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Abstract: Mangrove ecosystems are pivotal to the global carbon budget. However, there is still a
dearth of research addressing the impact of regional mangrove land use and land cover change
(LUCC) on carbon sequestration and its associated spatial distribution patterns. To investigate the
impact of different development scenarios on the carbon storage capacity of mangrove ecosystems,
we focused on Hainan Island. We used LUCC data from 2010 to 2020 from mangrove-inhabited
regions. The Markov-PLUS model was applied to predict the spatiotemporal dynamics of mangrove
coverage under the natural increase scenario (NIS) and the mangrove protection scenario (MPS)
over the next 40 years. Carbon storage was estimated using the InVEST model based on field-
measured carbon density data. The outcomes show the following: (1) The Markov-PLUS model,
with an overall accuracy of 0.88 and a Kappa coefficient of 0.82, is suitable for predicting mangrove
distribution patterns on Hainan Island. (2) Environmental factors were the main drivers of historical
mangrove changes on Hainan Island, explaining 54% of the variance, with elevation, temperature,
and precipitation each contributing over 13%. (3) From 2025 to 2065, the mangrove area on Hainan
Island is projected to increase by approximately 12,505.68 ha, mainly through conversions from
forest land (12.73% under NIS and 12.37% under MPS) and agricultural land (39.72% under NIS
and 34.53% under MPS). (4) The carbon storage increment within Hainan Island’s mangroves is
projected at 2.71 TgC over the whole island, with notable increases expected in the eastern, northern,
and northwestern regions, and modest gains in other areas. In this study, we comprehensively
investigated the spatiotemporal dynamics and future trends of carbon storage in the mangroves of
Hainan Island, offering invaluable guidance for the long-term management of mangrove ecosystems
and the realization of carbon neutrality goals by 2060.

Keywords: land use and cover change; Markov-PLUS model; mangrove protection scenario; car-
bon storage

1. Introduction

Mangrove ecosystems, which are a cornerstone of marine carbon sequestration, sig-
nificantly contributes to the mitigation of global climate change [1]. Throughout the past
half-century, mangrove ecosystems have been subjected to widespread deforestation [2],
transitioning into aquaculture, agricultural lands, plantations, and urban developments [3].
These land-use changes have precipitated considerable carbon emissions, attributed to the
inherently high carbon density of mangrove ecosystems [4,5]. In recent years, China has
distinguished itself through notable progress in the protection and restoration of mangrove
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habitats, becoming one of the select global nations to achieve a net gain in mangrove
coverage [6]. Despite the increased focus on mangroves and their carbon sequestration
capabilities, the dynamic impact of changes in mangrove cover on regional carbon seques-
tration in these ecosystems remains largely unexplored [7,8]. Furthermore, the research
community has yet to extensively investigate the spatial distribution patterns of mangroves
and their correlated carbon storage, highlighting a critical gap in the current understanding.

Globally, land use and cover change (LUCC) in areas containing mangroves has been
assessed and predicted [9]. Ahmod et al. [10] developed a hybrid model incorporating
cellular automata (CA) to forecast four LUCC types, including mangroves, in the Sun-
darbans Delta area for 2030 and 2050. Bagaria et al. [11] combined a cellular automata
Markov model (CAMM) to predict the LUCC of mangrove landscapes in the Indus Delta,
while Wang et al. [12] combined the MaxEnt model with the Dynamic Conversion of Land
Use and its Impacts (Dyna-CLUE) model to estimate the LUCC of mangrove forests in
Guangdong Province in 2030. These LUCC prediction models have evolved through vari-
ous versions and have been extensively applied to simulate LUCC across different future
scenarios [13]. Advanced models like the Future Land Use Simulation (FLUS) model [14],
Dyna-CLUE model [12], CA model [10], and Patch-generating Land Use Simulation (PLUS)
model [15] have been applied in empirical studies. Recent findings have indicated the
PLUS model’s superior accuracy over alternative models. Originating from the FLUS
model, the PLUS model represents an innovative approach for precise land use forecasting
that incorporates spatial policy-driven effects [16]. This model offers significant benefits
in identifying the driving forces behind land use changes and in simulating varied land
use evolution scenarios, overcoming the limitations present in existing land use prediction
models regarding the simulation of different patch scales [17]. In this study, we utilized the
PLUS model to simulate and predict the dynamic evolution of LUCC in the mangroves of
Hainan Island, exploring its dynamic impact on regional carbon sequestration. This further
complements the scientific understanding of the spatial distribution patterns of regional
mangroves and their associated carbon storage, addressing existing gaps in knowledge
within the scientific community.

At present, there are two methodologies that are commonly used for the estimation
of carbon storage: a quantitative approach anchored in geophysical and chemical pro-
cesses [18], and a geographic method grounded in carbon density and LUCC [19]. Research
parameters derived from geophysical and chemical processes, can lead to suboptimal
accuracy in large-scale carbon storage evaluations and notable variances in the outcomes
of different models [20]. The Integrated Valuation of Ecosystem Services and Trade-offs
(InVEST) model, conceived by Stanford University, has demonstrated high performance
efficacy in numerous large-scale assessments of carbon storage, utilizing carbon density
and LUCC [21]. The model investigates the spatiotemporal variation of carbon storage
in terrestrial ecosystems from the perspective of past and potential land use variability
and its determinants [22]. Several studies employing the InVEST model have investigated
historical carbon storage trends based on past land use alterations, exploring the underlying
reasons for these shifts [23–25]. Additionally, some studies have merged the InVEST model
with land use simulation models to probe the spatiotemporal variations in carbon storage
under diverse scenarios and to reveal the impacts of land use changes on carbon stock
dynamics [26–29]. Furthermore, Shi et al. [6] integrated the InVEST and MaxEnt models to
forecast potential mangrove expansion zones in Hainan Island and calculated the carbon
storage increase within mangrove ecosystems. Unlike complex mechanistic process models,
the InVEST model requires simpler parameters and can be efficiently paired with models
like PLUS, rendering it an exemplary tool for examining the dynamic alterations in LUCC
carbon storage at a regional scale [30].

Contemporary studies on LUCC often involve a comparative analysis across a lim-
ited selection of different years [31], failing to reveal more detailed changes and seldom
involving long-term analysis and prediction for specific change types such as mangrove
distribution across large regions. Studies on carbon storage have primarily concentrated on
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specific periods of land use and administrative regions, like forests [32], Dongzhai Harbor
mangroves [33], and Qinglan Bay mangroves [34]. Although there have been inquiries into
the spatiotemporal development and driving forces behind historical mangrove carbon
storage or carbon sinks in Hainan Island [1,35], predictive studies on how future poli-
cies might shape the distribution patterns of mangrove carbon storage are conspicuously
absent [36].

Hainan Island, a rapidly evolving economic zone in China, encounters pronounced
tensions between human activities and environmental preservation. It is the most species-
rich area in China, and has the highest national carbon density with respect to mangroves;
it also has the highest carbon density in East Asia [37,38]. The island has diverse ge-
ographical characteristics and forest structure patterns and is a representative location
for carbon stock estimation research with respect to mangrove ecosystems [39]. Limited
space exacerbates the conflict between human activities and the environment, especially
in terms of coastal development. The current area of mangroves is less than half of the
historical levels. The Chinese government is intensifying efforts to protect and restore
mangroves on Hainan Island, where mangrove changes are relatively frequent, making it a
valuable area for research. To forecast the future evolutionary trends of mangroves and
their carbon storage, we sought to address two core inquiries: (1) What is the predictive
accuracy of the coupled models regarding mangrove distribution and carbon storage under
multiple scenarios, and what are the primary factors influencing mangrove alterations?
(2) How will the spatiotemporal pattern of mangrove carbon storage evolve in the quest
for carbon neutrality?

The United Nations has stated that achieving carbon neutrality by 2050 is the most
urgent mission of the world today. Governments of all countries must comply with the
obligations of the Paris Agreement, set ambitious targets every five years, and submit
strengthened commitments called “nationally determined contributions” (NDCs), which
must demonstrate each country’s ambition to achieve carbon neutrality. China has pledged
to achieve this goal by 2060. In this study, we selected the period from 2025 to 2065 as
the future prediction interval, with five-year intervals, to estimate the changes in carbon
storage of mangroves on Hainan Island. The aim of the research is to provide theoretical
guidance for China’s carbon neutrality goal, support data for China’s five-year NDCs, and
offer a Chinese solution for global nature-based solutions. By addressing these questions,
we endeavor to provide theoretical underpinnings for the restoration, proliferation, and
carbon sequestration of regional mangroves under various developmental scenarios. This
has significant implications for protecting, restoring, and evaluating the role of mangrove
ecosystems in the global carbon balance.

2. Materials and Methods
2.1. Study Area

This study was conducted on Hainan Island (China), which has a monsoon climate
in the tropics. The island experiences a mean annual temperature ranging between 22 ◦C
and 26 ◦C, accompanied by average annual precipitation of 1000 to 2600 mm [6]. Home to
approximately 6100 ha of mangrove ecosystems, Hainan Island hosts the entire spectrum of
mangrove species found in China, encompassing 20 families and 38 species [39]. However,
rapid population growth and economic development, coupled with unsustainable practices
such as land reclamation, pond aquaculture, pollution discharge, and tourism development,
pose significant threats to the mangrove ecosystems of Hainan Island. Over the past century,
the mangroves on Hainan Island have experienced a historical trend of sharp decline and
slow recovery [40]. The maximum historical mangrove coverage on Hainan Island reached
12,506 ha, which is now less than half of what it used to be [41]. The mangroves of
Hainan Island are primarily situated along the coastal fringes of the island, with significant
concentrations in the northeastern territories, notably the Dongzhai Harbor National Nature
Reserve (Figure 1d) and the Qinglan Bay Provincial Nature Reserve (Figure 1e), the northern
locales inclusive of Maniao Bay and Huachang Bay (Figure 1c), and the northwestern areas,
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for instance, Xinying Bay (Figure 1a) and Xinying Harbor (Figure 1b). Lesser extents of
mangrove habitats have also been identified in the southern vicinities (Qingmei Harbor
and Tielu Harbor), the southeastern territories (Lingshui), southwestern sectors such as
Dongfang (Figure 1g) and Ledong, and southern regions like Sanya (Figure 1f). We selected
seven specific regions as study blocks, as shown in Figure 1. These areas constitute the
largest contiguous mangrove distribution on Hainan Island. Additionally, they are areas
where human activities are relatively frequent, making them more representative. Therefore,
the focal area of this study encompassed the mangrove distribution zones from 2010 to 2020,
with a delineated 5 km buffer zone surrounding the distribution area (where mangroves
persisted throughout the duration of the study) earmarked as the target research area
(Figure 1) [6].
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2.2. Data Sources

The LUCC data integrate mangrove distribution with prevailing land use classifica-
tions such as cropland, forest land, grassland, water bodies, built-up areas, and unused
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land, culminating in a comprehensive categorization of seven distinct land use types. Ad-
ditional driving factors were chosen with a focus on data completeness and accessibility,
as established by prior research [42]. These encompass socio-economic variables, natural
endowments, and locational attributes (Table 1).

Table 1. Driving factor data.

Data Category Data Description Resolution Data Source

Land Use Data
Land use data for Hainan
Island for the years 2010,

2015, and 2020
30 m

Resource and Environment
Science and Data Center
(http://www.resdc.cn/

accessed on 15 March 2024)

Socioeconomic
Data

Population density (POP) 1000 m

Resource and Environment
Science and Data Center
(http://www.resdc.cn/

accessed on 15 March 2024)

Density of
gross domestic
product (GDP)

1000 m -

Natural Resource
Data

2010–2020 mean
temperature 1000 m

Resource and Environment
Science and Data Center
(http://www.resdc.cn/

accessed on 15 March 2024)

2010–2020 mean
precipitation 1000 m -

Spatial distribution data
of soil types 1000 m

World Soil Database
(https://www.fao.org/soils-

portal/soil-survey/soil-
maps-and-databases/

harmonized-world-soil-
database-v12/en/ accessed

on 15 March 2024)

DEM
90 m

Geospatial Data Cloud
(https://www.gscloud.cn/
accessed on 15 March 2024)Slope

Location Factor
Data

Distance to
highway, railway, urban
primary (secondary and

tertiary) roads

Shapefile
Geospatial Data Cloud

(https://www.gscloud.cn/
accessed on 15 March 2024)

Mangrove
Distribution Data

Mangrove distribution
data for Hainan Island
for the years 2010, 2015,

and 2020

Shapefile

GMF30_2000–2020
https://data.casearth.cn/

en/sdo/detail/62ff50eb084
15d271ab1ba98/ accessed on

15 March 2024

2.3. Methods

The study was primarily divided into three parts: (1) Analysis of historical mangrove
LUCC on Hainan Island from 2010 to 2020; (2) Simulation of multiple scenarios of man-
grove LUCC change over the next 40 years, including NIS and MPS; (3) Estimation and
comparison of mangrove carbon storage on Hainan Island. Figure 2 illustrates the overall
research flow of this study.

http://www.resdc.cn/
http://www.resdc.cn/
http://www.resdc.cn/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.gscloud.cn/
https://www.gscloud.cn/
https://data.casearth.cn/en/sdo/detail/62ff50eb08415d271ab1ba98/
https://data.casearth.cn/en/sdo/detail/62ff50eb08415d271ab1ba98/
https://data.casearth.cn/en/sdo/detail/62ff50eb08415d271ab1ba98/
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2.3.1. The InVEST Model Estimates Carbon Storage

The InVEST model, developed by Stanford University’s Natural Capital Program, is a
mechanism for assessing and maintaining the value of ecosystem services [44]. Within its
wide range of tools, the carbon module stands out due to its capability to assess carbon stor-
age and sequestration capabilities within terrestrial biomes [45]. This particular module’s
evaluative framework is based on the foundational premise that diverse land use classes
sustain distinct carbon density levels across four principal compartments: subterranean
biomass, arboreal biomass, necromass, and pedologic organic carbon. The aggregate of
these carbon densities epitomizes the total carbon density attributable to a specific land use
category, while the cumulative carbon storage of each land class embodies the total carbon
stock of the region. In ecosystems characterized by mangroves, the intricacies of carbon
storage dynamics are underscored by the interplay between carbon accretions, attributable
to detritus deposition, and carbon discharges facilitated by microbial decomposition. This
interaction tends to stabilize a quasi-dynamic equilibrium. Furthermore, tidal phenomena
may redistribute waste from its initial deposition site, complicating collection methods
and potentially leading to inaccurate estimates of metabolic carbon content. With this in
mind, we strategically omitted cadaveric carbon from the analysis [6]. The most crucial
aspect of calculating carbon storage in the InVEST model is the selection of carbon density.
The carbon density data required for the model are all based on field measurements from
relevant studies and were corrected using carbon density correction formulas [6,35,46–48].
These data integrate factors such as vegetation, soil type, climate, and physical conditions
to calculate the carbon density of the study area [49]. The carbon density dataset used
in this study includes empirical metrics of arboreal carbon density, below-ground carbon
density, and soil carbon density in different regions of Hainan Island, as shown in Table 2.
For enhanced clarity, the nomenclature ‘mangrove-n’, ‘mangrove-e’, ‘mangrove-w’ and
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‘mangrove-s’ within Table 2 indicates mangrove sectors located in the northern, eastern,
western, and southern quadrants of Hainan Island, respectively.

Table 2. Carbon density data for Hainan Island (C_above is indicative of arboreal carbon density;
C_below denotes subterranean carbon density; C_soil indicates edaphic carbon density. The units are
all (t/ha)).

Name C_Above (t/ha) C_Below (t/ha) C_Soil (t/ha)

mangrove-n 44.4 19.98 131.232
mangrove-e 41.4 18.63 127.842
mangrove-w 44.8 20.16 131.684
mangrove-s 27.8 12.51 112.474

2.3.2. PLUS Model

The PLUS model is a patch-generated land use change simulator that contains the
Land Expansion Analysis Strategy (LEAS) model and the CA model based on multiple
random patch seeds (CARS) [15]. In the execution of this study, twelve driving factors
were selected for the simulation of land use, leveraging the Markov chain method to
forecast future demands based on historical trends and data. This methodological approach
facilitates a nuanced prediction of future land-use shifts, accounting for both the temporal
dynamics of land use evolution and the spatial distribution of various land use types.

(1) The Markov module

The Markov module is widely utilized for its robustness in making long-term quanti-
tative predictions, and is adept at computing the probabilities of LUCC between various
years and estimating future LUCC demands [50]. Through the manipulation of transi-
tion probabilities contingent upon various land use typologies, it is feasible to establish
divergent regional development paradigms. Consequently, this methodology facilitates
the forecasting of the structural composition of land use in forthcoming scenarios, under-
scoring the adaptability of the approach in predicting land use dynamics across distinct
developmental trajectories.

(2) The LEAS module

In the transformation rule mining module, random sampling is employed to analyze
the expansion areas and driving factors between two periods of land use types. Training is
then conducted separately based on different land use types. The random forest classifica-
tion (RFC) algorithm is utilized to identify the relationship between the two periods of data.
This approach enables the ascertainment of development probabilities associated with
various land use categories [51]. The ability of the RFC algorithm to quantify the impact of
each driver on the proliferation of each land use type was utilized within the context of the
LEAS module. The magnitude of a driving factor’s contribution is directly proportional
to its impact on the alterations observed within a particular land category, a notion that
was instrumental in identifying the underlying catalysts for mangrove evolution within
the scope of this analysis.

(3) The CARS module

The CARS module presents a sophisticated approach to simulating regional land
use dynamics, integrating the utility of various random patch seeds alongside a decay
mechanism for thresholds within the framework of cellular automata. This methodology
leverages development probabilities calculated for each land use type, employing specific
neighborhood weights and transition matrices to align the simulation outcomes with
projected macroscopic land demands [30]. By adjusting these parameters, the CARS
module can simulate complex land use changes while adhering to overarching future
land requirements, ensuring that the simulated distribution of land use types is consistent
with expected demand patterns. The module’s design allows for the incorporation of
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policy constraints that may limit land type conversions in specific areas, such as aquatic
environments and protected natural reserves. However, we did not apply these restrictions,
focusing instead on the theoretical potential for land use conversion based on ecological
and socio-economic factors alone.

(4) Scenario Setup

The conversion cost matrix is a pivotal component in simulating land use changes,
serving as a quantifiable measure of the challenges associated with transitioning one land-
use type to another. In this metaphor, a value of 1 signifies the feasibility of conversion
between specific land types, indicating that such a transformation is possible under the
defined conditions. Conversely, a value of 0 denotes prohibition of the conversion, reflecting
either a physical impossibility or a regulatory constraint that prevents the change in land
use from occurring [52]. Consistent with the approach adopted in existing studies, we
introduce two contrasting scenarios: the natural increase scenario (NIS) and the mangrove
protection scenario (MPS). These scenarios are predicated on divergent policy frameworks,
with the NIS focusing on the natural enlargement of land-use types in the absence of any
intervention, and the MPS emphasizing the conservation and restoration of mangrove
ecosystems through targeted policy measures. The delineation of conversion rules within
these scenarios is detailed in Table 3, offering a comprehensive overview of the permissible
land use transitions under each policy framework. This approach not only provides insight
into potential land-use dynamics, but also emphasizes the importance of scenario-specific
planning to achieve desired environmental and development outcomes.

Table 3. Land use conversion cost matrices in two scenarios (A represents cultivated land; B represents
grassland; C represents woodland; D represents water area; E represents construction land; F
represents unused land; G represents mangroves).

2010–2020
Natural Increase Scenario Mangrove Protection Scenario

A B C D E F G A B C D E F G

A 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E 0 0 0 0 1 0 1 1 1 1 1 1 1 1
F 1 1 1 1 1 1 0 1 1 1 1 1 1 1
G 1 1 1 1 1 1 1 0 0 0 0 0 0 1

• NIS: The scenario is based on land use data from three periods between 2010 and 2020,
and utilizes Markov chains to forecast the demand for different land use types. This
scenario extends the historical trends of land use change in the study area, considering
areas without functional restrictions and planned development zones.

• MPS: This scenario takes into account a series of policy influences, including the
“Special Action Plan for the Protection and Restoration of Mangroves (2020–2025)”,
the “Opinions of the Central Committee of the Communist Party of China and the
State Council on Fully, Accurately, and Comprehensively Implementing the New
Development Concept and Doing Well in Carbon Peaking and Carbon Neutrality
Work”, the “Overall Plan for the Protection and Restoration of Important Ecological
Systems in China (2021–2035)”, and the “Coastal Protection and Restoration Engi-
neering Work Plan”, among others. In this scenario, in response to these policies,
efforts are made to scientifically construct mangroves. Based on the current status of
mangrove resources, scientific arguments and reasonable determinations are made
regarding suitable areas for mangrove restoration. Building upon the clearance of fish
ponds within nature reserves, priority is given to implementing ecological restora-
tion of mangroves, adhering to the principle of “planting trees wherever possible”,
prioritizing the use of local mangrove species, and expanding mangrove areas. Rare
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mangrove species are protected. Requirements for strengthened regional control and
land use planning are implemented to limit the conversion of mangrove species. The
aim of this scenario is to reflect the increased enforcement of mangrove protection
policies by the local government in the research area, encourage the implementation
of comprehensive mangrove protection, and prioritize the protection of mangrove
ecosystems. In delineating ecological protection redlines, based on the principles of
“all suitable areas should be delineated, and all delineated areas should be protected”,
mangroves in relevant natural reserves, as well as areas outside natural reserves suit-
able for mangrove restoration, are all included in the ecological protection redline for
strict protection. Referring to existing research designs and aligning with our experi-
mental goals [53,54], the model was set as follows: (1) Strictly limiting the transition of
mangroves to other land use types; (2) Increasing the probability of converting forests
and cultivated land into mangroves by 80%, reducing the probability of converting
grasslands and residential land into mangroves by 80%, and increasing the probability
of converting water bodies and unused land into mangroves by 60%; (3) Establishing
a five-kilometer buffer zone around the existing mangrove distribution range to meet
the distribution requirements of suitable mangrove habitats.

3. Results
3.1. Validation of Model Accuracy and Identification of Historical Drivers of Change

From 2010 to 2020, the mangrove coverage on Hainan Island underwent an expansion
of 808.16 ha, predominantly through the transformation of forest lands and aquatic zones,
which together contributed to 82.93% of the overall increase in mangrove area. Meanwhile,
the carbon storage across the whole island increased by a total of 0.15 TgC. To validate
the model’s fidelity, consistency assessments comparing the simulated outcomes with the
actual LUCC observed in 2020 were undertaken, as detailed in Table 4. The simulation’s
precision for the principal mangrove habitats across Hainan Island is explained in Table 4.
The computation of the overall Kappa coefficient yielded a value of 0.82, and the overall
accuracy (OA) coefficient was determined to be 0.88, surpassing the thresholds set for this
research. These metrics underscore the model’s competency in projecting future mangrove
distributions accurately [55].

Table 4. Accuracy coefficients for 7 representative mangrove zones and overall accuracy in Hainan
Island (HCW is Huachang Bay; DF is Dongfang; XYG is Xinying Harbor; DZG is Dongzhai Harbor;
XYW is Xinying Bay; SY is Sanya; QLW is Qinglan Bay.).

Coefficient HCW DF XYG DZG XYW SY QLW Overall

Kappa 0.76 0.90 0.88 0.86 0.76 0.75 0.82 0.82
OA 0.83 0.94 0.92 0.90 0.85 0.82 0.87 0.88

The findings pertaining to the contribution rates of various driving factors, as illus-
trated in Figure 3, reveal that environmental factors (depicted by orange bars in the figure)
have the most significant influence on alterations in mangrove distribution, accounting for
54% of the changes. Within this category, elevation, temperature, and precipitation stand
out as the primary contributors, each with a contribution rate exceeding 13%. Following
environmental factors, locational attributes (represented by black bars in the figure) play a
substantial role, contributing around 31% to the distribution changes, with the proximity
to urban tertiary roads being the most significant with a 12% contribution rate. Social and
economic influences (indicated by blue bars in the figure), in contrast, have a relatively
minor effect on mangrove distribution changes, constituting 15% of the overall impact.
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3.2. Multiscenario Mangrove Distribution

The projected spatial distribution of mangroves on Hainan Island over the next four
decades indicates a pronounced trend of expansion in the already substantial (Figures 4 and 5),
continuous mangrove zones such as Dongzhai Harbor, Qinglan Bay, and Xinying Bay, with
expected increases of 3569.13 ha, 2567.25 ha, and 1394.10 ha, respectively. These expansions
underscore the potential for significant mangrove growth in these areas. In contrast, other
regions exhibit more modest growth, with Huachang Bay expected to expand by 921.42 ha,
Dongfang by 894.96 ha, Xinying Harbor by 710.46 ha, and Sanya by 568.44 ha. The
dynamics of land conversion, particularly the transformation of arable and forest lands into
mangrove habitats, emerge as predominant contributors to this expansion. Notably, such
conversions are marginally less prevalent under the NIS compared to the MPS, indicating
a strategic emphasis on conservation under the latter. In a comparative analysis across
the seven highlighted areas of Hainan Island, it was observed that under a consistent area
of expansion, the MPS more stringently regulates mangrove conversions (Tables 5 and 6).
Specifically, Dongzhai Harbor exhibits the most significant conversion of forest land to
mangroves without any grassland conversions. Qinglan Bay is distinguished by the highest
conversion rate from arable land to mangroves and the lowest from grassland. Xinying Bay,
under both scenarios, sees the highest conversion rate from arable land, followed by water
bodies. Xinying Harbor experiences the most water body conversions into mangroves, with
arable land also contributing significantly. Dongfang’s expansion is primarily achieved
through the conversion of water bodies, with no changes from grassland or unused land.
Huachang Bay shows a trend of converting forest land to mangroves, avoiding unused
land conversions. Lastly, Sanya is marked by a predominant conversion of forest land, with
minimal grassland transformations. This detailed analysis highlights the varied impact of
land conversion dynamics on mangrove expansion across different areas of Hainan Island
under the specified scenarios.
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Table 5. Mangrove land conversion matrix for the next 40 years under NIS (ha) (XYW: Xin’ying Bay;
XYG: Xinying Harbor; HCW: Huachang Bay; DZG: Dongzhai Harbor; QLW: Qinglan Bay; SY: Sanya;
DF: Dongfang, the same codes apply to subsequent sections).

Region Mangrove Forest Agriculture Unused Land Water Built-up Grassland

DZG 2588.85 2562.3 353.52 393.3 203.58 25.11 0
QLG 1358.1 324.27 859.5 501.57 320.22 15.12 12.42
XYW 733.32 105.75 961.92 0.54 514.71 23.22 8.91
XYG 730.08 37.71 150.03 78.3 426.69 20.16 41.58
DF 220.59 236.07 231.03 0 439.02 1.62 0

HCW 361.89 244.08 64.8 0 47.07 19.26 5.22
SY 94.86 596.34 11.43 0 6.75 26.64 1.71

Table 6. Mangrove land conversion matrix for the next 40 years under MPS (ha).

Region Mangrove Forest Agriculture Unused Land Water Built-up Grassland

DZG 2662.92 2594.07 350.82 387.09 199.89 22.86 0
QLG 1631.43 327.42 949.77 525.87 528.66 23.31 13.05
XYW 954.27 99.63 834.84 0.54 427.86 23.58 7.65
XYG 774.09 38.07 121.5 86.04 402.93 21.51 40.41
DF 233.37 232.74 227.34 0 433.53 1.35 0

HCW 366.39 243.99 65.88 0 47.34 24.48 5.04
SY 169.29 485.46 10.08 0 6.03 65.25 1.62

3.3. Estimating Mangrove Carbon Storage on Hainan Island

The projected mangrove carbon stocks in Hainan Island from 2025 to 2065, as il-
lustrated in Figure 6, reveal a temporal trend of overall increase; the total cumulative
increase in carbon storage across the entire island is 2.14 TgC. Spatially, the distribution
of carbon storage demonstrates a pattern of higher concentrations in the eastern regions
as opposed to the western, and higher concentrations in the northern parts in comparison
to the southern. Dongzhai Harbor is marked by a significant expansion pattern, with a
cumulative increase in carbon storage of approximately 0.70 TgC, and an annual growth
rate of about 0.08 TgC/year, indicating a trend of consistent substantial growth through-
out the study period (as depicted in Figure 6d). Qinglan Bay’s carbon storage increase by
roughly 0.48 TgC, with an annual enhancement rate of around 0.05 TgC/year, although this
rate begins to decelerate post-2045 (Figure 6e). Xinying Bay also experiences a significant
increase in carbon storage, tallying approximately 0.27 TgC, with an annual growth rate
of about 0.03 TgC/year, and a slowdown in growth rate post-2055 (Figure 6h). Dongfang
(Figure 6g) and Huachang Bay (Figure 6c) exhibit similar growth trajectories, each with an
approximate annual increase of 0.02 TgC/year, and seeing nearly equal total increments of
around 0.17 TgC and 0.18 TgC, respectively, with growth plateauing after 2055. Xinying
Harbor (Figure 6b) and Sanya (Figure 6f) display the lowest growth rates, at approximately
0.01 TgC/year, with Sanya having a minimal total increase of about 0.08 TgC. The growth
rate in Sanya gradually diminishes after 2040 and stagnates post-2060, whereas Xinying
Harbor sees a total rise of about 0.14 TgC, with growth essentially halting after 2055.
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4. Discussion

The integration of the Markov-PLUS and InVEST models in this research was intended
to quantitatively evaluate the ramifications of policy-driven land use modifications on
carbon storage across varied development scenarios [43]. The findings of this research
generally align with Shi et al.’s predictions regarding suitable mangrove habitats on Hainan
Island, showcasing a projected expansion of mangroves ranging from 2000 to 7000 ha,
predominantly within the eastern, northern, and northwestern sectors of the island. This
concurrence serves to reaffirm the simulation’s precision within this study [6]. The InVEST
model’s computation posits the average carbon density of Hainan Island’s mangrove
ecosystems at 217.00 t/ha. This estimation, while lower than the average carbon densities
reported by Bai et al. [35] (310.75 t/ha) and Gao et al. [56] (426.57 t/ha), surpasses the
figure presented by Meng et al. [1] (192.00 t/ha). It falls within the confidence interval
(192.00~426.57 t/ha) derived from integrating previous research findings, albeit slightly
lower than the mean value. Despite residing on the conservative side of this spectrum,
the calculated average signifies a potentially modest underestimation of the prospective
increase in carbon storage within the mangrove ecosystems of Hainan Island, highlighting
a critical area for further scrutiny and adjustment in future modeling efforts. Furthermore,
the carbon density of mangroves may be determined by the joint influence of climate
factors such as temperature, precipitation, biomass variables, and other factors. Research
by Bachelet et al. suggests that moderate temperature increases lead to an increase in
regional vegetation density and carbon fixation, while significant temperature rises result
in carbon loss [57]. In another review, Wu et al. concluded that reduced precipitation can
decrease respiration, biomass, and productivity, further lowering carbon density [58]. Ray
et al. found that tree species with a larger diameter at breast height (DBH) and higher wood
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specific gravity (WSG) typically have higher carbon density [59]. Additionally, Bunker et al.
reported that introducing species with high WSG into artificial forests may increase their
aboveground carbon storage by 75% [60]. In terms of spatial distribution, we observed that
the carbon storage of mangroves on Hainan Island is higher in the eastern than the western
regions, and higher in the northern than the southern regions. This may be attributed to
the suitable temperature and precipitation conditions in the northeastern part of Hainan
Island. Furthermore, the northern and eastern regions of the island, such as Dongzhai
Harbor, mostly consist of older trees with larger DBH, and are predominantly national and
provincial-level mangrove conservation areas with minimal human disturbance.

We employed the spatially constrained multi-scenario setup of the PLUS model, mean-
ing that under different mangrove development scenarios, the Markov module predicted
consistent quantities of land cover types’ demand across various locations, with differences
only in their spatial distribution. Furthermore, the calculation of their ecosystem service
value (such as estimating carbon storage using the InVEST model in this paper) remained
constant, with only spatial variations [61]. However, to further investigate the dynamic
spatial patterns of mangrove carbon storage under the two scenario distributions in the
future, we will focus on the following two limitations of the InVEST model: (1) The model
assumes that any LUCC type in the landscape does not increase or decrease carbon over
time. According to this assumption, the only change in carbon storage over time is due to
transitions between LUCC types. However, in reality, many areas are recovering from past
land use or undergoing natural succession. This issue can be addressed by categorizing
mangrove LUCC types into age classes (essentially adding more LUCC types), such as
three age classes of forests. Then, plots can move from one age class to another within the
scenario, thereby changing their carbon storage values [62]. This is also a key point for
further consideration in this study. (2) Since the model relies on estimates of carbon storage
for each LUCC type, its results are only associated with the LUCC classification used
and the provided carbon pool values. There are significant differences in carbon storage
between different LUCC types, and often significant variations within a single LUCC type.
For example, the carbon storage of mangroves is influenced by factors such as tempera-
ture, altitude, and years since disturbance (e.g., tropical cyclones) [63]. By using LUCC
classification systems and relevant carbon pool tables, the carbon storage changes between
roughly defined LUCC types and related environmental and management variables can be
partially restored. For example, mangrove LUCC types can be stratified based on altitude,
climate zones, or time intervals after significant disturbances. Of course, this more detailed
approach requires data describing the amount of carbon stored in each more refined LUCC
class. We plan to consider these limitations in the future, further exploring the depth and
breadth of mangrove carbon storage and its future evolution on Hainan Island, to provide
scientific support for guiding mangrove restoration and expansion practices.

The PLUS model predicts the probability of exploitation of individual land types,
using socio-economic, climatic, and environmental data as the main drivers, highlight-
ing the multifaceted nature of LUCC influenced by an amalgam of natural conditions,
socio-economic factors, and human activities. Despite the inclusion of historical and con-
temporary transportation plans and policy directives as model drivers, there is a noted
shortfall in the consideration of future socio-economic variables, such as population growth
and GDP, alongside climatic factors like temperature and precipitation, within existing
research paradigms [64,65]. Determining how to incorporate such factors is the focus of the
next step. We aimed to bridge this gap by incorporating these elements into the modeling
process. Additionally, to meet diverse development needs, we integrated historical LUCC
transition matrices of mangroves on Hainan Island, nature-based Solutions (NbSs), and
the Mangrove Protection and Restoration Action Plan (2020–2025). This was done to refine
predictions of future LUCC changes under different scenarios by manipulating transition
probabilities, matrices, and developmental constraints [27]. Specifically, two future devel-
opment scenarios were devised: the NIS and the MPS, which essentially encompass various
potential development patterns in the future [66]. Given that land use acts as a significant
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anthropogenic determinant of carbon storage in terrestrial ecosystems—wherein carbon
storage can also mirror land use patterns—the analysis from 2020 to 2065 underscores a
noteworthy increase in mangrove coverage by 12,505.68 ha on Hainan Island; the carbon
storage across the entire island increased by 2.71 TgC, which was principally attributed
to the conversion from forests and croplands. The NIS and MPS contribute 52.45% and
46.89% to this expansion, respectively, reflecting the profound impact of policy reforms
and economic progression. To augment the carbon sequestration capability of Hainan
Island’s mangrove ecosystems, it is imperative to bolster the protection of coastal wetlands,
strictly uphold ecological development boundaries, and ensure rational territorial land use
planning. However, the development trajectories outlined in this research may deviate
from actual future scenarios and fail to encapsulate all possible outcomes. Thus, future
research on simulating LUCC within mangrove ecosystems will pivot on harmonizing
policy configurations with anticipated land use demands, aiming to address the disparity
between modeled development scenarios and real-world development trajectories. In
the future, our goal is to enhance the performance of the coupled model to enable its
broader application. Firstly, we will utilize a climate system model to forecast climate
change in Hainan Island. Considering future climate change, the Markov-PLUS model can
simulate long-term changes in mangrove LUCC. Secondly, on a long-term scale, warmer
and more humid climates will result in changes in vegetation patterns and soil carbon
density [67]. Therefore, we will quantify the impact of climate change on carbon density
through experimental heating, which can improve the simulation accuracy of the InVEST
model. We anticipate that these adjustments will enable the coupled model to be used for
long-term forecasting.

Beyond the limitations delineated herein, this study was subject to some uncertainties.
The firstly of these was carbon density data. The InVEST model’s estimations of carbon
storage pivot on the precision of carbon density metrics across varied land cover typologies.
Although we endeavored to amalgamate extant scholarly discourse and field observations
to ascertain carbon densities, we did not account for the impact of vegetative growth on
these densities [1,6]. This oversight may have resulted in precipitate discrepancies in the
calculation of carbon storage. The second limitation was water resource constraints. The
PLUS model has the capability to embed water resource limitations to curtail land use
alterations contingent upon water consumption parameters. Nevertheless, the experimen-
tal schema of this study precluded any such water resource constraints. This exclusion
might have neglected the potential enhancements in water use efficiency attributable to
technological progress, which could, in turn, facilitate expansions in agricultural and urban
expanses, thereby influencing mangrove ecosystem dynamics [68]. Despite these chal-
lenges, we forecasted the distribution patterns and changes in carbon storage in respect of
mangroves on Hainan Island over the next 40 years, based on historical trajectories. This
endeavor provides data support for major strategic issues in China, such as striving for
carbon neutrality by 2060 and national carbon trading negotiations. It also offers theoretical
foundations for the layout and strategy formulation of artificial mangrove restoration and
expansion. Furthermore, it provides insights for accurately analyzing, accounting for, and
enhancing the natural resource utilization and carbon sequestration capacity of coastal
mangrove ecosystems, as well as addressing global change core scientific issues such as
global ecosystem carbon cycling response and climate change adaptation. It not only has
profound scientific theoretical value but also extensive socio-economic value.

5. Conclusions

Due to the swift economic development in China, the transformation from land types
with high carbon density values to those with low carbon density values stands as the
primary cause for the decline in regional carbon storage. To bolster carbon sequestration in
Hainan Island, prudent management of the conversion from cultivated land and forested
areas to alternative land types is imperative, alongside the strategic expansion of high-
carbon-storage land types like mangroves. Forecasting the spatial distribution of mangrove
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ecosystems is crucial for mangrove restoration planning and management, especially
considering land use demands. The spatial distribution of mangroves depends not only
on environmental factors but also on land development activities such as urbanization,
agriculture, and aquaculture. We integrated the Markov-PLUS and InVEST models to assess
the predictive accuracy of mangrove distribution and examine the carbon storage dynamics
in mangrove ecosystems over 40 years under two developmental scenarios on Hainan
Island. The results show that the integrated models performed well in simulating mangrove
coverage on Hainan Island, with natural factors, particularly elevation, temperature, and
precipitation, being the main drivers of mangrove expansion and carbon sequestration
capability. The projected increase in mangrove area over the next 40 years is estimated
at approximately 12,505.68 ha, mainly due to conversion from forest and agricultural
lands. The MPS, which prioritizes mangrove conservation, optimizes carbon sequestration
potential, with an estimated increase in mangrove carbon storage of 2.71 TgC from 2025
to 2065 over the whole island. The expected expansion of mangroves is particularly
due to take place in the eastern, northern, and northwestern parts of the island. This
study advances the understanding of the relationship between mangrove land use and
changes in carbon storage in tropical regions. Furthermore, the outcomes of multi-scenario
modeling offer insights into balancing regional carbon storage benefits with economic
development, thereby fostering the ecological sustainability of Hainan Island and providing
theoretical underpinnings for China’s carbon neutrality objectives. Providing solutions
to core scientific issues such as understanding and adapting to global changes, including
responses in global ecosystem carbon cycling and climate change, offers pathways for
addressing these challenges.
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