Grosso.
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Figure 5. Median image composite derived from cloud-free images acquired in 2019 with cloud cover
<10%, and the corresponding sample change detection images. (a) Tile 15PXT, Guatemala, Composite
2019 formed from 22 images; (b) Guatemala change detection image 20220714 (black squares show
dilated cloud-masked areas); (c) Tile 21LTD, Mato Grosso State, Brazil, Composite 2019 formed from
25 images; (d) Mato Grosso change detection image 20220419.

The image composites were created by calculating the median of a stack of images
(Sentinel-2 L2A products) of atmospherically corrected surface reflectance for each band,
excluding missing values, cloud-masked pixels, and cloud-shadow-masked pixels. By
comparing the composites on the left of Figure 5 to the sample images on the right, areas
of forest loss are recognisable to a human observer given the change in colour of the RGB
channels shown.

3.2. Near-Real-Time Image Query and Download Functionality

Images with more than 10% cloud cover were discarded from the download and
change detection algorithm because visual inspection showed that their radiometric quality
tends to be poor due to remaining cloud fragments, haze, and cloud shadow areas. Al-
together, 30 images were downloaded for the Guatemala tile and 63 for the Mato Grosso
tile. Where L2A surface reflectance images were available on the Copernicus Open Access
Hub, they were downloaded. If only L1C top-of-atmosphere radiance image products were
available, they were downloaded and atmospherically corrected with Sen2Cor as part of
the PyEO workflow.

3.3. Random Forest Classifications

Figure 6 shows an example of a random forest classification of the land cover types
in Table 1 for the Guatemala and Mato Grosso tiles. The same random forest model was
applied consecutively to the baseline image composite from 2019 and all change detection
images for the near-real-time change detection period between January and June 2022.
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Figure 6. Random forest classifications of the baseline Sentinel-2 composites and sample change
detection image. (a) Tile 15PXT Guatemala, Sentinel-2 baseline composite from 2019; (b) Guatemala,
Sentinel-2, acquisition date 20220714; (c) Tile 21LTD, Mato Grosso State, Brazil, Sentinel-2 baseline
composite from 2019; (d) Mato Grosso, Sentinel-2 acquisition date 20220419. Black areas are masked-
out clouds or cloud shadows based on the Sentinel-2 Scene Classification Layer (SCL file) and a
dilation algorithm.

3.4. Post-Classification Change Detection

Figure 7 shows sample results of post-classification change detection for the Guatemala
and Mato Grosso tiles. The change maps were derived by identifying all transitions from
any of the forest classes 1 (primary forest), 11 (sparse woodland), and 12 (dense woodland)
to any of the non-forest classes 3 (bare soil), 4 (crops), or 5 (grassland) using a purpose-built
function from the PyEO library. Class 2 (plantation forest) was not included in the forest
classes because rotation forestry was not a change of interest in the change detection step.
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Sentinel-2 composite 2019, and the sample change detection images from Figure 5. (a) Tile ID 15PXT,
Guatemala; (b) Tile 21LTD, Mato Grosso State, Brazil. White pixels show a change from one of the
forest classes (1, 11, 12) to a non-forest class (3, 4, 5).

3.5. dNDVI Change Thresholding to Create Hybrid Change Detections

As described in the methodology section, a hybrid classification option was applied,
whereby the random forest post-classification change detection was supported by a sec-
ondary classification of pixels as being potential areas of forest loss based on a measured
change in NDVI of at least dNDVI < −0.2 relative to the baseline image composite.

Figure 8 shows the results of the post-classification change detection. The hybrid
change detection method removes some agricultural areas that have been misclassified
from the change detection maps and results in cleaner forest loss maps with less noise.
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Figure 8. Hybrid change detection by random forest post-classification change detection and differ-
ential NDVI. (a) Tile 15PXT, Guatemala, forest loss from post-classification change detection; (b) Tile
15PXT, Guatemala, Sentinel-2 dNDVI image over the forest loss pixels (white squares show dilated
cloud-masked areas); (c) Tile 15PXT, Guatemala, hybrid change detection image of confirmed forest
loss based on combined random forest post-classification change detection and dNDVI thresholding;
(d) Tile 21LTD, Mato Grosso State, Brazil, forest loss from random forest post-classification change
detection; (e) Mato Grosso, Sentinel-2 dNDVI; (f) Tile 21LTD, Mato Grosso, hybrid change detection
image of confirmed forest loss based on combined random forest post-classification change detection
and dNDVI.

3.6. Time-Series Analysis and Aggregation into the Analyst Report

The analyst report consisted of a multi-layer GeoTIFF image (Figure 9) containing
aggregated information extracted from the time series of hybrid change detection maps.
It is updated whenever a new change map is created. The analyst report was uploaded
to the Agrimetrics platform, which provided a centralised database for the ForestMind
consortium. The analyst report product can be read by the QGIS software package to allow
convenient viewing and analysis of the information layers (Here, QGIS version 3.28.15 was
used). The reports comprise seven raster layers with information about each pixel:
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• Layer 1 ‘First_Change_Date’: The acquisition date of the Sentinel-2 image in which a
change of interest (i.e., forest loss) was first detected. This is expressed as the number
of days since 1 January 2000;

• Layer 2 ‘Total_Change_Detection_Count’: The total number of times when a change
was detected since the First_Change_Date for each pixel;

• Layer 3 ‘Total_NoChange_Detection_Count’: The total number of times when no
change was detected since the First_Change_Date for each pixel;

• Layer 4 ‘Total_Classification_Count’: The total number of times when a land cover
class was identified for each pixel, taking into account partial satellite orbit coverage
and cloud cover;

• Layer 5 ‘Percentage_Change_Detection’: The computed ratio of Layer 2 to Layer 4
expressed as a percentage. This indicates the consistency of a detected change once it
has first been detected and thus the confidence that it is a permanent change rather
than, for example, seasonal agricultural variation or periodic flooding;

• Layer 6 ‘Change_Detection_Decision’: A computed binary layer that is set to 1 to
indicate regions that pass a change detection threshold and so allows regions of
significant change to be rapidly identified over the large spatial area of a tile. Currently,
the decision criterion is that ((Layer 2 >= 5) and (Layer 5 >= 50)), i.e., that at least five
land cover changes of interest were detected and that the change was present in at
least 50% of the change detection images;

• Layer 7 ‘Change_Detection_Date_Mask’: A subset of First_Change_Date only showing
those areas where the change decision criteria were met. It is the product of Layer 1
and Layer 6. This allows regions where land use change is expanding over time to be
more easily identified over the large spatial area of a tile.
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Figure 9. Aggregated analyst report image from the time series of hybrid change detection maps.
(a) Tile 15PXT over Guatemala, Report Image Band 2 (ChangeDetectionCount); (b) Tile 15PXT,
Report Image Band 5 (ChangePercentage); (c) Tile 15PXT, Report Image Band 7 (ChangeDecision and
FirstChangeDate); (d) Tile 21LTD over Mato Grosso, Report Image Band 2 (ChangeDetectionCount);
(e) Tile 21LTD, Report Image Band 5 (ChangePercentage); (f) Tile 21LTD, Report Image Band 7
(ChangeDecision and FirstChangeDate). Darker colours represent higher values.



Forests 2024, 15, 617 14 of 20

In practice, report image Layer 7 is used to provide information on areas that require
rapid attention. Layers 2 and 5 provide additional information on the severity and timing
of land cover change events to support decision making on whether to flag a forest loss for
follow-up investigation.

3.7. Validation of the Forest Loss Detections

To validate the observed forest loss detection in Guatemala and Mato Grosso, a
stratified random sampling method was used, as described by Cochran [23], at the scale
of the processed Sentinel-2 tiles. Two main strata were selected in Guatemala and Mato
Grosso, comprising areas of forest cover loss and unchanged forest. In addition, a third
stratum was defined that included areas of potential forest loss around the identified forest
change. This zone serves to reduce omission errors that may occur in vegetative transition
zones and around large strata [24–26]. An inner zone of potential forest loss of 20 m
(i.e., 2 pixels) was defined around the areas of forest change to reduce omission errors
during validation. A total of 600 stratified random points (200 points per stratum) per
area were examined, and accuracy metrics, including Cohen’s Kappa [27], were calculated.
Visual validation was carried out by interpreting a pair of before and after images around
the time of the first detection of the forest loss, as well as for a stratified random sample of
unchanged forest areas for comparison.

The accuracies of the forest loss detections in Guatemala and Mato Grosso for the
period 2019 to 2022 were quantified as 86.3% and 85.5% overall accuracy, respectively
(Table 5). About 229,140 ha of forest in Guatemala and 110,480 ha of forest in Mato Grosso
were lost between 2019 and the first half of 2022, while about 442,196 ha and 295,927 ha of
forest remained unchanged. Forest change patches were distributed throughout the areas
of interest, with most patches concentrated along forest edges. The patch sizes of forest
changes in Guatemala ranged from 0.01 ha to 7011.89 ha and for Mato Grosso from 0.01 ha
to 12,846.41 ha.

Table 5. Confusion matrices showing the forest loss detection algorithm’s overall accuracy of the
forest change detections and the areas of no detected change, stating user accuracy, and producer
accuracy in Guatemala (top) and Mato Grosso, Brazil (bottom), between 2022 and a median image
composite of 2019. OA = overall accuracy, κ = kappa coefficient.

Guatemala
OA = 86.3%
κ = 0.71

No Change Change User Accuracy

No Change 193 7 96.5%
Change 48 152 76%

Producer Accuracy 80.1% 95.6%

Mato Grosso, Brazil
OA = 85.5%
κ = 0.72

No Change Change User Accuracy

No Change 187 13 93.5%
Change 45 155 77.5%

Producer Accuracy 80.6% 92.3%

The use of zones of potential forest loss around the forest loss detections increased
the accuracy of the validation for Guatemala and Mato Grosso by 2.4% and 3.5%, respec-
tively. These differences in accuracy reflect the importance and effectiveness of the buffer
method and are consistent with previous findings that showed an increase in validation
accuracy [25,28]. Finally, for Mato Grosso, the kappa coefficient was κ = 0.71, and for
Guatemala, κ = 0.72, showing a ‘substantial agreement’ according to Cohen’s interpreta-
tion [27]. Cohen suggested that κ values ≤ 0 showed no agreement, 0.01–0.20 showed none
to slight agreement, 0.21–0.40 a fair agreement, 0.41–0.60 a moderate agreement, 0.61–0.80
a substantial agreement, and 0.81–1.00 almost perfect agreement.
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3.8. Independent Validation of Farm-Scale Change Detection Accuracy

In addition, a combination of Sentinel-2 imagery and monthly <5 m resolution data
from Planet Norway’s International Climate and Forests Initiative (NICFI) was used to
validate the points. For this purpose, an image before the forest loss detection and a second
image after the detection were interpreted visually for evidence of forest loss. Validation of
forest change in Guatemala was carried out using imagery from April 2022, and validation
of forest change in Mato Grosso using imagery from August 2022. Validation of the
deforestation detections was carried out at the Satellite Applications Catapult by visual
inspection of the forest loss detections presented in this paper compared to the Global
Forest Watch data [13]. Planet NICFI data were used for this purpose. These results are
presented separately, as this was an independent validation by a team not involved in
producing the forest loss dataset.

In order to gather feedback from users on the supply chain monitoring reports, forest
loss detections from the PyEO algorithm were analysed for a set of real farms from which
commodities are imported by one of the ForestMind user organisations. For every user
organisation, a farm-scale map was created, showing data within 400 m of its location,
together with information on the extent of forest cover loss (Figure 10, Table 6). In addition,
statistics about the proximity of the farm to protected areas and/or rivers were made
available to the users.
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Figure 10. A farm-scale presentation of the forest cover loss data from PyEO, as included in the
company reports. In this example, synthetic farm boundary polygons (dashed green areas in the
centres of the 8 locations) are shown with a 100 m detection buffer (light grey). Forest loss pixels are
indicated in red, shaded from dark to light to indicate the date of first forest loss detection. Results are
overlayed on higher-resolution optical imagery. The real farm locations are subject to data protection
and cannot be disclosed.
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Table 6. Forest cover loss detections in the areas of the real farms for the two reporting periods (the
baseline and baseline update), and summarised for the whole monitoring period.

Period Total Number of
Farms

Deforestation-Free
Farms

Farms with
Deforestation < 0.1 ha

Farms with
Deforestation > 0.1 ha

Jan 2020–Jan 2022
(Baseline Update) 263 155 94 14

Jan 2022–Aug 2022 263 149 113 1
Jan 2020–Aug 2022 (Whole Monitoring

Period) 263 105 136 22

In total, 263 farms were examined through the ForestMind monitoring period from
January 2020 to August 2022, of which 105 were reported as ‘deforestation-free’, 136 were
found to have only minimal deforestation (<0.1 ha), and 22 were found to have larger areas
of deforestation (>0.1 ha).

Throughout the project lifecycle, the datasets generated by ForestMind were assessed
for accuracy. In the absence of regularly updated ground data for the region, a visual
assessment was carried out using 3 m resolution Planet-NICFI (Norway’s International
Climate and Forests Initiative) data, which are openly available, as well as a comparison
with the existing annual dataset of forest loss, Global Forest Loss from the University of
Maryland based on Landsat imagery, available via Global Forest Watch [13].

For each forest loss dataset, 100 points were randomly selected from two classes: those
classified as having forest loss and those not classified as experiencing forest loss. The two
datasets for assessment are as follows:

• PyEO Forest Loss—this study, University of Leicester (7 February 2019–22 February
2021);

• Global Forest Loss—University of Maryland (2017–2020).

Each dataset was visually inspected using the Planet-NICFI data, looking at a time
series of imagery from before and after the date on which forest loss was detected. Statistics
generated are commission (change detected when no change occurred) and omission error
(change not detected when change occurred), as well as the overall accuracy percentage.
In August 2022, a final accuracy review of the forest loss detections was carried out. The
datasets were tested in the two different regions of Mato Grosso in Brazil, for which the
random forest model had been trained, and Guatemala, as a study area to which the model
was transferred to test its applicability elsewhere. The State of Mato Grosso in Brazil is
known for the growth of soybeans and the area of Guatemala for coffee. The results are
presented in Table 7.

Table 7. Accuracy, commission, and omission rates for forest loss vs. visual assessment of Planet
NICFI datasets at farm scale of the real farm locations. The producer accuracy is 100%, rate of
omission, and the user accuracy is 100%, rate of commission.

Dataset Overall Accuracy Rate of
Commission

Rate of
Omission

PyEO forest loss—
Soy Brazil 83% 18% 1%

PyEO forest loss—
Coffee Guatemala 80% 21% 3%

4. Discussion

The technical algorithm of forest cover loss detections from the PyEO package has
been described previously in the literature [14,15]. This study presents the ForestMind
extensions of PyEO, which now includes an optional verification of detected forest loss
pixels with a dNDVI threshold, which reduces the commission error greatly when run in
entirely automatic mode.
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Creating farm-scale company reports that clearly communicate farm forest cover loss
rates for deforestation assessments to non-technical companies to provide actionable infor-
mation was challenging. Feedback from the initial report indicated that the customer ‘felt
unclear’ about the information provided and the next steps. Specific feedback included the
structuring of the report to ensure that the most relevant data were easily understandable
and accessible at a glance. Subsequent reports were improved by restructuring the text and
providing clearer labelling, explanations, and legends. In the later versions of the report,
the feedback ranged from ‘felt somewhat clear’ to ‘felt very clear’ (n = 3). The customer
still experienced some difficulties interpreting the data in these reports. This was primarily
because of the need to learn to interpret spatial data presented in the reports. Because the
due diligence requirement is a new legal instrument, companies have yet to learn how
to use evidence-based due diligence systems in their supply chains. Backdrop imagery
greatly supported the visualisation of the change detections, but at the scale of a coffee farm
(3–12 ha), 10 m resolution Sentinel-2 imagery is not suitable as a background map. The 3 m
resolution imagery from Planet was also used, yet farm boundaries were still not clearly
identifiable at this resolution. The final revision of the reports used a custom background
map created in Mapbox Studio, which provides very-high-resolution commercial satellite
imagery with additional contours, and streets overlain from OpenStreetMap, added by the
analyst to support the visualisation. These data aided in the visual interpretation, though
the background imagery suffered from misalignment, and was often out of date.

Whilst the accuracy of the forest loss detections allowed the production of a farm-level
report based on an approximate point location for the farm without precise farm boundary
data, the reports could not verify deforestation-free farm claims with high confidence. The
reports communicated this limitation and suggested data collection exercises to improve
the supply chain information held by importers and exporters. The customer companies
considered these practical suggestions valuable, as they did not previously understand how
the fidelity and precision of their supply chain information may impact their deforestation
due diligence reporting. One customer responded, “At this stage whilst it brings important
information and findings, and gives clear recommendations, these are currently known
next steps for us as an organisation, albeit they are not easy next steps”.

The results of the two independent accuracy assessments at tile scale and at farm scale
showed over 80% overall accuracy. Table 5 shows achieved user accuracies of the forest
loss detections of 76% for Guatemala and 77.5% for Mato Grosso, and Table 7 shows 79%
and 82% user accuracies for the two areas, respectively.

Previous studies have reported user accuracies of over 90% for the GLAD alerts
from Landsat in a study in Peru [29], 97.6% for the RADD alerts from Sentinel-1 for
disturbance events ≥0.2 ha in the Congo basin (but leaving a large number of small-scale
forest losses undetected) [11], 71.1% (but only 53.3% for Latin America) for the JJFAST
change detections [30], and over 97% for previous applications of PyEO forest alerts in
Mexico and Colombia [15]. Differences in the spatial resolution of the satellite images,
minimum mapping unit of the forest cover loss areas, study area characteristics, and
detection methods complicate a direct comparison of the user accuracies of these previous
studies. For example, the GLAD alerts have a 30 m × 30 m spatial resolution, which is
an area nine times larger than the 10 m × 10 m presented here. Despite the GLAD alerts
being a global system, the only published validation known to the authors is from Peru [29].
Pacheco et al. [15] compared the GLAD alerts with PyEO forest alerts for Mexico and
Colombia and found that the GLAD alerts reported nearly four times more deforested area
than PyEO for the site in Colombia, and missed a large number of small-scale forest loss
areas in Mexico. The JJFAST validation [30] showed huge variations in users’ accuracies
between study areas. In the context of previous forest loss detection studies, the results
presented here are of acceptable accuracy for the purpose of automated change detection
for ongoing due diligence reporting in the view of the authors.

In this study, we have presented two applications of the PyEO ForestMind reports to
Guatemala and Mato Grosso State in Brazil. Could its application be scaled up to larger
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regions or continents, or a global scale? The forest types of the two regions studied here
are similar enough for the random forest model that was trained on images from Brazil
to work well in Guatemala. However, applying the same methodology to other forest
types requires random forest models that were trained for specific forest conditions if their
spectral reflectance properties are substantially different. A feasible approach might be to
use a stratification of forests by ecoregion, as in Dinerstein et al. [31], and train ecoregion-
specific models. The PyEO package already allows Sentinel-2 tile-based processing and can
easily be scaled up to larger areas with sufficient computational resources. Hence, it has
applicability in all forested or partially forested areas of the world. Its main strengths are
that the customer can define their own land cover types and land cover change transitions
of interest, train their own model, and receive change detections as often as desired, from
the 5-day repeat cycle of Sentinel-2 to aggregated monthly or annual reports.

5. Conclusions

This paper introduces a technical solution to the due diligence obligations on importers
and exporters to the EU single market under the EU Deforestation Regulation. It provides
routine insights into forest cover loss around the areas of source farms in countries from
which commodities are imported.

The analysis of the ForestMind reports from satellite imagery presented here demon-
strates that automated forest loss detection algorithms can be customised by training a
random forest model for the transition between land cover classes, or groups of classes, of
interest and applied with very good accuracy.

The ForestMind farm-scale company reports on estimated deforestation rates offer a
solution to suppliers of produce subject to the EU Deforestation Regulation and similar
laws. While the data processing and visualisation are entirely automated with the help of
the PyEO package, the farm-scale reporting does require human interpretation by a Forest
Analyst to write a short narrative text about the data. However, AI solutions may in the
future offer a means of automating this interpretation step.
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