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Abstract: In recent years, there have been significant advancements in the research of Severe Fever
with Thrombocytopenia Syndrome Virus (SFTSV). However, several limitations and challenges
still exist. For instance, researchers face constraints regarding experimental conditions and the
feasibility of sample acquisition for studying SFTSV. To enhance the quality and comprehensive-
ness of SFTSV research, we opted to employ PMA-induced THP-1 cells as a model for SFTSV
infection. Multiple time points of SFTSV infection were designed to capture the dynamic nature of
the virus–host interaction. Through a comprehensive analysis utilizing various bioinformatics
approaches, including diverse clustering methods, MUfzz analysis, and LASSO/Cox machine
learning, we performed dynamic analysis and identified key genes associated with SFTSV infec-
tion at the host cell transcriptomic level. Notably, successful clustering was achieved for samples
infected at different time points, leading to the identification of two important genes, PHGDH and
NLRP12. And these findings may provide valuable insights into the pathogenesis of SFTSV and
contribute to our understanding of host–virus interactions.

Keywords: THP-1; phorboll-12-myriate-13-acetate; SFTSV infection; multiple time points

1. Introduction

Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) is a highly pathogenic
pathogen belonging to the Bunyavirales order. It can be transmitted through tick bites [1] as
well as person-to-person contact [2–4] and exposure to the blood of infected individuals [5,6].
Additionally, there have been reports that some veterinarians and pet owners in Japan
have been infected with SFTSV from SFTS animals [7]. Clinical manifestations of SFTSV
infection include fever, thrombocytopenia, and gastrointestinal reactions, with severe cases
leading to multiple organ failure and death [1]. Despite global attention, the pathogenic
mechanism of SFTSV infection remains unclear, and there is a lack of effective vaccines and
treatments. Additionally, our understanding of the molecular mechanisms and immune
response regulation in SFTSV infection is limited. On one hand, the basic biological
characteristics and infection mechanism of SFTSV, a newly discovered virus, have not been
fully elucidated, particularly in the human host [8]. Furthermore, there is a relative lack of
research on the molecular mechanism of SFTSV infection and the regulation of immune
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response. On the other hand, due to the high pathogenicity of SFTSV, laboratory research
on this virus carries inherent risks, which restricts researchers from conducting in-depth
investigations into its infection mechanism. Therefore, it is of paramount importance not
only to prevent and control the spread of SFTSV but also to urgently conduct further
comprehensive research on its infection and pathogenesis.

The THP-1 cell line, derived from patients with acute monocytic leukemia, is widely
used in immunology, viral infection, and cell biology research [9]. Its ability to differen-
tiate into mononuclear/macrophage cells makes it an ideal model for studying mononu-
clear/macrophage function, mechanisms, and signaling pathways [10,11]. Compared to
human peripheral blood mononuclear cells (PBMCs), THP-1 cells are easier to culture, have
a stable genetic background, and exhibit less individual variation, making them suitable for
studying viral infection and immune response [12,13]. Thus, investigating SFTSV infection
in THP-1 cells can provide valuable insights into the interaction between the virus and
human host cells as well as the mechanisms and pathogenesis of SFTSV infection.

Transcriptomics, a research method for studying gene expression, can reveal com-
prehensive gene expression changes and regulatory mechanisms [14]. In the context of
SFTSV, transcriptomic analysis can uncover the overall expression and changes in host
transcription during infection, identify genes and pathways related to viral infection, and
shed light on the interaction between SFTSV and host cells as well as the infection and
pathogenesis of SFTSV.

Therefore, this study aims to perform transcriptomic analysis on THP-1 cells infected
with SFTSV at different time points. By examining the changes in host transcription
and immune response regulation during SFTSV infection, we can gain insights into the
virus–host interaction and the underlying mechanisms. This research will provide a
theoretical basis for preventing and controlling SFTSV infection as well as novel ideas
and approaches for the clinical treatment of SFTS. Furthermore, the findings from this
study will contribute to a deeper understanding of the molecular mechanisms and immune
response regulation in SFTSV infection, paving the way for future research and offering
new perspectives for the clinical management of related diseases.

2. Materials and Methods
2.1. Cells, Viruses, Antibodies and Other Reagents

The THP-1 cells were obtained from the ATCC cell line, and the virus was a strain
HB29 of the SFTSV virus (GenBank No. HM745930, HM745931, HM745932) isolated from
diagnosed patients with SFTS by the Chinese Center for Disease Control and Preven-
tion. The antibodies used in this study included Mouse Anti-Human CD14 (FITC marker)
(BD) (Franklin Lakes, NJ, USA). Additionally, commonly used reagents and materials
included 4% paraformaldehyde (Biosharp) (Hefei, China), Triton X-100 (Beyotime) (Shang-
hai, China), Saponin (Beyotime), RPMI 1640 (ThermoFisher) (Waltham, MA, USA), EDTA
(Gibco) (Grand Island, NY, USA), BSA (Coolaber) (Beijing, China), fetal bovine serum (FBS)
(Gibco) (Grand Island, NY, USA), Penicillin/Streptomycin (PS) (Gibco) (Grand Island, NY,
USA), phorboll-12-myriate-13-acetate(PMA) (Sigma Aldrich) (St. Louis, MO, USA), DAPI
staining solution (Beyotime) (Shanghai, China), 8-well chamber cover glass (ThermoFisher)
(Waltham, MA, USA), etc. The detailed procedural steps of the experiment are illustrated
in Figure 1A.

2.2. Induction of THP-1

THP-1 cells were maintained in RPMI 1640 with 10% FBS and 1% PS added at 37 ◦C
and 5% CO2. In separate infection experiments, monocyte activation was induced by
stimulation of cells with 80 ng/mL of phorboll-12-myriate-13-acetate (PMA) for 24 h [15,16].
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Figure 1. Illustrates the experimental design flowchart and data analysis process. (A) The preparation
of cell samples for high-throughput RNA sequencing is depicted. (B) A bioinformatics analysis
protocol is outlined.

2.3. Cell Samples Preparation for Flow Cytometry

The induced THP-1 cells, converted to an adherent form, were digested with EDTA
and collected by centrifugation. The cells were then resuspended in PBS with 1% FBS
and subjected to another round of centrifugation. Afterward, the cell pellet was stained
with a mixture of staining buffer and CD14 FITC antibody, followed by incubation in a
light-free environment. The cells were then cleaned and collected through multiple rounds
of centrifugation. Finally, the cells were resuspended in PBS with 1% FBS and loaded
onto a flow cytometry tube for analysis [17].The proportion of THP-1 cells showing FITC
fluorescence was calculated as the induction rate of PMA-induced THP-1 cells.
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2.4. Cell Samples Preparation for Cellular Immunofluorescence

THP-1 cells induced by PMA and THP-1 cells treated with RPMI 1640 were cultured on
8-well glass slides. At 60% density, cells were fixed with 4% paraformaldehyde for 30 min
at room temperature. After rinsing with 1 × PBS, the cell membrane was sealed with 0.15%
Saponin solution. Following removal of the sealing solution, cells were incubated with PBS
containing 3% BSA. CD14 FITC antibody was added and incubated in the dark or covered
with tinfoil. After rinsing with PBS, DAPI solution was applied for nuclear staining. Cells
were observed using fluorescence microscopy.

2.5. SFTSV Infection in dTHP-1 Cells

PMA-induced THP-1 cells were batch-infected with SFTSV(HB29). For the purpose
of viral infection, THP-1 macrophages were allowed to reach 80–90% confluence before
infection with SFTSV at a specified multiplicity of infection (MOI = 0.5) using RPMI
medium 1640 containing 2% FBS for 2 h. The infection process was carried out under
optimal conditions to ensure maximum infectivity and minimal cell death. After removing
the supernatant, cells were incubated with standard SFTSV for 1 h at 37 ◦C. Following virus
removal and PBS wash, cells were incubated in cell preservation solution. Different time
points (0.5 h, 2 h, 8 h, 24 h, and 48 h) were collected by EDTA digestion and centrifugation.
Cell pellets were resuspended, cleaned, and stored for further experiments.

2.6. Bioinformatics Analysis
2.6.1. Principal Component Analysis

We conducted principal component analysis (PCA) using the R software package
stats (version 3.6.0). Firstly, missing values in the expression profile were addressed by
removing rows or columns with more than 50% missing data. The expression profile was
then normalized through log2 (x + 1) transformation. Next, z-score normalization was
applied to the expression profile. Finally, we used the prcomp function for dimensionality
reduction analysis, resulting in the final reduced matrix. All statistical analyses were
performed using R software (Version R-4.3.1 for Windows). Significance was determined at
p < 0.05 or p < 0.01. The detailed bioinformatics analysis workflow is outlined in Figure 1B.

2.6.2. DEGs Identification

Linear models for microarray data (Limmas) are a differential representation screening
method based on generalized linear models [18]. The differential expression analysis was
performed using the limma (version 3.40.6) package in R. The lmFit function was used
for multiple linear regression of the expression profiles. The eBays function was used
to compute moderated t-statistics, moderated F-statistics, and log-odds of differential
expression through empirical Bayes moderation of standard errors. Differential genes were
identified based on a fold change threshold of 1.5 and a false discovery rate (FDR) < 0.05.
Volcano plots and heat maps were used for visualization.

2.6.3. Function and Pathway Enrichment Analysis

For gene function and pathway enrichment analysis, we utilized the KEGG REST API
(https://www.kegg.jp/kegg/rest/keggapi.html (accessed on 1 October 2023)) to obtain
the latest gene annotation of pathways. The clusterProfiler (version 3.14.3) package in R
was employed for enrichment analysis [19]. Enriched gene sets with a p-value < 0.05 and
an FDR < 0.25 were considered statistically significant.

2.6.4. WGCNA Analysis

WGCNA (Weighted Gene Co-expression Network Analysis) was performed to con-
struct a scale-free co-expression network. MAD (Median Absolute Deviation) was calcu-
lated for each gene, and outlier genes and samples were removed [20]. Pearson’s correlation
matrices and average linkage hierarchical clustering were utilized to construct a weighted
adjacency matrix. The power parameter was set to 9. The topological overlap matrix

https://www.kegg.jp/kegg/rest/keggapi.html
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(TOM) was derived from the adjacency matrix, and dissimilarity (1-TOM) was calculated.
Genes with similar expression profiles were classified into modules using average linkage
hierarchical clustering with a minimum module size of 30. Sensitivity was set to 3.

2.6.5. LASSO/Cox Regression Analysis

Survival time, survival state, and gene expression data were integrated using the
glmnet package in R, and LASSO/Cox regression analysis was performed [21].

2.6.6. Mfuzz Soft Cluster Analysis

The Mfuzz package in R was used for soft clustering analysis of microarray data. Fuzzy
C-Means clustering (FCM) was employed to analyze the time trend of gene expression
changes, and genes with similar RNA expression patterns were classified into clusters [22].

2.6.7. GSEA Results Display

Gene Set Enrichment Analysis (GSEA) was conducted using the GSEA software
(version 3.0) [23]. Samples were divided into high and low expression groups based on the
expression level of the gene. The Molecular Signatures Database was utilized for pathway
analysis [24], and the top ten KEGG pathways with positive and negative correlations were
visualized. A significance threshold of p < 0.05 and FDR < 0.25 was applied.

2.6.8. GEO Datasets Involved in This Study

The first dataset used in this study comes from GSE144358 (platform: GPL20795
HiSeq X Ten (Homo sapiens)). It was retrieved from the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm) accessed on 1 November 2023. This dataset includes 21
samples from healthy humans, 19 samples from recovered humans, 22 samples from acute
recovered humans, and 15 samples from acute deceased humans.

To assess the specificity of the identified feature genes, this study conducted an
analysis of four additional GEO datasets (Accession IDs: GSE18816 [25], GSE41300 [26],
GSE141236 [27], GSE162261 [28]). These datasets were utilized as external validation sets
to examine the expression patterns of the target feature genes in both clinical samples and
macrophages cultured in the laboratory. Specifically, the GSE18816 dataset comprises
9 samples infected with H1N1, 9 samples infected with H5N1, and 9 mock control
samples. The GSE41300 dataset consists of 9 samples infected with Lassa Virus, 9 samples
infected with Mop/Las virus, and 9 uninfected control samples. In the GSE141236
dataset, there are 3 samples of macrophages infected with HCMV and 3 uninfected
control macrophages. Lastly, the GSE162261 dataset includes 3 samples infected with
IAV and 3 uninfected control samples. These diverse datasets serve as crucial external
benchmarks for evaluating the robustness and reliability of the identified feature genes
in different experimental conditions.

3. Results
3.1. PMA Induction Results of THP-1 Cells

Flow cytometry analysis revealed significant differences between the PMA-induced
dTHP-1 cells and the control THP-1 cells. As shown in the flow cytometry sorting results
figure, Figure 2A,B,F,G represent the preliminary steps of gradually screening the target
cell population of PMA-induced dTHP-1 cells and control THP-1 cells samples, respec-
tively. Finally, Figure 2C,D,H,I were obtained, which can be clearly observed through the
corresponding statistical results (Figure 2E,J). The proportion of CD14-positive cells, as
detected by flow cytometry using CD14-FITC antibody, was 75.4% in the PMA-induced
dTHP-1 cells (Figure 2D,E) compared to only 3.1% in the control cells without PMA induc-
tion (Figure 2I,J). The results showed that under the conditions of 24 h PMA treatment at
80 ng/mL, the proportion of THP-1 cells induced to differentiate into macrophages was
approximately 75.4%. These results are consistent with previous studies [15] and meet the
requirements for subsequent SFTSV infection experiments.

http://www.ncbi.nlm
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Figure 2. The results of THP-1 cell sorting using a flow cytometer with CD14-FITC labeling for cell
sorting. (A–C) represent the gating strategy employed during the sorting of PMA-induced THP-1
cells, labeled as Gate 1 to Gate 3. (D) displays a peak map illustrating the cellular composition and
distribution resulting from the sorting of PMA-induced THP-1 cells. (E) presents the percentage
composition of FITC-positive cells obtained from the sorting of PMA-induced THP-1 cells. Similarly,
(F–H) depict the gating strategy utilized during the sorting of THP-1 cells in the control group.
(I) exhibits a peak map illustrating the cellular composition and distribution resulting from the
sorting of THP-1 cells in the control group. Finally, (J) provides the percentage composition of
FITC-positive cells obtained from the sorting of THP-1 cells in the control group.
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3.2. Fluorescence Microscopy Results of PMA-Induced and Normal Control THP-1 Cells

The fluorescence microscopy images (Figure 3) demonstrate the staining patterns
of dTHP-1 cells induced by PMA and the control THP-1 cells. Figure 3A shows the
DAPI staining of dTHP-1 cells, Figure 3B shows the FITC staining of dTHP-1 cells, and
Figure 3C presents the merged result of DAPI and FITC staining for dTHP-1 cells. Similarly,
Figure 3D–F display the corresponding staining results for the control THP-1 cells. The
results indicate a significant increase in the proportion of dTHP-1 cells in the THP-1 cell
population after PMA induction, consistent with the findings from flow cytometry analysis.
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Figure 3. Fluorescent labeling of THP-1 cells. (A–C) represent the labeling of dTHP-1 cells using
markers DAPI, FITC, and Merge. (D–F) exhibit the labeling of control THP-1 cells using markers
DAPI, FITC, and Merge, while the surrounding THP-1 cells showed no fluorescence signal.

After establishing the treatment conditions to induce dTHP-1 cells from THP-1 by
PMA, we conducted batch culture and induction of THP-1 cells. Cell samples were collected
at different time points (control, 0.5 h, 2 h, 8 h, 24 h, and 48 h) during SFTSV infection of
dTHP-1 (Figure 1A). Each time point was performed in triplicate, resulting in a total of
18 cell samples, including the control group, for subsequent transcriptome sequencing.

3.3. Transcriptome Sequencing Data Quality Control

The error rate for base calling (Error (%)) did not exceed 0.05%, meeting the standard
requirements for data quality control in transcriptome sequencing. Moreover, the distribu-
tion of sequencing error rates demonstrated that Q20 (%) and Q30 (%) values, representing
the percentage of bases with quality scores greater than 20 and 30, respectively, exceeded
97% and 92%, respectively, in all samples. These high-quality scores indicate reliable base
identification and minimal chances of base misinterpretation. Additionally, the GC content
distribution in the sequenced samples did not show any significant deviation between
AT and GC bases, indicating that the sequencing and library preparation processes had
minimal impact on the sequencing results. Overall, the sequencing data in this study
passed rigorous quality evaluation and can be confidently used for subsequent statistical
analysis (Table 1).
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Table 1. Results of data quality control for transcriptome sequencing.

Sample Raw Reads Clean Reads Clean Bases Error (%) Q20 (%) Q30 (%) GC (%)

Con_a 51351534 49380376 7.39 G 0.04 97.56 93.43 47.29
Con_b 48700228 46605374 6.97 G 0.04 96.98 92.03 46.88
Con_c 48772582 46967334 7.03 G 0.04 97.15 92.17 47.08
0.5h_a 57442976 55542550 8.3 G 0.04 97.87 94.31 46.16
0.5h_b 55893148 54049126 8.08 G 0.04 97.6 93.54 46.08
0.5h_c 48629620 47049176 7.04 G 0.04 97.39 92.87 46.2
2h_a 56381612 54489560 8.16 G 0.04 97.56 93.4 46.79
2h_b 55676058 53751606 8.04 G 0.04 97.51 93.26 46.71
2h_c 55803544 53802804 8.05 G 0.04 97.46 93.18 46.67
8h_a 50837064 49222058 7.34 G 0.04 97.89 94.25 47.43
8h_b 47859920 46116568 6.9 G 0.04 97.46 93.2 47.03
8h_c 54598234 52678942 7.88 G 0.04 97.4 92.93 47.07
24h_a 50530122 48702430 7.29 G 0.04 97.17 92.27 47.38
24h_b 50848524 48895934 7.32 G 0.04 97.59 93.54 47.09
24h_c 47937234 46222114 6.92 G 0.04 97.35 92.78 47.15
48h_a 47382892 45919646 6.87 G 0.04 97.85 94.12 47.41
48h_b 53639272 51868716 7.76 G 0.04 97.65 93.62 47.16
48h_c 58370484 56457460 8.44 G 0.04 97.64 93.49 47.51

3.4. Differential Analysis between SFTSV-Infected THP-1 Cells and the Control Group

Principal component analysis (PCA) revealed significant differences in distribution
between SFTSV-infected dTHP-1 cells and the control group (Figure 4A). The heatmap anal-
ysis of the top 100 differentially expressed genes (50 upregulated and 50 downregulated)
clearly distinguished the infected cells from the control group (Figure 4B). Additionally,
the volcano plot analysis identified a total of 5049 differentially expressed genes, with
4072 upregulated and 977 downregulated genes, meeting the criteria of a fold change
greater than 1.5 and FDR < 0.05 (Figure 4C). These results provide valuable insights into
the molecular alterations associated with SFTSV infection in dTHP-1 cells.

Differential gene analysis was performed between SFTSV-infected THP-1 cells and
the control group. To gain deeper insights into these differentially expressed genes, we
applied the WGCNA method for further analysis. The soft threshold power (β) of 9,
with a scale-free topology index (R2) of 0.79 (Figure 5A), was chosen to construct the
adjacency matrix in order to ensure a scale-free network. The average connectivity value
of 400.87 (Figure 5B) was selected to strike a balance between module preservation and
granularity, where higher values result in larger modules with fewer distinct functional
themes and lower values lead to smaller, more specific modules. Through module merging
based on dissimilarity calculations, 10 co-expression modules were obtained (Figure 5C).
In addition, we conducted a comparative analysis of the correlation between different
modules (Figure 5D). Notably, the darkviolet module showed the highest correlation (0.78)
with the infection group (Figure 5E). By assessing gene significance (GS) and module
membership (MM) [29], we identified 515 hub genes with high connectivity within the
clinically significant module, using a cutoff criteria of |MM| > 0.8 and |GS| > 0.1. We
performed a comprehensive analysis to determine the associations between modules and
specific traits, revealing a significant correlation between the darkviolet module and SFTSV
infection samples (Figure 5E). These findings shed light on key factors distinguishing
SFTSV infection from the control group.

Furthermore, the clustering analysis of the top 100 differentially expressed genes in the
heatmap revealed distinct clustering patterns among the dTHP-1 cell samples infected with
SFTSV at different time points (Figure 4B). To gain a deeper understanding of the correlation
and clustering results among samples at various time points (control, 0.5 h, 2 h, 8 h, 24 h, and
48 h) of SFTSV infection in dTHP-1 cells, we performed correlation heatmap and clustering
tree analyses (Figure 6A,B). The findings indicated that the samples from the control
group and SFTSV-infected groups at 0.5 h–2 h, 8 h, 24 h, and 48 h formed distinct clusters,
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displaying substantial differences in their correlation patterns (Figure 6A,B).Therefore, we
conducted LASSO/Cox regression analysis on the expression profiles of the 515 hub genes
obtained from WGCNA analysis. The analysis was performed separately for different time
points of SFTSV infection and the control group. As a result, we identified distinct sets of
characteristic genes that effectively differentiate each time point from the control group
(Figure 6C–F).
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Figure 4. Differential analysis between SFTSV-infected THP-1 cells and the control group. (A) Princi-
pal component analysis (PCA) results of cell samples. (B) Heatmap analysis results depicting the
differential clustering between SFTSV-infected THP-1 cells and the control group. (C) Volcano plot
analysis results showing the differential gene expression between SFTSV-infected THP-1 cells and the
control group.

We conducted UpSet plot intersection analysis on these key genes. Interestingly,
within these intersections, two genes, PHGDH and NLRP12, consistently appeared at
all time points (Figure 7A and Supplementary Table S1), and their expression trends re-
mained largely consistent across various infection time points (Figure 7B). Subsequently,
we performed Gene Set Enrichment Analysis (GSEA) on these two characteristic genes.
The results revealed that PHGDH was enriched in the top-10-ranked signaling path-
ways, including UBIQUITIN MEDIATED PROTEOLYSIS, REGULATION OF ACTIN
CYTOSKELETON, TGF BETA SIGNALING PATHWAY, LYSINE DEGRADATION, T-
CELL RECEPTOR SIGNALING PATHWAY, DRUG METABOLISM CYTOCHROME P450,
LONG-TERM POTENTIATION, PROXIMAL TUBULE BICARBONATE RECLAMA-
TION, B-CELL RECEPTOR SIGNALING PATHWAY, and PROGESTERONE-MEDIATED
OOCYTE MATURATION. On the other hand, NLRP12 was enriched in the top-10-
ranked signaling pathways, including CHEMOKINE SIGNALING PATHWAY, FOLATE
BIOSYNTHESIS, TOLL-LIKE RECEPTOR SIGNALING PATHWAY, CYTOSOLIC DNA
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SENSING PATHWAY, RIG-I-LIKE RECEPTOR SIGNALING PATHWAY, REGULATION
OF AUTOPHAGY, CYTOKINE–CYTOKINE RECEPTOR INTERACTION, FC EPSILON
RI SIGNALING PATHWAY, PRIMARY BILE ACID BIOSYNTHESIS, and CALCIUM
SIGNALING PATHWAY (Figure 7C,D).

Based on the enrichment of these two genes, PHGDH and NLRP12, in multiple sig-
nificant signaling pathways, it can be inferred that they play important roles in various
cellular processes. PHGDH’s enrichment in pathways such as UBIQUITIN MEDIATED
PROTEOLYSIS, TGF BETA SIGNALING PATHWAY, and DRUG METABOLISM CY-
TOCHROME P450 suggests its involvement in protein degradation, cellular response
to growth factors, and drug metabolism. These pathways are essential for maintaining
cellular homeostasis and regulating various physiological functions. NLRP12’s enrich-
ment in pathways like CHEMOKINE SIGNALING PATHWAY, TOLL LIKE RECEPTOR
SIGNALING PATHWAY, and RIG I LIKE RECEPTOR SIGNALING PATHWAY indicates
its potential role in immune response and inflammation regulation. These pathways
are crucial for detecting pathogen-associated molecular patterns (PAMPs) and activat-
ing immune responses against infectious agents. Overall, these findings suggest that
PHGDH and NLRP12 may have significant implications in SFTS infection and its related
biological processes, emphasizing their potential importance in disease development
and progression.
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Figure 5. Analysis of differentially expressed gene (DEG) dataset using weighted gene co-expression
network analysis (WGCNA) and identification of candidate key genes. (A) Results of selecting
the soft threshold power in WGCNA. (B) Average connectivity results obtained from WGCNA.
(C) Clustering tree results generated by WGCNA. (D) Correlation analysis results illustrating the
relationship between WGCNA clustering modules. (E) Correlation analysis results depicting the
association between WGCNA clustering modules and differential grouping. (F) Results of correlation
analysis showing the module membership in the darkviolet module and gene significance for the
SFTSV-infected group.
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Figure 6. Clustering analysis of all samples and identification of key feature genes using LASSO/Cox
analysis. (A) Heatmap depicting the correlation analysis between samples. (B) Dendrogram display-
ing the hierarchical clustering results based on gene expression profiles among samples. The sample
groups at 0.5–2 h, 8 h, 24 h, and 48 h were compared to the control group using the LASSO/Cox
regression model. This analysis identified characteristic genes with a fixed lambda value determined
through cross-validation for each time point: (C) 0.5–2 h, (D) 8 h, (E) 24 h, and (F) 48h.
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from each group. (B) Expression trends and 95% confidence interval ranges of two key genes within
the UpSetR intersection results at each time point. (C) GSEA analysis results for the key gene NLRP12.
(D) GSEA analysis results for the key gene PHGDH.

In addition, we performed fuzzy clustering (MUfzz) expression trend analysis on
the expression profiles of the 515 hub genes obtained from WGCNA analysis at different
time points of SFTSV infection (Figure 8A–I). In Figure 8, we present the fuzzy clustering
(MUfzz) analysis conducted on the expression profiles of 515 hub genes identified through
WGCNA analysis at various time points during SFTSV infection. The time series pattern
clustering analysis in Mfuzz is a visual representation of fuzzy clustering, showcasing the
fuzzy membership relationships of each sample to different clusters. The color intensity
of the lines may indicate the degree of membership, with darker colors suggesting higher
membership levels. This visualization method serves to illustrate the ambiguous associ-
ations of each sample with different clusters in a given time series context. The detailed
description and visual representation provided in Figure 8 offer valuable insights into the
expression trends of the identified hub genes at different time points of SFTSV infection, as
determined through fuzzy clustering analysis. Interestingly, the expression trend of cluster
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4 was consistent with the transcriptional changes observed in our identified characteristic
genes, PHGDH and NLRP12 (Figure 8D).
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Figure 8. Fuzzy clustering (MUfzz) analysis of the expression profiles of 515 hub genes obtained
from WGCNA analysis at different time points of SFTSV infection. (A–I) Presentation of 9 MUfzz
results on 515 hub genes. Within the same cluster, the presence of lines in various colors reflects the
sample’s fuzzy membership to multiple clusters.

Therefore, we speculate that there may be other important genes within the gene set
associated with cluster 4. As a result, we conducted heatmap analysis on the expression
profiles of 50 genes within the cluster 4 gene set (Figure 9A), and intriguingly, both PHGDH
and NLRP12 were indeed present in this gene set associated with cluster 4.
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To further investigate the overall functional profiles of these 50 genes, we conducted
GO and KEGG functional enrichment analysis. The results revealed that these genes were
enriched in various biological processes (BPs), cellular components (CCs), and molecular
functions (MFs). The top enriched BP terms included regulation of ventricular cardiac
muscle cell membrane repolarization, regulation of cardiac muscle cell membrane repolar-
ization, ventricular cardiac muscle cell membrane repolarization, regulation of membrane
repolarization, ventricular cardiac muscle cell action potential, cardiac muscle cell mem-
brane repolarization, L-serine biosynthetic process, membrane repolarization, L-serine
metabolic process, and cardiac muscle cell action potential involved in contraction. The
top enriched CC terms included syntrophin complex, BRISC complex, G protein-coupled
receptor dimeric complex, G protein-coupled receptor complex, membrane raft, mem-
brane microdomain, membrane region, anchored component of external side of plasma
membrane, dystrophin-associated glycoprotein complex, and glycoprotein complex. The
top enriched MF terms included ion channel binding, modification-dependent protein
binding, calmodulin binding, phosphorylation-dependent protein binding, methylated
histone binding, methylation-dependent protein binding, microtubule-severing ATPase
activity, beta-adrenergic receptor kinase activity, voltage-gated potassium channel activity
involved in atrial cardiac muscle cell action potential repolarization, and hydrolase activity
acting on carbon–nitrogen (but not peptide) bonds in cyclic amides. In summary, the
top 10 enriched pathways in GO analysis were related to the regulation of ventricular
cardiac muscle cell membrane repolarization, regulation of cardiac muscle cell membrane
repolarization, ventricular cardiac muscle cell membrane repolarization, regulation of
membrane repolarization, ventricular cardiac muscle cell action potential, cardiac muscle
cell membrane repolarization, L-serine biosynthetic process, membrane repolarization,
L-serine metabolic process, and cardiac muscle cell action potential involved in contraction.
In KEGG analysis, the top 10 enriched functional signaling pathways included glycine,
serine, and threonine metabolism; acute myeloid leukemia; biosynthesis of amino acids;
EGFR tyrosine kinase inhibitor resistance; ErbB signaling pathway; longevity regulating
pathway, choline metabolism in cancer; HIF-1 signaling pathway; cholinergic synapse; and
glutamatergic synapses.

Based on the provided information, it is important to note that the functional en-
richment results of these 50 genes are related to the context of studying differential gene
expression in THP-1 cells infected with the SFTSV. The enrichment of genes involved in
the regulation of ventricular cardiac muscle cell membrane repolarization, cardiac muscle
cell membrane repolarization, and L-serine biosynthetic/metabolic processes may indicate
potential implications for cardiovascular function in the context of viral infection. Based
on the results of the enrichment function that the repolarization of the myocardium and
the disturbance of ion channel activity can lead to cardiac dysfunction, we hypothesized
that viral infection may also affect the function of normal cardiac tissue. The presence of
enriched components such as syntrophin complex, G protein-coupled receptor complexes,
and membrane rafts/microdomains suggests the possible involvement of these genes in
signaling pathways and cellular communication processes during viral infection. These
components play crucial roles in cellular responses, including immune signaling, which
are likely relevant in the context of viral pathogenesis and host defense mechanisms. Fur-
thermore, the molecular functions exhibited by these genes, such as ion channel binding,
protein interactions, and enzyme activities, imply their involvement in modulating cellular
processes during viral infection. For example, ion channel binding may indicate a role
in regulating ion fluxes, which could be critical for viral replication or host immune re-
sponses. In terms of the enriched pathways, several notable associations can be made. The
glycine, serine, and threonine metabolism pathway suggests a potential link between these
genes and amino acid metabolism, possibly indicating alterations in metabolic pathways
during viral infection. The acute myeloid leukemia pathway enrichment might suggest a
connection between these genes and hematopoietic disorders, which could be relevant con-
sidering the impact of viral infections on immune cell development and function. Overall,
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these functional enrichments provide insights into the potential roles of these 50 genes in
the context of Novel Bunyavirus infection in THP-1 cells. Further investigations into the
specific functions and interactions of these genes may contribute to a better understanding
of the underlying mechanisms involved in viral pathogenesis, host response, and potential
therapeutic targets for mitigating viral-infection-associated complications.

Furthermore, in order to gain further insights into the potential clinical relevance
of these two genes, we explored the transcriptional expression profiles of patients with
varying degrees of severity in SFTS through the GEO database (GSE144358) [30]. The
results revealed the expression levels and trends of PHGDH and NLRP12 genes. The
analysis demonstrated that the expression level of the PHGDH gene exhibited a linear
increase with the worsening of disease severity, showing significantly higher expression in
SFTS patients who experienced severe outcomes leading to fatality (Figure 10A). On the
other hand, although the trend was not as pronounced as observed for PHGDH, NLRP12
also showed significant differential expression across different disease severities (p < 0.05)
(Figure 10B). These findings suggest that PHGDH may play a crucial role in the progression
and prognosis of SFTS, particularly in severe cases, while NLRP12 may also contribute to
disease severity. Further investigations are warranted to elucidate the precise mechanisms
by which these genes impact the pathogenesis and clinical outcomes of SFTS.
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Figure 10. Expression analysis of gene PHGDH and gene NLRP12 in SFTS patient samples with
different disease severity levels from GSE144358. (A) Expression changes of gene PHGDH in SFTS
patient samples with different disease severity levels. (B) Expression changes of gene NLRP12 in
SFTS patient samples with different disease severity levels.

To further assess the specificity of the feature genes PHGDH and NLRP12, this study
analyzed four additional GEO datasets (Accession IDs: GSE18816, GSE41300, GSE141236,
GSE162261) as external validation sets. These datasets were utilized to examine the ex-
pression patterns of the target feature genes in clinical samples and laboratory-cultured
macrophages. Two of these datasets involve clinical samples infected with viruses that
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induce immune dysregulation, while the other two datasets pertain to infections conducted
on macrophages cultured in the laboratory using viruses. Results indicate that there is no
significant difference in the expression of the feature genes PHGDH (p = 0.94) (Figure 11A)
and NLRP12 (p = 0.84) (Figure 11B) among different groups in the GSE18816 dataset. Simi-
larly, in the GSE41300 dataset, the expression levels of the feature genes PHGDH (p = 0.71)
(Figure 11C) and NLRP12 (p = 0.78) (Figure 11D) across different groups are not statistically
significant. In the dataset involving laboratory-cultured macrophages infected with viruses,
the GSE141236 dataset shows no significant difference in the expression levels of the feature
genes PHGDH (p = 0.10) (Figure 11E) and NLRP12 (p = 0.08) (Figure 11F) between three
macrophages infected with HCMV and three uninfected control macrophages. Likewise,
in the GSE162261 dataset, the expression levels of the feature genes PHGDH (p = 0.10)
(Figure 11G) and NLRP12 (p = 1.00) (Figure 11H) between three samples infected with IAV
and three uninfected control samples are not statistically significant. Based on these results,
we tentatively suggest that the feature genes PHGDH and NLRP12 may serve as a potential
combination of feature genes for SFTSV infection.
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Figure 11. Evaluation of the expression of target feature genes in clinical samples and laboratory-
cultured macrophages using four external validation datasets. (A,B) Expression levels of the PHGDH
and NLRP12 genes in different groups (H1N1 infection group, H5N1 infection group, mock group)
within the GSE18816 dataset. (C,D) Expression levels of the PHGDH and NLRP12 genes in different
groups (Lassa virus infection group, Mop/Las virus infection group, uninfected control group) within
the GSE41300 dataset. (E,F) Expression levels of the PHGDH and NLRP12 genes in different groups
(macrophages infected with HCMV and uninfected control macrophages) within the GSE141236
dataset. (G,H) Expression levels of the PHGDH and NLRP12 genes in different groups (IAV infection
group and uninfected control group) within the GSE162261 dataset.
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4. Discussion

In recent years, there has been some progress in the research on SFTS. However, several
challenges still exist. Firstly, due to the requirement of conducting research on SFTS virus in
Biosafety Level 2 or higher laboratories, sample collection and experimental operations are
limited. This makes it difficult to obtain an adequate number of patient samples and conduct
thorough experimental analysis. Furthermore, SFTS is a newly emerging disease, and our
understanding of its pathogenic mechanisms and immunological characteristics is still
relatively limited, which adds complexity to the research. However, THP-1 cells induced
by PMA have significant value and significance as cellular materials for studying SFTS.
THP-1 cells are a human monocytic cell line that can be differentiated into macrophage-like
cells and exhibit similar functions and phenotypes to human macrophages. By using PMA
induction, THP-1 cells can simulate mature macrophages and better mimic actual infection
conditions [31]. Therefore, utilizing PMA-induced THP-1 cells for SFTS-related research
contributes to a deeper understanding of the disease’s pathogenesis and immune responses.

Moreover, transcriptomic studies play a crucial role in revealing disease mechanisms
and identifying potential biomarkers. For the transcriptomic study of SFTS, we established
infected groups at different time points (0.5 h, 2 h, 8 h, 24 h, 48 h) and control groups.
Through transcriptomic analysis of THP-1 cells infected with SFTSV after PMA induction,
we obtained detailed gene expression profiles at each time point. This transcriptomic study
helps us understand the gene regulatory networks and signaling pathway changes during
SFTS virus infection as well as discover potential targets related to disease progression. In
addition, our research employed various bioinformatics analysis methods for the first time,
such as sample expression profile correlation analysis, cluster heatmap analysis, and cluster
dendrogram analysis. All of these analyses suggest that SFTSV-infected THP-1 cells can be
classified into four stages: 0.5–2 h, 8 h, 24 h, and 48 h. The significance of this clustering
result lies in revealing the dynamic gene expression changes during SFTSV infection, which
further aids our understanding of the virus–host cell interactions and their impact on the
host’s immune response. Through in-depth transcriptomic analysis and clustering results,
we can gain a more comprehensive understanding of the pathogenic mechanisms and
pathological processes of SFTS, providing vital clues for the discovery of new therapeutic
targets and preventive measures.

During the analysis and screening of expression profiles at different time points of
THP-1 cells infected with SFTSV using bioinformatics analysis methods, we identified two
crucial genes: PHGDH and NLRP12. These genes not only displayed similar changes in
expression levels during SFTSV infection but also exhibited significant representativeness
at each time point of infection. Therefore, through LASSO/Cox regression analysis, we
successfully enriched these two important genes across all time periods. Furthermore,
external validation analysis of the expression profiles from the public dataset GSE144358
revealed that the expression levels of PHGDH and NLRP12 remained statistically significant
(p < 0.05). Particularly, PHGDH showed a remarkably high correlation with the severity of
SFTS disease. These findings suggest that the PHGDH and NLRP12 genes hold promise as
potential characteristic genes for monitoring the progression of SFTS disease.

Further review of the literature uncovers the extensive research significance and
value of PHGDH and NLRP12 in virus-infection-related studies. Firstly, PHGDH encodes
phosphoglycerate dehydrogenase, which plays a role in serine synthesis within cellular
metabolic pathways. Studies have demonstrated that serine metabolism plays a pivotal
role in viral infections, influencing viral replication, spread, and modulation of immune
responses [32]. Consequently, investigating the regulatory mechanisms of PHGDH dur-
ing viral infection can shed light on its relationship with viral replication and immune
response regulation and provide a deeper understanding of the pathogenesis of viral in-
fections. Additionally, NLRP12 belongs to the NOD-like receptor family and serves as
an essential inflammatory regulatory protein. Recent research has indicated that NLRP12
exerts negative regulation on inflammation during viral infections and impacts immune
cell apoptosis [33,34]. The regulation of inflammatory responses and the delicate balance
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between immune cell survival and apoptosis are critical factors in the development and
outcome of viral infections. Hence, studying the functionality and regulatory mechanisms
of NLRP12 can contribute to a comprehensive comprehension of the regulatory network
governing immune responses and the mechanisms underlying the interaction between
viruses and host immunity.

At the cellular level, various techniques can be employed to investigate PHGDH and
NLRP12. For instance, gene knockout, overexpression, or silencing methods can be utilized
to explore their functions during viral infections. Moreover, examining protein interactions
and signaling pathways can unveil the intricate interplay and regulatory mechanisms
involving PHGDH and NLRP12 within cells. These studies provide valuable insights
into the molecular mechanisms of viral infections and cellular biology processes, paving
the way for potential therapeutic targets and intervention strategies. Furthermore, at the
clinical population level, studying the significance and value of PHGDH and NLRP12
in viral infections becomes even more imperative. Investigating gene polymorphisms
and expression levels in large-scale populations enables the evaluation of the association
between PHGDH, NLRP12, susceptibility to viral infections, disease severity, and treatment
response. This approach facilitates the prediction of individual susceptibility to viral
infections and the identification of novel biomarkers and supports personalized treatment
and intervention strategies. In conclusion, PHGDH and NLRP12 play significant roles in
virus-infection-related research. By delving deeper into their functionalities, regulatory
mechanisms, and their relationship with viral infections at both the cellular and clinical
population levels, we can enhance our understanding of viral pathogenesis and immune
regulation processes and identify potential therapeutic targets and preventive strategies.

This study exhibits several notable strengths and innovations. Firstly, it demon-
strates meticulous experimental design and handling of multiple time points of SFTSV
infection, coupled with extensive comparative analysis of the corresponding expression
profiles. The successful application of clustering analysis effectively stratifies samples
and unveils distinct data patterns. Additionally, this study employs sophisticated tech-
niques such as soft clustering analysis and LASSO/Cox machine learning methods,
enabling comprehensive assessment of expression profile dynamics across different
infection time points. The identification of two critical genes, namely PHGDH and
NLRP12, which were further validated in an independent clinical dataset, underscores
the robustness of the findings. In addition, we performed a nuanced analysis of the
specific expression profiles of the feature genes in four supplementary external datasets
(Accession IDs: GSE18816, GSE41300, GSE141236, GSE162261). The outcomes of this
analysis lend credence to the possibility that both the PHGDH and NLRP12 genes could
potentially function as distinctive feature genes.

Nevertheless, it is essential to acknowledge certain limitations within this study.
Firstly, there is a need to enhance the accuracy and stability of the employed data anal-
ysis methods. Furthermore, incorporating additional independent validation datasets
would provide further validation and bolster the reliability of the findings. A deeper
investigation into the precise functional mechanisms of the identified genes warrants
attention. Expanding the research scope to encompass a broader array of relevant genes
and pathways would yield a more comprehensive understanding of the subject matter.
It has also been reported that PBL-1, bearing a similar immunophenotype to SFTSV
target cells in fatal SFTS, serves as a potential in vitro model for human SFTSV infec-
tion [35]. Consequently, we plan to further expand and supplement relevant research
content in subsequent studies. Addressing these limitations would significantly elevate
the scientific rigor and translational potential of this study, ultimately contributing to
advancements in SFTSV infection research and clinical practice.
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5. Conclusions

This study implemented experimental designs and procedures at multiple time points
of SFTSV infection, followed by extensive comparisons and analyses of expression profiles
at these different time points. Through cluster analysis, effective sample classification was
achieved, revealing clear structural patterns within the data. Furthermore, soft clustering
analysis and LASSO/Cox machine learning methods were employed to successfully an-
alyze the changes in expression profiles across various infection time points, leading to
the identification of two important genes, PHGDH and NLRP12. And these findings were
further validated in an external clinical dataset, reinforcing their significance and reliability.

Supplementary Materials: The following supporting information can be downloaded at: https://
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