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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved significantly
during the pandemic and resulted in daunting numbers of genomic sequences. Tracking SARS-
CoV-2 evolution during persistent cases could provide insight into the origins and dynamics of new
variants. We report here a case of B-cell acute lymphocytic leukemia on chemotherapy with infection
of SARS-CoV-2 for more than two months. Genomic surveillance of his serial SARS-CoV-2-positive
specimens revealed two unprecedented large deletions, ∆15–26 and ∆138–145, in the viral spike
protein N-terminal domain (NTD) and demonstrated their dynamic shifts in generating these new
variants. Located at antigenic supersites, these large deletions are anticipated to dramatically change
the spike protein NTD in three-dimensional protein structure prediction, which may lead to immune
escape but reduce their viral transmissibility. In summary, we present here a new viral evolutionary
trajectory in a patient on chemotherapy.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense
single-stranded RNA virus causing the severe disease known as coronavirus disease 2019
(COVID-19). Since its emergence at the end of 2019, this pathogen has led to a prolonged
pandemic and caused millions of deaths and substantial morbidity worldwide; meanwhile,
this virus has become the most sequenced pathogen in the world. From these unparalleled
amounts of genomic data, we have witnessed an unprecedented dynamic evolution of
SARS-CoV-2. Over the course of COVID-19 waves, SARS-CoV-2 has evolved variants of
concern (VoCs) from Alpha, Delta to Omicron, according to the World Health Organization
assignment; and Omicron has recently evolved from BA.1/BA.2, BA.4/BA.5 and BQ.1 to
XBB, based upon major viral lineages. Notably, Omicron variants have a much higher
capacity to cause reinfections and contain far more mutations in spike proteins than any
variants previously reported, which led to widespread escape from neutralizing antibody
responses [1–3].

Viral evolution is a complex process, as viruses replicate and evolve within individuals
(within-host), but they must also successfully transmit person to person (between-host),
resulting in evolution at a different scale [4]. Since chronic infection allows the virus to
acquire many evolutionary changes, it has been hypothesized that the emergence of a novel
VoCs most likely arises in immunocompromised patients with prolonged infection [5,6].
In support of this hypothesis, many site mutations and/or small indels in the viral spike
protein have been identified within-host in cases of chronic SARS-CoV-2 infection, linking
to either antibody resistance or higher rates of viral transmission [7–10]. We report here the
identification of two unprecedented large deletions in the SARS-CoV-2 spike protein in a
patient on chemotherapy and their dynamic shift to new variants during his prolonged
viral infection.
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2. Results

A 17-year-old male was diagnosed with B-cell acute lymphocytic leukemia (B-ALL)
on 7 February 2022. Two weeks later, he started on a month of induction chemotherapy
with intrathecal administration of high-dose methotrexate, vincristine, daunorubicin and
pegaspargase via a lumbar puncture. The followed consolidation chemotherapy with
high-dose methotrexate continued for about 5 months, until the patient had leukopenia
as diagnosed on 26 August 2022. Experiencing fever, dizziness, headache and sore throat,
the patient tested COVID-19-positive on 6 September 2022 (marked as Day 0). Neverthe-
less, to avoid any B-ALL treatment delay he started on his maintenance chemotherapy
on 9 September 2022. In subsequent monitoring of his SARS-CoV-2 infection, at least
five specimens collected from his nasopharynx (marked as Day 15, 38, 50, 60 and 63, re-
spectively) consecutively tested positive. His SARS-CoV-2 infection persisted for more
than two months, during which his maintenance chemotherapy continued. Notably, the
patient received a single dose of Pfizer-BioNtech mRNA vaccine in September 2021, based
on his electronic medical record. Although his immunoglobin (IgG) antibody against
COVID-19 spike was detected to be rising in May 2021, his COVID-19 PCR tests before
that were all negative, while his influenza A PCR test was positive on 20 May 2021. The
schemed timeline regarding the patient’s B-ALL diagnosis and subsequent chemotherapy
treatments, as well as his SARS-CoV-2 vaccination and infection monitoring, is summarized
and demonstrated in Figure 1.
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Figure 1. Schemed timeline of the patient’s B-cell acute lymphocytic leukemia (B-ALL) diagnosis
and subsequent chemotherapy treatment (top), as well as SARS-CoV-2 vaccination and infection
monitoring (bottom). The levels of immunoglobin (IgG) antibody against COVID-19 spike are shown
as antibody unit per mL (AU/mL).

Whole-genome sequencing of SARS-CoV-2 was conducted on his serial COVID-19-
positive specimens, using the improved v3 primer set [11] from ARTIC Network, a con-
sortium dedicated to global viral epidemiology efforts (https://artic.network (accessed
on 26 July 2023)). The results of genomic sequencing intriguingly revealed two novel
large deletions (Figure 2 and Table 1): ∆15–26, a 36-nucleotide (nt) deletion; ∆139–145 or
∆138–145, a 21- or 24-nt deletion; and a site mutation R346I in the viral spike protein. All
these deletions and the mutation were validated via the subsequent target resequencing.
Frequency analysis of viral population in these specimens further revealed their dynamic
shifts in generating novel SARS-CoV-2 variants. As detected at Day 15, the primary lineage
initially belonged to Omicron BA.5.5, with both ∆24–26 and ∆69–70 deletions in the spike
N-terminal domain (NTD). While ∆69–70 deletion remained unchanged, ∆24–26 deletion
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was found enlarged to ∆15–26, shown 57% in the viral population at Day 38 and 100% there-
after. Deletions ∆139–145 or ∆138–145 were caught in low frequency at Day 38 and Day
50 (≤10%, respectively), but ∆138–145 became dominant (100%) at Day 60, suggesting
viruses with ∆138–145 were more competitive in viral amplification and selection than
those with ∆139–145. However, a subsequently observed reduction in ∆138–145, 24% in the
viral population at Day 63 suggested viruses with ∆138–145 were not prolonged either. In a
comparison, site mutation R346I in the spike receptor bind domain (RBD) was consistently
detected at and after Day 38. Combining Figure 2 and Table 1, we reveal here a rapid and
dynamic evolution of SARS-CoV-2 in the patient on maintenance chemotherapy.
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multiplex PCR amplification was incomplete for specimens at and after Day 38, especially those at
Days 60 and 63 (A), which was compensated for with subsequent target resequencing validation
(C). Integrative Genomics Viewer (IGV) was used for visualization of sequence reads alignment and
mapping to the SARS-CoV-2 genome reference NC_045512 from Wuhan-Hu-1 isolate. Site mutations
and small deletions in lineage BA.5.5 are shown in orange on the top. Large deletions, ∆15–26 and
∆138–145, are shown in red. Blue arrow indicates the N terminal of spike protein.

Located in the NTD, both ∆15–26 and ∆138–145 deletions are novel and large, with N-
glycosylation sites Asn17 deleted and Asn122 and Asn149 possibly jeopardized. These dele-
tions made the NTD more compact, based on our prediction of its protein three-dimensional
structures using a language-model-based ESM Atlas [12] (Figure 3). Compared to that in
lineage B of the Wuhan-Hu-1 isolate, deletions ∆24–26 and ∆69–70 in BA.5.5 significantly
altered the NTD’s structure. In contrast, the unprecedented large deletions, ∆15–26 and
∆138–145, mediated conformational changes not only at local NTD surface loops but also in
their neighbors, and reorganized the NTD’s structure more dramatically. As demonstrated
in Figure 3, ∆138–145 might change some of the β-sheets in BA.5.5 into α-helixes.
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C-terminal α-helix, belong to the spike receptor binding domain (RBD). Blue arrows demonstrate the
structural change from β-sheets in lineage BA.5.5 to α-helixes due to ∆138–145 deletion.
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Table 1. Dynamic spike protein mutational shifts identified via SARS-CoV-2 whole-genome se-
quencing, validated and quantified with target resequencing. Genome reference NC_045512 and
spike protein reference YP_009724390.1 were used. Serial COVID-19-positive nasopharyngeal swab
specimens were collected from the same patient receiving chemotherapy.

Specimen Collection Date
Deletion Site 1 Deletion Site 2 Deletion Site 3

Site Mutation Lineage
∆24–26 ∆15–26 ∆69–70 ∆139–145 ∆138–145

Day 15 21
September2022 100% - 100% - - - BA.5.5

Day 38 14 October 2022 43% 57% 100% 10% 4% R346I

novel
Day 50 26 October 2022 - 100% 100% 9% 6% R346I
Day 60 5 November 2022 - 100% 100% - 100% R346I
Day 63 8 November 2022 - 100% 100% - 24% R346I

3. Discussion

We reveal here the dynamic in vivo evolution of SARS-CoV-2 in a patient on chemother-
apy. The newly identified large deletions in the viral spike protein are unprecedented.
However, their mutation sites have been described previously. Compared to ∆15–26, dele-
tion ∆24–26 at NTD surface loop N1 was common in Omicron BA.2, BA.4 and BA.5, and
was found to reduce viral infectivity [13]. Compared to ∆138–145, deletion ∆144 was
present in Alpha B.1.1.7 and deletion ∆143–145 was present in Omicron BA.1, the latter
leading to a reconfiguration of NTD surface loop N3 from a hairpin fold to a loose loop
and causing immune evasion [3,14]. Additionally, deletion ∆69–70 was found in Alpha
B.1.1.7 and Omicron BA.1, BA.4 and BA.5, which triggered conformational changes in NTD
surface loop N2 and altered the antigenic “supersite” [3,14]. Residing at the RBD, R346
had multiple variants, including R346K in Mu B.1.621, R346S in BA.4.7, R346I in BA.5.9
and R346T in BF.7, which featured substantial neutralization resistance but preserved the
viral activity of binding to angiotensin converting enzyme 2 (ACE2) [6,15,16], a receptor
for SARS-CoV-2. Since N1-N3 surface loops are antigenic “supersites” for NTD-directed
neutralizing antibodies [1–3], it is anticipated that our newly identified variants would
cause dramatic changes in spike protein structure as well as N-glycosylation, though com-
pared to cryogenic electron microscopy analysis of the whole spike protein, our local NTD
protein structure prediction is very limited. It is also anticipated that the dramatically
reorganized NTD would evade antibody recognition, leading to vaccine breakthrough, just
like ∆143–145. However, to the best of our knowledge, these new variants do not seem to
have spread to anyone, suggesting their low infectivity (e.g., ∆15–26, like ∆24–26) or low
stability (e.g., ∆138–145, disappearing at Day 63), leading to their low transmissibility.

We document here a single case of a B-ALL patient with a prolonged COVID-19
viral replication for more than two months. Due to the pandemic, the patient has been
monitored closely for SARS-CoV-2 infection during his whole chemotherapy treatment.
With his infection onset at leukopenia status, the subsequently prolonged viral shedding is
unusual, likely due to immunosuppression after completion of induction and consolidation
chemotherapy and during maintenance chemotherapy. Were the viral mutations in this
patient driven by drug treatments in chemotherapy? Possibly, since these deletions were
rare and large. However, other factors might have contributed significantly as well, such as
his potential natural SARS-CoV-2 infection in May 2021 with COVID-19 IgG rising (though
negative at COVID-19 PCR tests), subsequent COVID-19 vaccination in September 2021
and waning immunity during chemotherapy. These combined selection pressures might
have led to the viral evolution. Nevertheless, the question remains to be further addressed
in future more observations and/or experiments.

Using genomic sequencing, we characterized here the viral within-host evolution in
response to selection pressures in an individual on chemotherapy. This unique tracking case
provides additional evidence for us to understand the diversity, evolution and dynamics of
SARS-CoV-2.
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4. Materials and Methods

Clinical SARS-CoV-2 tests: Nasopharyngeal swab samples were collected from the
patient for SARS-CoV-2 rapid RT-PCR test. Two main test platforms were used: the ePLEX
Respiratory Panel 2 (GenMark Diagnostics, Carlsbad, CA, USA) targeted two unique re-
gions of the nucleocapsid (N) gene; and the cobas SARS-CoV-2 Test (Roche Molecular
Diagnostics, Pleasanton, CA, USA) targeted dual genes, open reading frame 1a/b (ORF1ab)
and envelop (E), with an automated cobas 8800 instrument (Roche Molecular Diagnostics).
Blood samples were collected from the patient for serological IgG test against SARS-CoV-2
nucleocapsid protein. A two-step qualitative chemiluminescent microparticle immunoassay
(CMIA) was performed on an automated Architect system (Abbott Diagnostics, Des Plaines,
IL, USA). All the tests were approved by the federal agency the Food and Drug Administra-
tion (FDA) under Emergency Use Authorization (EUA) and performed in CLIA-certified
clinical laboratories.

Next-generation sequencing (NGS): RNA was extracted from serial COVID-19-posi-
tive nasopharyngeal swab samples of the patient using the Direct-zol RNA Microprep Kit
(Zymo Research, Irvine, CA, USA). SARS-CoV-2 whole-genome sequencing was performed
using the improved ARTIC Network’s v3 primer set [11] and multiplex PCR amplifica-
tion (dx.doi.org/10.17504/protocols.io.bibtkann (accessed on 26 July 2023)), followed by
the Nextera XT Library Prep kit (Illumina, San Diego, CA, USA) according to the manu-
facturer’s instructions. DNA quantity was determined via the AccuClear Nano dsDNA
Assay and SpectraMax iD3 fluorometer (Molecular Devices, San Jose, CA, USA). Library
quality was verified via the 4200 TapeStation (Agilent, Santa Clara, CA, USA). NGS was
performed with paired-end sequencing (75 × 2 cycles) in the MiSeq (Illumina) platform.
Due to ∆138–145 deletion, primer 73Left was not in full function for specimens at and after
Day 38, especially those specimens at Day 60 and Day 63, leaving a gap in the genome
sequence assembly. Validation of deletions was conducted using PCR amplification with
two primer sets, 71Left and 71Right for ∆15–26 determination and 72Left and 73Right for
∆138–145 determination, followed by Illumina target resequencing at a higher depth using
the Nextera XT Library Prep method. Primers 71Left, 71Right, 72Left, 73Left and 73Right
were the same as in the improved ARTIC Networks’ v3 primer set.

Bioinformatics analysis: After removal of sequencing adaptors using trimmomatic
(v0.39), raw sequence reads were aligned and mapped to the SARS-CoV-2 reference genome
(Wuhan-Hu-1 strain, GenBank accession no. NC_045512) for whole-genome assembly, and
variants were identified using the snippy algorithm (https://github.com/tseemann/snippy
(accessed on 26 July 2023)). The lineage of the assembled nearly complete viral genome
was identified using the Pangolin lineage assigner and PANGO lineage database [17], both
of which were updated in a timely manner. Raw sequence data, including the valida-
tion sequencing, were submitted to the SRA database (accession numbers: SRR22465584–
SRR22465598). The main genome sequence for each specimen was submitted to the GISAID
database (accession numbers: EPI_ISL_15966605–EPI_ISL_15966608). Notably, due to the
low viral load, the assembled genome for the specimen at Day 63 had many gaps and was
not complete enough for GISAID submission. Deletions and mutations were manually
inspected and confirmed under the Integrative Genomics Viewer [18] (IGV). All muta-
tions were relative to the SARS-CoV-2 Wuhan-Hu-1 genome sequence NC_045512 and
its viral spike protein sequence YP_009724390.1. For target resequencing validation, the
BWA aligner [19] (v0.7.17-r1188), instead of snippy, was used for sequence read alignment
and mapping. The mutation frequency for each deletion was estimated from the target
sequencing under IGV manual inspection.

Protein structure prediction: the three-dimensional protein structures of spike NTD,
relative to residues 1–360 of YP_009724390.1 with partial RBD included (residues 331–360),
were predicted using the “Fold Sequence” function in a language-model-based ESM Atlas
(https://esmatlas.com/ (accessed on 26 July 2023)).

dx.doi.org/10.17504/protocols.io.bibtkann
https://github.com/tseemann/snippy
https://esmatlas.com/
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