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Abstract: The investigation of a potential correlation between the filtered-out vegetation index and
forest aboveground biomass (AGB) using the conventional variables screening method is crucial for
enhancing the estimation accuracy. In this study, we examined the Pinus densata forests in Shangri-La
and utilized 31 variables to establish quantile regression models for the AGB across 19 quantiles. The
key variables associated with biomass were based on their significant correlation with the AGB in
different quantiles, and the QRNN and QRF models were constructed accordingly. Furthermore,
the optimal quartile models yielding the minimum mean error were combined as the best QRF
(QRFb) and QRNN (QRNNb). The results were as follows: (1) certain bands exhibited significant
relationships with the AGB in specific quantiles, highlighting the importance of band selection.
(2) The vegetation index involving the band of blue and SWIR was more suitable for estimating the
Pinus densata. (3) Both the QRNN and QRF models demonstrated their optimal performance in the
0.5 quantiles, with respective R2 values of 0.68 and 0.7. Moreover, the QRNNb achieved a high R2

value of 0.93, while the QRFb attained an R2 value of 0.86, effectively reducing the underestimation
and overestimation. Overall, this research provides valuable insights into the variable screening
methods that enhance estimation accuracy and mitigate underestimation and overestimation issues.

Keywords: vegetation indices; quantile regression (QR); quantile regression neural network (QRNN);
quantile random forest (QRF); Pinus densata forests

1. Introduction

Biomass serves as an essential parameter for evaluating forest productivity and ex-
hibits a positive relationship with biodiversity [1,2]. The large-scale and accurate estimation
of the forest aboveground biomass (AGB) in forests holds significant importance for global
ecological conservation and environmental preservation, particularly in the context of
China’s pursuit of the dual-carbon target [3,4].

The field investigation of forest biomass is time-consuming and labor-intensive, and
it is limited to estimating the biomass in a small region [5]. With the rapid development
of remote sensing, the utilization of remote sensing data can expedite and streamline the
acquisition of parameter information for forest AGB estimation [6]. Various remote sensing
methods have been employed to estimate forest AGB, including optical methods, radar, and
LiDAR [2,7]. Although LiDAR and radar possess strong vegetation penetration capability,
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their application in large areas remains challenging due to the high data collection costs [8,9].
In contrast, utilizing optical images as an alternative approach for the evaluation of the forest
AGB in extensive regions offers advantages such as lower cost, higher temporal resolution, and
broader spatial coverage [10,11]. However, the electromagnetic waves used in optical remote
sensing cannot penetrate the forest canopy; thus, they only capture the radiation information
from the vegetation surface. Consequently, optical remote sensing tends to underestimate
the high AGB values in high-density forests while overestimating the low AGB values due
to interference from other surface vegetation’s light waves [12,13]. These uncertainties are
influenced by factors such as forest structure variations, topographic differences, and remote
sensing data sources. Therefore, the challenges lie in improving the estimation accuracy when
assessing the AGB through optical remote sensing in a large area [14–16].

Selecting an appropriate model is a viable approach to improve the estimation accuracy
and mitigate uncertainty [17,18]. The AGB estimation methods encompass both parametric
and non-parametric approaches [19]. The parametric methods use linear, logarithmic,
exponential, and other functions to describe the correlation between the remote sensing
variables and forest AGB [20]. The non-parametric methods, such as random forest (RF),
k-nearest neighbor (kNN), support vector machine (SVM), and geographically weighted
regression (GWR), are also utilized [21–25]. In both parametric and non-parametric mod-
eling approaches, researchers typically extract variables from remote sensing data and
subsequently select the most influential factors using random forest classifiers, Pearson’s
and Spearman’s correlation coefficients, etc., for constructing a prediction model [26,27].
During the variable screening stage, it is important to consider the following: (1) for linear
relationships between variables, a higher absolute value of the correlation coefficient indi-
cates a stronger association between them [26]. (2) In cases where a nonlinear relationship
exists between the variables, the absolute value of the correlation coefficient may be either
very large or very small; hence, it cannot accurately measure their correlation strength [26].
(3) The correlation coefficient is easily affected by outliers [28]. The estimation of biomass is
influenced by various complex factors, including topography, vegetation structure, weather,
etc. [14,29]. Therefore, if a simple linear relationship is employed to filter out the variables,
it may inadvertently eliminate factors that could potentially have hidden relationships
with biomass (e.g., outliers), consequently hindering the identification of the relationship
between the vegetation index and biomass. This limitation would inevitably increase the
uncertainty associated with biomass estimation. On the other hand, nonlinear and machine
methods aim to minimize the loss according to mean metrics like MAE or employ feature
selection techniques; however, they fail to capture how independent variables impact the
position, distribution, and shape of dependent variables (3). The correlation coefficient is
easily affected by outliers [28]. Therefore, if a simple linear relationship is used to filter out
the variables, the factors that may have hidden relationships with biomass, such as outliers,
will be filtered out. As a result, the relationship between the vegetation index and AGB
may not be found, which would increase the uncertainty in estimating the AGB. While
the nonlinear and machine learning methods choose to minimize the loss according to
means such as MAE or sorting the feature selection, they cannot describe the effects of the
independent variables on the position, distribution, and shape of the dependent variables.

The quantile regression (QR) model, proposed by Koenker and Bassett [30], offers
a more accurate depiction of the range of changes in both dependent and independent
variables. QR provides a flexible and stable value that is unaffected by data outliers and
heavy-tailed distributions, assuming the basic assumptions of the conventional models,
such as independence, normality, and equal variance [31,32]. Moreover, the QR-based
methods are particularly advantageous as they not only reveal the mean value but also
show its quantiles, especially when there is a tendency for the data to approach extreme
values [33]. Consequently, QR has been widely used in economics, biology, finances,
etc., with recent research observing its potential in environmental protection [34,35]. For
instance, extreme quantiles (5% and 95%) were selected to demonstrate the temperature
change trends during day and night [36]. Additionally, QR has been employed as a
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modeling tool to comprehend climate systems specifically focusing on variations in climate
variability and extremity [37,38]. By applying QR analysis to identify the temperature
trends across 19 quantile levels, it was revealed that an association exists between large-
scale climate patterns and extreme temperatures [39]. Moreover, QR was employed to
monitor the temporal and seasonal changes in rainfall, as well as the temperature [40,41].
When multiple factors influence the response variable and these factors exhibit varying
effects that cannot be identified and measured, QR proves to be a suitable regression
method. The relationship between biomass and vegetation data is intricate and exhibits
significant variations. The traditional linear analysis methods tend to exclude discrete
data peaks or thick tail values; however, the conventional nonlinear and machine learning
approaches fail to capture the impact of independent variables on the position, distribution,
and shape of dependent variables. Some previously disregarded vegetation index values
may possess hidden or localized relationships with biomass, which could provide crucial
implications. What are the consequences of excluding these culled values on biomass?
How does the biomass change in terms of the shape or range across different quantiles
and various vegetation indices? These aspects have not been considered by the traditional
variable selection methods when estimating the forest AGB.

Stepwise linear regression (SLR), machine learning algorithms such as RF, artificial
neural network (ANN), and deep learning algorithms like convolution neural network
(CNN) are commonly used in biomass estimation [25,42–44]. However, these methods
still fail to accurately capture the response characteristics and shape changes of dependent
variables. To address this limitation, models integrating the features of the QR model with
ANNs and RF, namely QRNN and QRF, have been developed [45]. These models retain
the response characteristics of the QR model while also exhibiting variable representation
through shape changes. Furthermore, they preserve the advantages offered by the ANN
and RF models. Previous studies have mostly demonstrated that RF outperforms ANN in
terms of fitting effectiveness [3,46], but limited research has explored the fitting performance
of these two models after their combination with QR, particularly when different variable
screening methods are utilized.

In this study, we integrated remote sensing with inventory data to extract 25 commonly
used vegetation indices and constructed the quantile regression model with 19 equidistant
quantiles ranging from 0.05 to 0.95. The purposes of this study were as follows:

(1) To propose a novel variable screening method that visualizes the shape changes and
significance of each factor to reduce uncertainty by visualizing the shape changes of
each factor and their significance.

(2) To investigate the potential of the quantile regression neural network (QRNN) and
quantile random forest (QRF) models for enhancing the accuracy of aboveground
biomass (AGB) estimation.

2. Materials and Methods

As shown in Figure 1, the work consisted of the following steps: (1) analyze the
inventory data and calculate the AGB; (2) download Landsat 8 OLI images and then
preprocess the image data; (3) extract the vegetation indices; (4) conduct the quantile
regression (QR); (5) select the variables; (6) construct the QRNN and QRF models; and
(7) draw the inversion map.
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Figure 1. The workflow of aboveground biomass estimation using equidistant quantiles regression.
AGB means aboveground biomass; QR means quantile regression; QRNN means quantile regression
neural network; QRF means quantile random forest, QRNNb and QRFb mean the combined model
that integrated the minimum mean error of each quantile.

2.1. Study Area

Shangri-La is in Diqing Prefecture, in the northwest of Yunnan Province (Figure 2); its
coordinations are 26◦52′~28◦52′ N, 99◦20′~100◦19′ E. The climate changes along with the
latitude. The average altitude is 3459 m, and the mean annual temperature is 5.4 ◦C. Under
the influence of monsoons, Shangri-La has distinct dry and wet seasons. The rainy season
from June to October accounts for 20%–80% of the annual precipitation, while the dry
season rainfall from November to May accounts for 10%–20% of the annual precipitation.
The total forest area is 75,710 km2, and the forest cover rate is nearly 75%. The main forest
type is alpine coniferous forest, and the dominant tree species are Picea asperata, Abies fabri,
Pinus densata, Pinus yunnanensis, Quercus semicarpifolia, etc. [20].
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Figure 2. Location of the study area: (a) is the position of the study area in Yunnan Province, China;
(b) is the imagery RGB displayed by combining bands 5, 4, and 3; (c) is the DEM data and the sample
plots AGB distribution (from green to red indicating low to high).

2.2. Data Resources
2.2.1. The Inventory Data

The inventory data were obtained in August of the year 2016. A total of 146 random
30 m × 30 m plots were set in Pinus densata forest. The basic information, such as DBH
(diameter at breast height of 1.3 m aboveground) greater than 5 cm, tree height, forest
type, forest age, slope, altitude, etc., was recorded. The coordinates of the plot were
recorded by GPS, with a horizontal error within 5 m. The aboveground biomass (AGB) of
individual trees was calculated by Equation (1) [20], and the AGB by plot was calculated
by Equation (2) [20]. The forest density was counted by sample area (Table 1).

AGBi = 0.073 × DBH1.739 × H0.880 (1)

where DBH is the diameter at breast height (1.3 m aboveground) greater than 5 cm, and H
is tree height. AGBi is the aboveground biomass of the sampling tree (kg).

AGBS =
∑n

i=1 AGBi

900
× 10, 000 ÷ 1000 (2)

where AGBi is the biomass of a single tree, and AGBs is the sum of AGB in one plot, n is the
total tree number in the plot.
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Table 1. Basic statistics of the sample plots of field surveys.

Variables Mean DBH (cm) Mean H (m) Density
(Stocking·hm−2)

Max. 41.27 24.30 8500
Min. 5.35 2.93 489
Mean 15.14 10.34 2657

Standard deviation 3.88 3.42 1326

2.2.2. Remote Sensing Data

The Landsat 8 OLI images that matched the research area were downloaded from the
Geospatial Data Cloud (http://www.gscloud.cn/) on 21 December 2022. The projection of
the images was UTM/WGS 84 with UTM_Zone 47. Cloud cover impacted each band of
optical remote sensing, affecting the vegetation index calculation. The average cloud cover
images shown in Table 2 were selected. Detailed information on the Landsat 8 OLI images
is shown in Table 2.

Table 2. The image information.

Image ID Strip No. Average Cloud Cover (%) Data

LC81310412016325LGN00 131 0.4 20 November 2016
LC81320402016348LGN00 132 0.73 13 December 2016
LC81320412016348LGN00 132 0.76 13 December 2016

The image data preprocessing was conducted in ENVI, including radiometric calibra-
tion, FLASSH atmospheric correction, and topographic correction; the image of the study
area (Figure 1) was subsequently obtained through mosaicking and clipping.

2.2.3. Extraction of Vegetation Indices

Simple VIs, such as the RVI [47], DVI [48], and other primary VIs, have inherent
limitations [49]. To overcome these limitations, advanced VIs like NDVI [50], RDVI [51], and
other VIs have been developed; however, NDVI tends to overestimate low-cover vegetation
and underestimate high-cover vegetation [52], while the RDVI is easily susceptible to soil
background interference [53]. Composite VIs, including WDRVI, GNDVI, SAVI, OSAVI,
VARI, GARI, MSR, etc., have been devised to account for the influence of both vegetation
or soil on the VIs [53–58]. Furthermore, researchers have recognized that atmospheric
conditions also impact the accuracy of VIs, leading to the development of ARVI [59].
With further advancements in research, it has become evident that factors influencing VIs
extend beyond just soil or atmosphere; hence, considering the vegetation–atmosphere–soil
interaction becomes crucial in calculating accurate vegetation indices [60]. Consequently,
EVI was introduced as a solution to address the combined influence on the vegetation
index [61]. In this study, 31 variables were considered, as shown in Table 3, including
6 original spectral bands along with 25 VIs related to vegetation dynamics as well as their
interactions with soil and atmosphere.

Table 3. The variables’ information.

Variables Formula Description Reference

Single band Band 2–7 Blue, Green, Red, NIR, SWIR1, SWIR2 [62]

NDVI (NIR − Red)/(NIR + Red) Normalized Difference Vegetation Index detects
vegetation coverage and growth state [50]

ARVI (NIR − Red + Blue)/(NIR + Red + Blue)
Atmospherically resistant vegetation index is
mainly used in areas with high
atmospheric aerosol.

[59]

http://www.gscloud.cn/


Forests 2024, 15, 782 7 of 21

Table 3. Cont.

Variables Formula Description Reference

VARI (Green − Red)/(Green + Red − Blue) Visible atmospherically resistant index. It is used
to measure the amount of green vegetation [58]

W
Blue × (0.1511) + Green × (0.1973) + Red ×
(0.3283) + NIR × (0.3407) + SWIR1 ×
(−0.7117) + SWIR2 × (−0.4559)

Tasseled cap wetness
Reflects the moisture of soil and vegetation [63]

DVI NIR − Red Difference vegetation index
It is used to reflect the growth of vegetation [48]

PVI ((Redsoil − Redveg) + (IRsoil − IRveg)2)0.5 It is better to eliminate the influence of soil
background, insensitive to the atmosphere. [48]

EVI 2.5 × (NIR − Red)/((NIR + 6 × Red − 7.5 ×
Blue) + 1)

Enhanced vegetation index
It increases rapidly with the increase in
vegetation quantity when the vegetation
coverage is 15%–25%, and it will decrease when
the vegetation coverage reaches 80%.

[60]

RDVI (NIR − Red)/(NIR − Red)0.5 Renormalized difference vegetation index
It can monitor plant water status effectively [51]

G
Blue × (−0.2941) + Green × (−0.243) + Red
× (−0.5424) + NIR × (0.7276) + SWIR1 ×
(0.0713) + SWIR × (−0.1608)

Tasseled cap greenness
Reflects the greenness of the ground vegetation [63]

MSR (NIR/Red − 1)/((NIR/Red)0.5 + 1)
Modified simple ratio.
Its purpose is to linearize the relationships
between the index and biophysical parameters

[53]

SLAVI NIR/(Red + SWIR)
Specific leaf vegetation index
Its links with plant ecophysiology and
leaf biochemistry

[64]

MVI5 (Red + NIR − Blue)/(Red + NIR + Blue) Moisture vegetation index Sensitivity index of
soil moisture and canopy moisture [65]

RVI Red/NIR Ratio vegetation index Sensitive to
vegetation coverage [47]

WDRVI ((0.1 × NIR) − Red)/((0.1 × NIR) + Red)
Wide-dynamic-range vegetation index
a more robust characterization of crop
physiological and phenological characteristics.

[54]

GARI (NIR − (Green − (Blue − Red)))/(NIR −
(Green + (Blue − Red)))

Green atmospherically resistant vegetation index
GARI shows a much higher sensitivity to
chlorophyll concentration than NDVI and a
smaller sensitivity to atmospheric effects.

[55]

SARVI (1 + L) × (NIR−Blue)/(NIR + Blue + L) Soil-adjusted and atmospherically resistant
vegetation index [59]

MSAVI (2 × NIR + 1 − ((2 × NIR + 1)2 − 8 × (NIR
− Red))0.5)/2

Modified soil-adjusted vegetation index.
It aims to address some limitations of NDVI
when applied to areas with high soil
surface exposure.

[66]

GNDVI (NIR − Green)/(NIR + Green)
Green normalized vegetation index
Monitor the plant with a dense canopy or
in the mature stage

[55]

TVI (NDVI + 0.5)0.5

Transformed vegetation index.
monitoring vegetation health and vigor is also
useful for monitoring vegetation stress where the
NDVI is saturated.

[50]

IPVI NIR/(NIR + Red) Infrared percentage vegetation index
sensitive to the amount of green vegetation [67]
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Table 3. Cont.

Variables Formula Description Reference

OSAVI (NIR − Red)/(NIR + Red + 0.16)
Optimized soil-adjusted vegetation index
monitors bare soil area of low-density vegetation
through the tree canopy

[57]

NIR NIR/(NIR + Red + Green) Normalized NIR
reduced the influence of soil background [68]

MNDVI (NIR − SWIR2)/(NIR + SWIR2) Modified normalized difference vegetation index.
Monitor forest health and canopy changes [69]

ND67 (SWIR1 − SWIR2)/(SWIR1 + SWIR2) Monitor the soil moisture capacity [46]

B
Blue × 0.3029 + Green × 0.2786 + Red ×
0.4733 + NIR × 0.5599 + SWIR1 × 0.508 +
SWIR2 × 0.1872

Tasseled cap brightness
a weighted sum of all bands and is related to the
principal variation in soil reflectance

[63]

2.3. Models

We used quantile regression to identify the significant correlations with AGB in
different quantiles. Quantile random forest (QRF) and quantile regression neural network
(QRNN) models were applied as the fitting models. During the fitting model construction,
146 sample data were randomly split into two parts: 50% of the data were used for training
and the other 50% for testing.

2.3.1. Quantile Regression

Quantile regression was developed by Koenker and Bassett [30] as a way of estimating
the response variables’ distribution on the conditional quantiles in a linear model. This
method allows one to find the specific ratio trend of the dependent variable; it is also helpful
to detect the extreme trends that are hidden in non-significant even effects or changes in
median conditions. The equation form of the quantile regression is as follows:

Y(p|x) = β0(p) + β1(p)x + ξ (3)

where β0(p) is the intercept and β1(p) is the slope coefficient, both of which vary depending
on the value of the pth quantile being considered; ξ is the error, with the expectation of
zero. The range of p-values is from 0 to 1. The quantile regression was conducted in R
language, which was downloaded from http://www.r-project.org/on 10 February 2023.
The standard deviation was calculated by the bootstrap self-sampling method, and the
fitting method was the Barrodale and Roberts algorithm, where τ = 0.05, 0.1, 0.15, . . . 0.95.

2.3.2. Quantile Regression Neural Network

The quantile regression neural network nonlinear computational model, generated by
Taylor [45], combines the advantages of quantile regression and artificial neural networks.
This model not only reveals the conditional distribution characteristics of response variables
but also elucidates the intricate nonlinear relationship between a dependent variable
and an independent variable through the utilization of a nonlinear kernel function. It
does not require prior knowledge about data distribution or specific relationships among
variables; instead, it only necessitates setting the hidden layer and the number of nodes to
control the model complexity. Weight attenuation regularization is employed to mitigate
nonlinearity in the model, while 10-fold cross-validation is used to select the testing and
verification datasets to prevent over-fitting. Through experimentation, it was determined
that a combination of seven nodes and three hidden layers yields optimal stability. The
QRNN model was implemented using R 4.3 language software with assistance from the
QRNN code package.

http://www.r-project.org/on
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Moreover, the minimum average error of each quantile was integrated as part of the best
QRNN (QRNNb). Consequently, QRNNb exemplified a composite biomass estimation model
derived from selecting the most accuracy values corresponding to the 19 quantile models.

2.3.3. Quantile Regression Forests

Quantile random forests use a quantile decision tree set based on random forests and
quantiles [70], which can be used to estimate high-dimensional data and uncertainty. In this
model, the complete conditional distribution of response variables can be determined by
resampling the dataset. QRF provides a non-parametric and accurate method for estimating
conditional quantiles. QRF was operated in R 4.3 software using the QRF language package
by setting mtry, ntry, and the number of resamples. The grid search was used to determine
the optimal parameter values by minimizing the root mean square error. QRF was more
stable when mtry was 2, ntree was 400, and the number of bootstrappeds was 25. To ensure
the quality and stability of the the QRF model, 10-fold cross-validation was used to control
the accuracy of the model.

Moreover, the minimum average error of each quantile was integrated as part of the
best QRF (QRFb). Therefore, the QRFb illustrated a combined biomass estimation model
formed by selecting the highest accuracy values corresponding to the 19 quantile models.

2.4. Model Evaluation

In this study, we chose the coefficient of determination (R2) and mean square root
error (RMSE) to estimate the model fitting performance. The equations are as follows:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (4)

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(5)

3. Results
3.1. Variable Selection

As shown in Figure 3, 19 equidistant quantiles were used to describe the shape change
of each independent variable in response to the dependent variable through quantiles
0.05 to 0.95 in intervals of 0.05. It can be seen that the 31 factors could be divided into seven
groups according to the estimated values of the coefficient shape graphs.
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Figure 3. Shape changes of each independent variable corresponding to the dependent variables (the
dark curves in the figure represent the coefficient estimates corresponding to the variables under
different quantile levels; the gray area represents the 95% confidence interval of the coefficients; the
solid red line represents the mean trend from a least-squares regression; the red dashed lines on both
sides represent the 95% confidence interval of the coefficients in the mean regression model).

The analysis of the shape change should consider the following aspects: (1) whether
the estimated coefficient value significantly influences the biomass; (2) the changing trend
of the estimated coefficient values: the 31 independent variables showed an obvious
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change trend in the high quantiles, while the low quantiles had relatively stable changes;
(3) confidence interval: a wider confidence interval of the coefficient indicates that the
standard deviation (SD) of the estimated coefficients was gradually increasing and the
volatility of the estimated coefficients was increasing; (4) whether the estimated coefficient
value falls within the confidence interval of the mean regression model: if it lies outside this
interval, it suggests some degree of irrationality in the mean regression model; and (5) the
effect of the estimated coefficient values on the biomass: a positive influence is observed
for values above 0 and negative influence for those below 0.

Figure 4 shows the significance of the relationships between the biomass and the
estimated coefficient values at 19 equal distance quantile points for 31 variables. In groups
1 and 7, the significance of the association between the VIs and biomass was in quantile
≤0.6. In the second group, the EVI and biomass were significant in almost all the quantiles.
The relationship between b5 and the biomass was significant in quantiles 0.35–0.95. The
other four VIs had a significant relationship with the biomass in quantiles 0.6–0.95. In the
third group, the NDVI was significantly correlated with the biomass only in the 0.7 quantile,
while the ARVI was significantly correlated with the biomass at both ends. The relationship
between the VIs (VARI and W) and biomass was not significant in the higher quantiles. In
the fifth group, only 2–3 points in all the quantiles showed significant associations with
the AGB, and the middle four VIs showed significant correlations with the biomass in the
0.6–0.75 and 0.05 quantiles. The MNDVI was significantly correlated with the biomass in
quantiles 0.15–0.45 and 0.85–0.9. In the sixth group, there was no significant relationship
between the SARVI and biomass in quantiles 0.45–0.7, and the other VIs rarely showed any
significant relationship with the biomass. Not all the variables had a significant association
with the biomass, but we can see that there was at least one significant correlation with the
biomass in one quantile. The variables showed a high correlation factor with the biomass
during the normal variables screening if the significant correlation with the biomass was
located around the middle quantile points. The variables with a high significant correlation
with the biomass in the lower or higher quantiles were not selected as they had no strong
significant relationship with the biomass in the middle quantiles. On the other hand,
uncertainty could easily arise if the factors had significant associations with the biomass at
nearly the middle quantiles but had no significance in the lower and higher quantiles.

A total of 19 variables that exhibited significant correlations with the AGB across at
least six quantiles were selected as the independent variables (Figure 4). Subsequently,
a collinearity test was carried out to validate the chosen data and address the concerns
regarding the potential instability in model parameter estimates, reduced explanatory
capacity, and compromised statistical reliability [62]. Finally, only those variables with
significance levels below 0.01 and VIF values less than 10—namely B, EVI, MVI5, MNDVI,
ND67, and SARVI—were utilized for estimating the forest AGB.
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3.2. Model Performance

It can be seen from Figure 5 that the fitting performance of the model was increased
and then decreased from quantiles 0.05 to 0.95. The minimum R2 and maximum RMSE
were found at both ends. The best fitting performance was in quantile 0.5, with a higher R2

(0.68) and lower RMSE (46.89 Mg/ha). Compared with all 19 quantiles, the QRNNb had
the smallest mean error in each quantile, along with the highest R2 and lowest RMSE, with
values of 0.93 and 22.59 Mg/ha, respectively.
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The performance of the model relied not only on its accuracy but also on the extent
of the deviation from the y = x line. Generally, a higher slope corresponded to a smaller
intercept, indicating a smaller degree of deviation from the y = x line. If the fitted line
was positioned above the y = x line, it would result in an underestimation of the biomass.
Figure 5 demonstrated that, for observed biomass values below 50 Mg/ha, the predicted
biomass exhibited greater accuracy within the quantiles ranging from 0.05 to 0.15. Between
50 and 150 Mg/ha, only a small portion of the predicted biomass showed accurate estima-
tion, while the other observed biomass was underestimated. In the quantiles ranging from
0.2 to 0.3, more of the predicted values were close to the red line and relatively more concen-
trated; however, when the biomass was less than 50 Mg/ha, overestimation occurred. The
predicted values were evenly distributed along the red line in quantiles 0.4 to 0.55, where
biomass values greater than 180 Mg/ha were consistently underestimated. The predicted
biomass was significantly smaller than the observed biomass in the 0.6–0.95 quantiles, but
the greatest predicted biomass rarely exceeded 180 Mg/ha. The deviation was mostly in
the high quantiles with large biomass values, and the fitting line was below the y = x line,
indicating that high biomass values were easily underestimated. We also found that the
fitting line of the QRNNb coincided with y = x, indicating high fitting precision when the
biomass was less than 180 Mg/ha. Thus, the phenomenon of low overvaluation and high
undervaluation was effectively improved.

Figure 6 shows the observed AGB and the predicted AGB. The R2 range of the QRF
was from 0.33 (0.95 quantile) to 0.71 (0.5 quantile). Compared with the QRNN model,
the mean R2 of the QRNN and QRF was 0.5. In terms of the fitting performance in each
quantile, the QRF was slightly better than the QRNN, but the QRFb, in which we integrated
the predicted minimum mean error in each quantile, was inferior to the QRNNb, with
an R2 of 0.86 and an RMSE of 33.39 Mg/ha. The biomass was overestimated in all the
quantiles when the AGB was less than 50 Mg/ha, and the biomass values of 50–180 Mg/ha
were evenly scattered around the y = x line, while those greater than 180 Mg/ha were all
underestimated in all the quantiles. The QRFb showed the best fitting performance and
was able to effectively improve the underestimation and overestimation.

The boxplot was constructed to further analyze the fitting effect of the two models. As
shown in Figure 7, the median fitting coefficient of the two models was nearly the same,
but the median of the QRNN model deviated to the upper quartile, while that of the QRF
model deviated to the lower quartile. The IQR (interquartile range) of the QRNF was
wider than that of the QRNN, indicating that the prediction data of the QRF were relatively
dispersed. In the same way, the QRF had the smallest error value as the estimation error
dispersion was the smallest.

We used biomass inversion with the established model to calculate the biomass of the
whole Pinus densata forest region by using the predicted biomass of the sample site (Figure 8).
Generally, the heterogeneity of inversion models is used to compare the disadvantages of
constructed models. Inversion maps with high heterogeneity usually show obvious spatial
distributions and large color changes.

There was high heterogeneity in both models, but the QRF inversion maps showed
more large values than the QRNN maps. This is also consistent with the scatterplot shown
in Figure 5, where the QRF model overestimated the AGB values for all the quantiles.
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4. Discussion
4.1. Variable Selection

Variable screening methods encompass correlation analysis, employing common
indicators such as Pearson’s correlation coefficient and Spearman’s rank correlation coeffi-
cient [71], stepwise regression, where the variables are gradually introduced or removed
to determine their contribution to the biomass estimation [42], and machine learning
algorithms that provide feature importance assessments, such as random forests and
gradient-boost regression trees [72,73]. However, due to the complex and nonlinear re-
lationships between the biomass and various factors in highly heterogeneous forested
regions with diverse topography [46], the linear analysis methods exclude discrete data
peaks or thick tails, while the nonlinear and machine analysis methods fail to capture
the effects of the independent variables on the position, distribution, and shape of the
dependent variables. Consequently, few researchers have considered the significance of
the relationships between the independent variables and dependent variables at different
quantiles or evaluated the shape changes for variable selection. Conventional variable
screening may lead to the exclusion of potentially important variables that play a crucial
role in biomass modeling, resulting in the estimated parameter values deviating from the
true values and reducing the predictive performance of the model [33]. However, if the
variable selection is based on a specific sample set, it may exclude significant variables due
to sample bias. Figure 4 showed the relationships between different vegetation indices and
biomass varying between quantiles, with some significantly correlated in the low quantiles,
some in the high quantiles, and some throughout the entire quantile range. Ignoring the
significance at both ends can cause basic variable screening methods to miss variables with
significant relationships. Therefore, this research method can uncover more vegetation
indices related to biomass across different quantiles.
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In this study, significant associations with biomass were observed for bands 2, 3, 4, 6,
and 7 in the quantiles ranging from 0.05 to 0.6, while band 5 showed significance in quantiles
from 0.35 to 0.95. Lu’s study indicated that bands 2, 4, and 5 had the strongest relationships
with forest parameters such as AGB, whereas the green band and SWIR band showed weaker
correlations with these parameters in Bragantina [74]. Zhao’s research illustrated that SWIR
was the most effective band for estimating forest AGB [16]. Li et al. [46] applied Sentinel-2
to estimate the AGB of the Pinus densata forest and found that bands 2, 3, 5 (red edge band),
8 (near-infrared), and 12 (SWIR) showed strong correlations with the AGB. Interestingly,
in our study, the vegetation indices calculated by bands 3 (green), 4 (red), and 5 (NIR) did
not exhibit significant correlations with the AGB in the middle and low quantiles; however,
they displayed significant correlations with the biomass at the higher quantiles, i.e., from
0.65 to 0.8 (DVI and RDVI were significant in the 0.65–0.95 quantiles). These results were
aligned with the results of Hall et al. [75], which suggested that the NDVI is an unreliable
vegetation index for boreal coniferous forests exhibiting age variation, particularly young or
older forests aged over 15–20 years [76]. Additionally, it was found that complex vegetation
indices were unsuitable for estimating AGB [74], especially those presented in Table 4, which
showed similar variants to NDVI, essentially adding a constant term to the NDVI formula. By
employing the equidistant quantile regression method, we identified varying sensitivity of
the vegetation indices towards the AGB across different quantiles. Therefore, this approach
aids in identifying the more sensitive vegetation indices towards the AGB at each specific
quantile and subsequently enhances the estimation accuracy.

Table 4. The significant relationship between AGB and the vegetation indices calculated by band 3,
band 4, and band 5.

VIs Formula The Significance at Quantile

NDVI (NIR − Red)/(NIR + Red) 0.7
DVI NIR − Red 0.65–0.95
RDVI (NIR − Red)/(NIR − Red)0.5 0.6–0.95
RVI IR/Red 0.65
MSR (NIR/Red − 1)/((NIR/Red)0.5 + 1) 0.7, 0.75, 0.8
TVI (NDVI + 0.5)0.5 0.7, 0.8
NIR NIR/(NIR + Red + Green) 0.65, 0.7, 0.75
WDRVI ((0.1 × NIR) − Red)/((0.1 × NIR) + Red) 0.65, 0.7, 0.8
IPVI (NIR − Red)/(NIR + Red + 0.16) 0.7, 0.8
OSAVI (NIR − Red)/(NIR + Red + 0.16) 0.65, 0.7, 0.8
MSAVI (NIR − Green)/(NIR + Green) 0.7, 0.8
GNDVI (NIR − Green)/(NIR + Green) 0.65–0.8

In the VIs showing a significant relationship with the biomass between the middle
and low quantiles, MVI5, B, and W represented more comprehensive soil information,
while VARI represented the amount of green vegetation. Combining these indices with the
initial three vegetation indices, we found that the forest coverage in the middle and low
quantiles was lower, and the reflectance values included the understory vegetation and
soil. The VIs in the high and middle quantiles were the PVI, RDVI, DVI, and G. Among
these, the relationship between the PVI and biomass was significant, indicating that the
vegetation coverage was relatively high. However, the other three VIs were not disturbed
by the understory soil, and the forest’s vegetation reflectance could be characterized as
forest normally.

4.2. Fitting Performance

The best fitting performance of the QRNN and QRF model in this study was in quantile
0.5, with R2 values of 0.68 and 0.71, respectively. We took several papers that all selected
the same study region and same species for comparison with our results. Our result was a
little higher than that of the geographically weighted regression (GWR) model with the
highest fitting accuracy of R2 0.67 in the study of Ou et al. [20], and lower than the RF model
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(R2 = 0.73) that added the habitat dataset to improve the fitting performance in the research
of Tang et al. [77]. The RF model (R2 = 0.87) employed by Zhang et al. [78] demonstrated
the best fitting performance in their research, incorporating the spectral conversion of the
remote sensing data and topography variables to mitigate the influence of the terrain on the
AGB estimation. In this study, only the QRNN and QRF models reconstructed by exploring
the relationships between the potential variables and biomass across different quantiles
were considered, while other variables, such as texture, terrain, and environment, were not
considered. This finding further supports the significance of mining potential variables
for accurate AGB estimation. Additionally, for the QRNN model, when the data were
evenly distributed, the highest estimation accuracy was observed in the middle quantile
range. For right-biased data distributions, it was more appropriate to utilize middle and
low quantiles, whereas, for left-biased data distributions, the high quantiles yielded better
results. Although the QRF model exhibited higher fitting accuracy overall, the scatterplot
analysis revealed an overestimation trend in almost all the quantiles for biomass estimation
using this model, thus indicating its inferior practical applicability compared to that of the
QRNN model. Combining the minimum predicted error values from the different quantiles
improved the tfitting accuracy significantly for both the QRNNb and QRFb models, with
respective accuracies of 0.93 and 0.86, albeit slightly lower than those reported by Li et al.
and Zhang et al. [46,79]. Nevertheless, this approach effectively mitigated the issues related
to overestimation or underestimation.

4.3. Limitations and Future Research

Due to their strong penetration and backscattering capabilities, synthetic-aperture radar
data remain unaffected by weather conditions and light saturation, making Sentinel-1 an
ideal variable for estimating the AGB with improved accuracy [80]. Moreover, Sentinel-2 is
considered to be superior to Landsat due to its higher resolution (10 m compared to Landsat’s
30 m) and its additional four spectral bands (three red-edge bands and one narrow near-
infrared band), which make it particularly sensitive to vegetation [81–84]. Considering the
superior accuracy of the Landsat images at 30 m resolution, it can be inferred that Sentinel-2
offers even higher accuracy regarding AGB estimation. The other machine learning algorithm
models (such as random forests and GXboost) and deep learning algorithms (convolutional
neural networks, CNN) were considered to have better fitting performance regarding AGB
estimation [43,77]. Additionally, the DEM and environmental factors were also applied to
enhance the AGB estimation accuracy [77]; therefore, Sentinel images, climate, DEM, and
other VIs data, combined with machine learning or deep learning algorithms, could be used
to compare the AGB estimation capabilities in the future. Although this study focused solely
on the Pinus densata forest in Shangri-La, exploring the applicability of these models in other
regions with complex stands would be valuable for future research.

5. Conclusions

The exploration of the relationships between the vegetation indices and biomass in
different quantiles holds great significance for improving the accuracy of biomass estima-
tion through optical remote sensing. In this study, we focused on the Pinus densata forest in
Shangri-La as our research subject. We conducted a significant analysis of 25 vegetation
indices using the quantile regression method, followed by establishing the QRNN and QRF
models based on vegetation indices that exhibited significant correlations with low, high,
and overall quantiles. The findings are as follows:

(1) The blue, green, red, SWIR 1, and SWIR 2 bands demonstrated a substantial association
with AGB within the quantiles ranging from 0.05 to 0.6; meanwhile, the NIR displayed
significance with AGB within the quantiles ranging from 0.35 to 0.95.

(2) NDVI and its analogous complex vegetation index calculated from the green, red,
and NIR bands were found to be unsuitable for estimating the AGB in the regions
characterized by high heterogeneity; instead, the VIs utilizing blue and SWIR bands
proved to be more suitable for the Pinus densata estimation.



Forests 2024, 15, 782 18 of 21

(3) The QRNN and QRF models exhibited the highest fitting accuracy for the AGB in
the 0.5 quantiles, with R2 values of 0.68 and 0.71, respectively. While both models
demonstrated promising performance, the QRNN model was deemed more suitable
for this study due to its ability to effectively address the overestimation of lower
values and underestimation of higher values compared to the QRF model, which
tended to overestimate the biomass across all the quantiles.

Notably, significant variations were observed in the relationships between the vegeta-
tion indices and AGB across different quantiles. In this study, we approached the variable
selection from a novel perspective, aiming to provide insights into improving the forest
AGB estimation by mitigating the underestimation and overestimation issues.
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