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Abstract: Heat treatment effectively inhibits the water absorption recovery of compressed wood. To
elucidate this phenomenon, we prepared compressed pine and thermally compressed pine (heart-
wood and sapwood) using the hot pressing method at 160 ◦C, 180 ◦C, 200 ◦C, and 220 ◦C. The effects
of chemical components, swelling stresses, and monosaccharides on modified wood recovery were
investigated using regression analyses. Notably, the recovery of both compressed heartwood and sap-
wood during water absorption declined from 18.89% to 2.66% and from 58.40% to 1.60%, respectively,
after heat treatment. Similarly, the swelling stresses of the compressed heartwood and sapwood at
220 ◦C, respectively, ranged from 0.693 MPa to 0.275 MPa and from 0.783 MPa to 0.330 MPa. These
were close to the values of untreated heartwood (0.175 MPa) and sapwood (0.225 MPa). Regression
functions indicated that the recovery of compressed wood is chemically dependent on hemicellulose
and mechanically related to swelling stress. For monosaccharides, regression functions indicated that
modified heartwood recovery primarily relied on mannose, whereas modified sapwood recovery
was remarkably affected by mannose and xylose. This confirmed that the pyrolytic monosaccharides
in hemicellulose promoted stress relaxation, which induced the deformation fixation of thermally
compressed wood.

Keywords: thermally compressed wood; swelling stress; recovery; hemicellulose; monosaccharides;
water absorption

1. Introduction

Transverse compression is used to enhance the density and reduce the porosity of
lightweight wood [1,2]. This is a straightforward and environment-friendly process that
improves the mechanical properties of wood [3,4]. Compressed wood modification tech-
niques include shaping and layered compression. Shaping compression is typically used
for the overall compression of large wooden boards, such as logs and lumber [5,6], while
layered compression involves the densification treatment of specific layers of boards based
on application requirements [7–9].

However, a common issue with compressed wood is its tendency to undergo signif-
icant deformation recovery in moist environments, which limits its practical utility [10].
Considerably, pretreatment and posttreatment procedures are required to prevent the defor-
mation of compressed wood. Common pretreatment methods include resin impregnation
and cross-linking treatment. For example, Yan et al. (2011) investigated the effect of glyc-
erin pretreatment on compressed wood [11]. They found glycerin could accelerate stress
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relaxation in compressed wood, thereby playing an important role in deformation fixation.
Regarding posttreatment, researchers have discovered that subjecting compressed wood
to prolonged high-temperature treatment can effectively remedy water absorption recov-
ery [12–14]. For instance, Lee et al. (2018) demonstrated that after 24 h of heat treatment at
temperatures of 120, 140, and 160 ◦C, the water absorption recovery of compressed wood
was <1% [15]. This was attributed to the reversible nature of elastic deformation compared
to the irreversible plastic deformation of wood [16]. Therefore, plastic deformation is the
primary cause of the permanent deformation of wood [17].

Heat treatment, as a green posttreatment method, has been widely studied. To eluci-
date the deformation fixation phenomenon, research has been conducted on the recovery
and modification mechanisms of compressed wood post-heat treatment. Some studies have
suggested that during hot pressing, elastic deformation occurs primarily in the microfiber
crystalline regions [18], while plastic deformation takes place under high pressure [8]. The
release of elastic strain energy stored in cellulose macromolecules contributes to recov-
ery [19,20]. In addition, amorphous hemicellulose, lignin, and semicrystalline cellulose in
wood create internal stresses—known as residual stresses—after compression [21]. Com-
pression forces the wood structure to transition into a new form without breaking the
covalent bonds between hemicellulose and lignin or the hydrogen bonds between hemi-
cellulose and cellulose [20]; this induces the temporary and reversible deformation of
wood under heat and moisture conditions. Because the primary components of the com-
pressed wood do not undergo significant chemical changes, the recovery is predominantly
influenced by hydrophilicity and stress accumulated in the macromolecular chains of the
wood. However, this stress is typically measured using a stress–strain gauge [22,23], which
can analyze stress relaxation and stress–strain relationships in dried wood. During water
absorption, it cannot accurately capture the stress-release regularity of modified wood.

During heat treatment, the hydrophilic hemicellulose in compressed wood undergoes
intense degradation, leading to a relative increase in hydrophobic lignin. Moreover, the
post-heat treatment increase in cellulose crystallinity decreases the hydrophilic hydroxyl
groups, further reducing the equilibrium moisture content and water absorption of the
compressed wood. The degraded hemicellulose further facilitates the breaking of covalent
and hydrogen bonds in the wood, leading to new cross-linked network structures. Thus, the
stresses in compressed wood are relaxed, aiding in deformation fixation [13]. We previously
examined the chemical composition, water absorption, and hygroscopicity of thermally
compressed wood and highlighted the substantial role of hemicellulose degradation in
reducing water absorption [20]. Song et al. (2018) confirmed that removing hemicellulose
from wood effectively inhibited moisture-induced deformation recovery in compressed
wood and emphasized the significant influence of hydrophilic hemicellulose on water
absorption recovery in compressed wood [24]. Hemicellulose is the second most abundant
plant polysaccharide, comprising 20%–35% of wood mass. It has a lower molecular weight
and a degree of polymerization typically between 80 and 200, and is composed of β-xylose,
β-mannose, α-arabinose, D-glucose, D-galactose, and D-glucuronic acid units [25]. In soft-
wood, mannans and a small amount of xylans are the main components of hemicellulose,
while xylans are predominant in hardwood hemicellulose. These oligosaccharides contain
abundant hydroxyl and acetyl groups, which have a strong water absorption capacity.
It can be seen that the oligosaccharides in hemicellulose will have a significant effect on
the water absorption of compressed wood [26]. Although some studies have investigated
the recovery properties of thermally compressed wood [27,28], the underlying impact of
oligosaccharides on the recovery of compressed wood has not been thoroughly studied
yet. Therefore, this study focuses on elucidating the precise relationship between the
oligosaccharides of hemicellulose and the recovery properties of compressed wood.

Based on the above analysis, to explain the fundamental reasons why heat treatment
promotes fixing deformation of compressed wood (CW), this article discussed the effects
of chemical components, swelling stresses, and monosaccharides on the recovery of com-
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pressed wood using regression analysis. It could potentially improve processing techniques
and enhance the performance of wood-based materials.

2. Materials and Methods
2.1. Wood Materials

Heartwood and sapwood specimens (30 [radial] × 150 [tangential] × 450 [longitudi-
nal] mm) were obtained from Pinus sylvestris L. pine. Their oven-dry densities, respectively,
were 0.4188 ± 0.0077 and 0.4669 ± 0.0091 g/cm3. To ensure that plastic deformation
occurred during hot pressing, all samples had an initial moisture content ranging from
approximately 30%–40%. In the meantime, the moisture contents of specimens were con-
trolled in an air conditioning chamber with a constant temperature of 23 ± 2 ◦C and a
humidity of 95 ± 3% for a month-long exposure. Subsequently, wood was utilized for
subsequent modification procedures. A subset of both heartwood and sapwood samples
was reserved for the control tests.

2.2. Preparation of Thermally Compressed Wood

The heartwood and sapwood samples underwent radial compression using a hot
pressing technique at 160 ◦C for a duration of 1 h to achieve a controlled thickness target
value of 18 mm [29].

To produce thermally compressed wood, compressed heartwood and sapwood sam-
ples were subjected to continuous treatment in the press for 3 h at varying temperatures
(see Table 1), followed by cooling and subsequent unloading via shutting down the heating
and pressure system.

Table 1. Hot-pressing conditions of heartwood and sapwood samples.

Specimen Groups Duration (h) Temperature (◦C)

Heartwood

1 (Control)
2 (CW) 1 160

3 3 180
4 3 200
5 3 220

Sapwood

6 (Control)
7 (CW) 1 160

8 3 180
9 3 200

10 3 220

2.3. Recovery Experiment of Treated Wood

Fifteen wood block samples (20 [longitudinal] × 20 [tangential] × 18 [radial] mm)
were cut from treated wood. The initial dry thickness of wood blocks was determined
using a vernier caliper. Subsequently, the specimens were immersed in distilled water at
ambient temperature for a period of 48 h, and the water absorption thickness was measured
every 24 h. Following this, the samples were dried in an oven at 100 ◦C for 24 h, and the
dry thickness was recorded. Thus, the water absorption experiment repeated this soaking
and drying cycle five times. Finally, the recovery rate of the samples was computed using
the following equation:

R =
L2 − L0
L0 − L1

× 100%

where R is the recovery rate along the compressed thickness direction (%), L0 is the dried
thickness of sample before compression (mm), L1 is the dried thickness of sample after
compression (mm), and L2 is the thickness of sample after water absorption for 24 h (mm).
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2.4. Swelling Stress of Samples during Water Absorption

Two groups of samples (20 [longitudinal] × 20 [tangential] × 18 [radial] mm and
20 [longitudinal] × 20 [tangential] × 30 [radial] mm) were cut from the treated and un-
treated wood samples. During water absorption, the fluctuation in swelling stress of
samples in each group was monitored using a pressure sensor (Figure 1). A data acquisition
system was integrated into a computer mainframe and configured with a sampling fre-
quency of 100 ms. The pressure sensor was preconnected to the computer, and the samples
were securely affixed to the clamp apparatus, which was in contact with the pressure sensor
(Figure 1). The initial displayed value on the instrument panel of the sensor was adjusted
to 0 N. Subsequently, the sample and pressure sensor assembly on the clamp apparatus
were submerged in distilled water. The data collected by the sensor were transmitted to the
relevant data acquisition system on the computer through a signal converter. Variations in
swelling force over time were displayed on the data acquisition interface. The data collec-
tion concluded when the swelling force curve approached a plateau, where the experiment
was terminated and the data were exported. Then, swelling stress was calculated according
to the formula: stress = force/area. Each group of experiments was repeated at least six
times, and the final result was determined as the average value.
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2.5. Analyses of Chemical Components in Treated Wood

Samples of the untreated wood, compressed wood, and thermally compressed wood
were processed into small 3 cm segments and ground into 40–60 mesh powders using a
small crusher. Next, the cellulose, hemicellulose, lignin, and extractive contents of each
sample group were analyzed according to our previous study [29].

2.6. Measurement of Monosaccharide Content in Wood

After benzene alcohol extraction, the monosaccharide contents of wood powders were
assessed with reference to the experimental analytical method provided by the US National
Renewable Energy Laboratory [30]. Approximately 0.3 g of the wood powder was placed in
a hydrolysis bottle, to which 3 mL of 72% H2SO4 was added. The mixture was hydrolyzed
in a water bath at 30 ◦C for 1 h and shaken every 10 min. Subsequently, 84 mL of deionized
water was introduced into the hydrolysis bottle to dilute the concentrated sulfuric acid
to 4%. The bottle was securely capped and thoroughly shaken. The hydrolysate was
transferred into an autoclave and processed at 121 ◦C for 1 h before being cooled. A
1.5 mL portion of the resulting hydrolysate was filtered through a 0.22 µm aqueous filter
head and diluted 300 times. Through the above steps, lignin can be well precipitated
and removed, thus avoiding interference with the test of monosaccharide contents. The
monosaccharide contents of each sample were determined using a high-performance anion-
exchange chromatograph (Dionex ICS-5000+; Thermo Fisher Scientific Inc., Waltham, MA,
USA) equipped with a CarbopacTM PA20 column, a pulsed amperometric detector, and an
AS50 injector. D-glucose, d-xylose, and d-mannose were used as monosaccharide standards.
All samples were tested five times, and the results were averaged.
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3. Results and Discussion
3.1. Effect of Chemical Components on the Recovery of Compressed Wood

The recovery rates for heartwood and sapwood after soaking in water are illustrated
in Figure 2a,b. From the first to the fifth water absorption cycle, the recovery rates of
compressed heartwood and sapwood were between 12.79% and 18.89% and 42.59% and
58.40%, respectively. The recovery patterns shown in Figure 2a,b indicate that the swelling
deformation of compressed heartwood and sapwood primarily increased during the first
three water absorption cycles. Notably, compressed wood in the first water absorption
cycle exhibited the most significant change.
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ships between recovery rates and chemical components.

After heat treatment, the swelling recovery of compressed heartwood and sapwood
noticeably decreased. As the number of cycles increased, the deformation of each group
increased. The recovery rates of compressed heartwood subjected to 180 ◦C, 200 ◦C, and
220 ◦C ranged from 5.25% to 8.51%, 4.46% to 8.81%, and 1.07% to 2.66%, respectively,
over the five water absorption cycles. Similarly, the corresponding values of compressed
sapwood at 180 ◦C, 200 ◦C, and 220 ◦C varied from 10.18% to 17.26%, 7.03% to 11.22%, and
1.34% to 1.60%, respectively, implying that the higher the temperature of heat treatment,
the smaller the deformation of compressed wood. The recovery rates of the thermally
compressed heartwood sample group were lower than those of the corresponding sapwood
group, except for the 220 ◦C heat-treatment condition. This difference in recovery rate
could be related to the variable chemical composition and viscoelasticity of wood cell walls.
Moreover, heat treatment had a more significant impact on the recovery of sapwood than
that of heartwood.
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To analyze this difference in detail, Origin 8.0 software was used to establish the
regression function for each chemical composition and recovery rate. The results indicate
that there are good linear relationships between the recovery rates and compositions of
modified heartwood and sapwood (Figure 2c,d). Positive correlations were observed
between recovery and hemicellulose for heartwood and sapwood, with R2 coefficients
reaching approximately 0.950. Conversely, negative correlations were between the recovery
rates and lignin, with R2 values of 0.804 and 0.900 for heartwood and sapwood, respectively.
Notably, no correlation was identified between the recovery and cellulose in modified wood.

Shao (2022) studied the effect of different lignin/hemicellulose removal times on the
water absorption recovery of compressed wood and found cellulose enhanced the shape
fixation of compressed wood [31]. This conclusion indicates that the increased cellulose
content can reduce the shape recovery of wood [32]. Furthermore, the regression analysis
in the current study highlighted the significant impact of extractive content on recovery in
sapwood compared to heartwood. However, because the change in cellulose content was
not obvious, it was concluded that the degraded hemicellulose and relatively increased
lignin content enhanced the deformation fixation of compressed wood. Therefore, the
lower recovery of thermally compressed heartwood compared to sapwood is attributed to
the lower content of hemicellulose in heartwood.

3.2. Effect of Swelling Stress on the Recovery of Compressed Wood during Water Absorption

As shown in Figure 3a,b, with prolonged water absorption, the swelling stress of
the heartwood and sapwood groups increased and stabilized. The maximum swelling
stress of untreated heartwood and sapwood, respectively, were approximately 0.175 Mpa
and 0.225 Mpa. After compression, these values increased to 0.693 Mpa and 0.783 Mpa
for heartwood and sapwood, respectively, representing a substantial rise of 296.26% and
247.92% compared to the untreated samples. Blomberg and Persson (2007) observed that
the increase in volume of densified wood during water absorption was attributed to the
expansion of native cell walls and the shape recovery of deformed cell walls [33]. Thus, the
total residual stresses include residual stress from the recovery of compressed cell walls and
residual stress from the swelling of native cell walls [34]. The residual stress of the recovery
of deformed cell walls was identified as a significant factor in the swelling behavior of
densified wood. This thoroughly explains the significant increase in swelling stress of
compressed wood observed in this study.
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After heat treatment, the swelling stresses of both compressed heartwood and sap-
wood evidently dropped. The maximum swelling stresses of compressed heartwood
treated at 180 ◦C, 200 ◦C, and 220 ◦C, respectively, reached 0.570 Mpa, 0.555 Mpa, and
0.275 Mpa, representing decreases of 17.80%, 19.96%, and 60.34% compared with the com-
pressed wood. Similarly, compared with compressed sapwood, the swelling stresses of
thermally compressed sapwood samples exposed to 180 ◦C, 200 ◦C, and 220 ◦C separately
became 0.680 Mpa, 0.620 Mpa, and 0.330 Mpa, representing reductions of 13.13%, 20.78%,
and 57.84%. The degradation of chemical components in wood due to high-temperature
treatment resulted in the release of residual stress. The reduced residual stress further
promoted a significant decrease in swelling stresses of thermally compressed wood during
water absorption. Thus, the deformation fixation of compressed wood was effectively
improved by heat treatment. In addition, the results of the sapwood group were apparently
larger than the values of the heartwood group, potentially because the sapwood had greater
elasticity and was therefore more susceptible to elastic deformation than the heartwood.
Consequently, a greater residue stress was formed inside sapwood.

The slopes of the curves presented in Figure 3a,b demonstrate that the changes in the
rates of swelling stress during water absorption for heartwood groups were lower than
those for sapwood groups. It took approximately 1000 min for the heartwood groups to
reach the maximum swelling stresses, whereas the sapwood groups only required 200 min.
This noticeable distinction is in close proximity to the natural structural characteristics of
heartwood and sapwood. Heartwood is composed of mature dead cells, while sapwood is
made up of living cells capable of metabolism and growth [35]. Compared with sapwood,
heartwood has relatively few pits, and most of them are aspirated pits. In addition,
extractives originating from heartwood aggravated pore blocking, resulting in reduced
penetration. This implied that heartwood naturally has a lower water absorption rate
than sapwood [36,37]. Furthermore, sapwood has a greater hemicellulose content than
heartwood, which causes the hydrophilicity and water absorption rate of sapwood to be
greater than those of heartwood. Therefore, these differences between heartwood and
sapwood were responsible for their differing swelling stress rates.

To understand the recovery mechanism of modified wood, regression analyses be-
tween swelling stress and each chemical component and recovery in heartwood and
sapwood were investigated (Figure 4). The results indicate that the swelling stresses
in heartwood and sapwood were linearly positively correlated with hemicellulose con-
tent, with coefficients of determination (R2) of 0.856 and 0.968, respectively. Similarly, the
swelling stresses in heartwood and sapwood were negatively linearly correlated with lignin
content, with R2 values of 0.823 and 0.956, respectively. There was an exponential positive
correlation between the swelling stress and recovery rate for heartwood and sapwood,
with a fitting degree of 0.998. During the densification process, elastic deformation is the
primary cause of the water absorption recovery of wood [16].

Previous research has investigated the impact of chemical composition on the elasticity
of wood during heat treatment and found the elasticity of wood is positively correlated with
hemicellulose content [38] and negatively correlated with lignin and cellulose content [39].
It further confirmed that the swelling stress of compressed wood is directly connected to
the elastic residual stress stored in hemicellulose, similar to the results of the correlation
analysis between recovery and hemicellulose in compressed samples in the current study.
Therefore, it can be inferred that the recovery behavior of compressed wood after water
absorption is principally dependent on hemicellulose and swelling stresses caused by the
residual stress. After heat treatment, the residual stress of compressed wood declined
due to the changing hemicellulose content. Correspondingly, the recovery was restrained,
thereby realizing the desired fixed deformation of compressed wood.
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3.3. Effect of Monosaccharide Changes on the Recovery of Compressed Wood

Based on the conclusions from Section 3.2, this section mainly analyzed the impact
of monosaccharides on the recovery of compressed wood. The concentration changes of
glucose, xylose, and mannose in the control and modified samples from heartwood and
sapwood were investigated as the contents of galactose, arabinose, and uronic acids are
minor [40]. As shown in Table 2, glucose was the most abundant compound in both un-
treated heartwood and sapwood, with concentrations of 4.067 and 3.189 mg/L, respectively,
followed by mannose (0.872 and 0.693 mg/L) and xylose (0.297 and 0.231 mg/L).

Table 2. The determined monosaccharide contents in heartwood and sapwood.

Heartwood Glucose (mg/L) Xylose (mg/L) Mannose (mg/L) Sapwood Glucose (mg/L) Xylose (mg/L) Mannose (mg/L)

Control 4.067 ± 0.050 0.297 ± 0.008 0.872 ± 0.022 Control 3.189 ± 0.041 0.231 ± 0.011 0.693 ± 0.015
CW 3.030 ± 0.036 0.256 ± 0.011 0.652 ± 0.017 CW 3.213 ± 0.033 0.135 ± 0.007 0.718 ± 0.009

180 ◦C 3.351 ± 0.023 0.155 ± 0.007 0.742 ± 0.007 180 ◦C 3.601 ± 0.019 0.275 ± 0.012 0.702 ± 0.013
200 ◦C 3.625 ± 0.018 0.086 ± 0.004 0.641 ± 0.011 200 ◦C 3.066 ± 0.030 0.209 ± 0.009 0.616 ± 0.024
220 ◦C 3.683 ± 0.017 0.036 ± 0.005 0.440 ± 0.013 220 ◦C 3.693 ± 0.011 0.018 ± 0.002 0.481 ± 0.008

Similarly, the mannose content decreased by 49.50% and 30.58%, respectively.
With increasing heat-treatment temperature, the measured glucose content in heart-

wood and sapwood roughly increased, whereas that of mannose and xylose exhibited an
inverse change. It is deduced that hemicellulose in wood is mainly composed of large
amounts of mannose and small amounts of xylose, which is consistent with previous re-
search [26]. After heat treatment at 220 ◦C, the amounts of xylose in compressed heartwood
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and sapwood, respectively, declined by 87.86% and 92.04% compared with their respective
controls. Likewise, the mannose content decreased by 49.50% and 30.58%, respectively.
Notably, the reduction in xylose content surpassed that of mannose, potentially resulting
from the low level of xylose. High temperatures aggravate the decomposition of mannose
and xylose, suggesting that polysaccharide polymers in hemicellulose are susceptible to de-
composition under severe heat treatment. The concentration of the three monosaccharides
in each heartwood group appeared higher than that in the corresponding sapwood groups,
demonstrating that the accumulation of these monosaccharides is closely associated with
the thickening of wood cell walls—a transformation that takes place as a tree progresses
from sapwood to heartwood as it matures.

Regression analysis was used to analyze the relationships between the three monosac-
charides, recovery rate, and swelling stress of modified wood (Figure 5). The recovery
rate in heartwood was linearly positively related to the mannose and xylose contents, with
R2 coefficients of 0.953 and 0.652, respectively (Figure 5a,b). The same correlations were
observed for the sapwood, with R2 values of 0.997 and 0.976, respectively. In the case of
glucose, a good correlation (R2 = 0.825) was obtained with the recovery rate of sapwood but
not for the heartwood. Similarly, there existed strong positive correlations between man-
nose content and swelling stress in heartwood and sapwood with R2 values of 0.838 and
0.941, respectively (Figure 5c,d). Under the same conditions, weak correlations (R2 = 0.429
and R2 = 0.625) were observed between xylose content and swelling stress. However,
no correlations were found between glucose and swelling stress in either heartwood or
sapwood. Hence, the recovery of heartwood is mainly dependent on mannose composition,
whereas mannose and xylose significantly affect the recovery of sapwood. The swelling
stresses of heartwood and sapwood were primarily influenced by mannose, followed by
xylose, which is potentially attributed to the high content of mannose, which contains more
hydrophilic functional groups relative to xylose.
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Although the recovery rate and swelling stress in heartwood and sapwood were
not correlated with their glucose contents, higher concentrations of glucose reduced the
recovery and swelling stress of modified wood (Figure 5). This is consistent with the
previous conclusion that cellulose can enhance the shape fixation ability of compressed
wood [41].

4. Conclusions

(1) With increasing numbers of soaking cycles, the deformation of compressed sapwood
and heartwood increased. After high-temperature treatment, the recovery rates of
compressed heartwood and sapwood decreased from 18.89% to 2.66% and from
58.40% to 1.60%, respectively. Regression analysis for each chemical composition and
recovery rate indicated that the degradation of hemicellulose reduced the recovery of
thermally compressed wood.

(2) The swelling stresses of compressed heartwood and sapwood were 0.693 and 0.783 MPa,
which decreased by 60.34% and 57.84%, respectively, after heat treatment at 220 ◦C.
The swelling stresses were linearly positively correlated with hemicellulose content,
linearly negatively correlated with lignin content, and exponentially positively cor-
related with the recovery rate, indicating that the recovery of compressed wood is
chemically attributable to the chemical components and mechanically attributable to
the swelling stresses caused by residual stress.

(3) With increasing heat-treatment temperature, the concentration of glucose in thermally
compressed wood gradually increased, while those of mannose and xylose decreased
significantly. The recovery of thermally compressed heartwood was predominantly
affected by mannose, while the recovery of thermally compressed sapwood was
affected by mannose and xylose. Interestingly, glucose can enhance the shape fixation
of compressed wood.

(4) High-temperature treatment degraded the mannose and xylose content in hemicellu-
lose, which reduced the elasticity of wood, resulting in a reduction in elastic residual
stress. This further led to reduced swelling stress and recovery, which realized the
deformation fixation of compressed wood.
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