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Abstract: When viruses have segmented genomes, the set of frequencies describing the abundance
of segments is called the genome formula. The genome formula is often unbalanced and highly
variable for both segmented and multipartite viruses. A growing number of studies are quantifying
the genome formula to measure its effects on infection and to consider its ecological and evolutionary
implications. Different approaches have been reported for analyzing genome formula data, including
qualitative description, applying standard statistical tests such as ANOVA, and customized analyses.
However, these approaches have different shortcomings, and test assumptions are often unmet, po-
tentially leading to erroneous conclusions. Here, we address these challenges, leading to a threefold
contribution. First, we propose a simple metric for analyzing genome formula variation: the genome
formula distance. We describe the properties of this metric and provide a framework for under-
standing metric values. Second, we explain how this metric can be applied for different purposes,
including testing for genome-formula differences and comparing observations to a reference genome
formula value. Third, we re-analyze published data to illustrate the applications and weigh the
evidence for previous conclusions. Our re-analysis of published datasets confirms many previous
results but also provides evidence that the genome formula can be carried over from the inoculum
to the virus population in a host. The simple procedures we propose contribute to the robust and
accessible analysis of genome-formula data.

Keywords: multipartite virus; segmented virus; genome formula; statistical analysis; RT-PCR;
sequencing; plant virus; virus evolution; virus ecology

1. Introduction

Many viruses have segmented genomes: their complete hereditary material consists
of multiple nucleic acid molecules. Packaging these genome segments into virus particles
can result in various distributions of genome segments over virus particles [1,2] (Figure 1).
Segmented viruses package one copy of each genome segment into each virus particle
(Figure 1b). This arrangement is thought to ensure genome integrity and maximize op-
portunities for virus transmission. By contrast, multipartite viruses package each genome
segment into a separate virus particle (Figure 1c). This arrangement results in a dependence
on multiple virus particles for successful virus transmission, and it is thought to make
transmission less efficient and, thereby, impose a substantial cost to virus spread [3,4]. In-
terestingly, some viruses blur the distinction between segmented and multipartite viruses.
These viruses do not always package a full complement of genome segments into each
virus particle [5,6], resulting in transmission that depends partly on incomplete parti-
cles [7–9] (Figure 1d). Whereas segmented viruses are most common among animal viruses,
multipartite viruses abound among plant viruses [2,10]. However, there are many exam-
ples of segmented plant viruses [2,10]. At least one multipartite animal virus has been
identified [11], and there are likely more cases [2,12].
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For some multipartite and segmented viruses, variation in the frequency of genome
segments has been observed [8,13–16]. The genome formula is the abundance of all virus
genome segments, and it is typically described in one of two ways. If we take a bi-
segmented virus with segments at equal abundance as an example, the genome formula
can be expressed as a ratio 1:1 (segment1:segment2) or as a set of relative frequencies
{0.5, 0.5} {segment1, segment2}. We use the latter convention throughout this paper. Cur-
rent interest in the genome formula was sparked by the seminal work of Sicard and
coworkers on faba bean necrotic stunt virus (FBNSV), a multipartite DNA virus with eight
genome segments [13]. These authors showed that the genome formula converges on an
unbalanced equilibrium when disrupted, and this equilibrium is host-species-dependent.
Notably, the authors also observed considerable variation within and between plants in
the genome formula, highlighting its stochastic nature. Later work confirmed similar
findings for alfalfa mosaic virus (AMV), a multipartite plant RNA virus with three genome
segments [14]. From a historical perspective, it is interesting to note that previous observa-
tions already showed the variable nature of the genome formula for multipartite [17] and
segmented [18,19] viruses, even if the implications may not have been acknowledged then.
In the meantime, genome formula variation has also been shown for segmented animal
viruses [8,16]. Although studies on the genome formula have focused on full-length virus
genome segments [13,14,20], other genetic elements are also relevant. For example, many
RNA viruses produce sub-genomic RNAs, and for some viruses, these RNAs can be pack-
aged into virus particles [21]. Parasitic genetic elements such as satellites are also known
to affect the genome formula [22,23], and a full understanding will, therefore, require
considering these elements. Given that genome formula variation appears to be a feature
of many virus–host systems, what are the causes and consequences of this variation?

Both random and directional forces are likely to shape variation in the genome formula.
Population bottlenecks are likely to result in stochastic variation in the genome formula.
When the total number of segments entering a cell is small, the frequencies of the different
segment types are likely to vary, a process known as genome formula drift [24]. Sicard et al.
(2013) suggested that variation in the genome formula is similar to copy number variation
(CNV), possibly affecting gene expression and, thereby, enabling a rapid tuning of gene
expression [13]. Under this hypothesis, selection for a beneficial genome formula would
also be a directional force [25]. Other directional forces may include differences in the rates
of replication or encapsidation for different segments [1,14].

Many plant viruses that cause disease and economic losses in cultivated plants are
multipartite or segmented viruses, including viruses with very broad host ranges [26]. For
example, the multipartite viruses cucumber mosaic virus (CMV) and AMV have broad
host ranges, as does the segmented tomato spotted wilt virus (TSWV) [27]. Having three
or four genome segments has been identified as a predictor for a large host range in
plant viruses [28]. As genome formula changes may enable these broad host ranges [1],
the genome formula may also have relevance for understanding virus emergence and
disease outbreaks. There are no reports of genome formula variation in real-world virus
populations; still, we speculate that the genome formula might have value as a tool for the
monitoring of virus populations in crops and predicting disease outcomes. Finally, theory
suggests that agro-ecosystems may also be conducive to the propagation of multipartite
viruses due to many opportunities for transmission in dense monocultures [29]. For these
reasons, studying the infection dynamics and genome formula variation of multipartite
viruses in experiments and in agricultural ecosystems is a relevant topic within plant
virus epidemiology.

Most studies quantify the genome formula with the same molecular method. For
DNA viruses, quantitative polymerase chain reaction (qPCR) is used, whereas RNA viruses
require reverse transcription—qPCR (RT-qPCR). In these assays, specific primers are used
to amplify distinct template sequences on the different genome segments, and SYBR-Green-
induced fluorescence is used to quantify amplicon copy numbers. For those viruses that
generate subgenomic RNAs, primers are designed to amplify templates that only occur
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in the full-length RNA [20]. One study compared three other methods to RT-qPCR for
the quantification of the CMV genome formula: RT—digital droplet PCR (RT-dPCR),
Illumina short-read sequencing, and Oxford Nanopore Technologies (ONT) long-read
sequencing. This study found that the methods give roughly similar results, although
there are systematic differences [20]. Another study on FBNSV showed that rolling circle
amplification (RCA), a common amplification step before sequencing for circular DNA
viruses, may lead to discrepancies in the quantification of the genome formula compared
to qPCR [30].

Figure 1. We provide a schematic illustration of the variation in the distribution of genome segments
(nucleic acid molecules) over virus particles. A legend is given on the far right. In each case shown,
we assume the virus genome consists of the two identical coding genome regions, identified by
blue and red fills, forming one or two segments. (a) Monopartite viruses have a single genome
segment. Note that the two genome regions form a single molecule in the illustration. (b) Segmented
viruses have multiple genome segments: two genome segments in this example. These viruses
package a full complement of genome segments into each virus particle. (c) A multipartite virus
with two genome segments is shown. Each segment is packaged individually into a virus particle.
Infection will depend on the transmission of multiple virus particles, as both a blue and a red segment
are needed. (d) A segmented virus with non-selective packaging is shown. The illustration is a
hypothetical distribution based only on the observation that for some segmented viruses, many virus
particles have an incomplete set of genome segments [5,19]. This organization is included to highlight
that many distributions of genome segments over virus particles are possible, and that the genome
formula of segmented viruses does not have to be balanced (i.e., not 1:1 ratio of genome segments).

Once the genome formula has been quantified, there are several different approaches
for analyzing these data, driven in part by different research questions. For many studies,
a key question is how to make rigorous genome formula comparisons for two or more
groups. To show the breadth of approaches used to address this question, we provide a non-
exhaustive overview (Table 1). When we consider the strengths and weaknesses of these
approaches, we see that most approaches used have some crucial shortcomings (Table 1).
In many cases, model assumptions are not met, or the procedure can only be applied to
a bipartite virus or one specific genome segment. Ideally, we want a single method for
comparing the complete genome formula with a limited set of model assumptions that can
be met in practice.
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Table 1. Approaches to comparing genome formula values for two or more groups.

Approach Strengths Weaknesses Ref.

Analysis of variance (ANOVA) on the
relative frequencies of individual
genome segments

(i) Parsimony of the analysis
(i) Limited to the analysis of individual
segments
(ii) Model assumptions 1

[13]

Multivariate analysis of variance
(MANOVA) on the relative frequency
of all genome segments

(i) Single analysis of all segments
(ii) Technical error included in the
analysis

(i) Dependence between relative
frequencies
(ii) Model assumptions 1,2

[14]

Model selection based on the ∆GF
metric 3 for all genome segments (i) Single analysis of all segments

(i) Assumptions for estimating the
likelihoods and weighing of model
parameters for model selection 4

[20]

T-tests on ratio of the log-tranformed
RNA1:RNA2

(i) Parsimony
(ii) Model assumptions met

(i) Only applicable to bipartite viruses
(ii) Consider effects of a single factor [31]

PERMANOVA on the genome
formula distance metric 5

(i) Parsimony
(ii) Single analysis of all segments
(iii) Model assumptions met

(i) If there are differences in spread,
differences in centroid cannot be assessed [15]

1 Normality of the residuals and equality of variance assumptions may not be met. For the comparison of single
segments with ANOVA, the assumption of independence of observations is met. For comparison of multiple
segments, the assumption is violated. 2 In addition to ANOVA assumptions, MANOVA assumes no multivariate
outliers. 3 The cumulative distance between genome formula observations and a reference value [13], which,
in this case, is the mean value for the group under consideration. 4 To calculate the negative log likelihood for
these data, residuals are assumed to be normally distributed. In addition, each group mean is weighed as a
free parameter for model selection, whereas it follows directly from the data. 5 This metric is described in detail
in Section 3.2.

While there are compelling hypotheses about the genome formula, exploring the
causes and consequences of genome formula variation will require robust approaches. To
date, studies have used a plethora of different approaches, ranging from simple qualitative
comparisons to employing sophisticated statistical methods. This study is focused on these
analysis methods and their effect on outcomes. Based on our previous experience with
developing approaches for analyzing genome formula data, our hypothesis is that the
method used can have a critical effect on study outcome. The result we work towards is
having a robust, well-documented approach to analyzing genome formula data, which
has been applied to various datasets, illustrating its applications and demonstrating its
relevance. Here, we propose a simple and robust approach to genome formula analysis that
relies on the genome formula distance metric [15]. We document this method in detail as a
resource for the analysis of genome-formula data. We provide a framework for interpreting
our metric’s values and explore how this approach can be applied to different problems.
Finally, we re-analyze some previously published datasets to illustrate the benefits of this
approach and as a validation of previous analyses.

2. Methods

All analyses were performed with R version 4.3.1 software for statistical comput-
ing [32]. Calculations of the genome formula distance were performed with the vegdist
function, PERMANOVA was performed with the adonis2 function, and PERMDISP2 was
performed with the betadisper and permutest functions, which all pertain to the vegan
Community Ecology Package version 2.6-4 [33].

All code for analysis and the data formatted for analysis are available as R markdown
files at Zenodo (10.5281/zenodo.10355273). Access to the submission is currently restricted
to avoid any confusion prior to the availability of the paper; please follow this link to
gain access.
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3. Results
3.1. The Genome Formula Distance Metric

Given the shortcomings of many methods for analyzing genome formula variation, we
recently developed another approach, based on the genome formula distance metric [15],
in combination with permutation-based statistical approaches [34,35]. Here, we build on
this previous work by describing this metric in detail and considering some of its attributes,
such as the range of values and its interpretation.

3.1.1. The Genome Formula Distance Metric

We consider the genome formula (G) as the set of relative frequencies for all virus
genome segments. For a viral genome with k segments:

G = { f1, f2, [. . .] fk} (1)

Here, f is the relative mean frequency of a segment, such that for the jth segment:

f j = cj/
k

∑
i=1

ci (2)

Here, c is a measurement of accumulation for a specific segment, such as quantitative
polymerase chain reaction (qPCR) measurements. Per definition, the sum of all f values is
1. When any measurement of segment accumulation c changes, it will affect the relative
frequency of all other segments.

To compare two values of the genome formula, in a previous study, we proposed to
consider the Euclidean distance between them [15]. We refer to this metric as the genome
formula distance (D), such that for two genome formula observations a and b, the distance
between them is as follows:

Da,b =

√√√√ k

∑
i=1

( fa,i − fb,i)
2 (3)

Intuitively, D is simply the length of the straight line connecting two points in an n-
dimensional space (Figure 2). The multivariate genome formula data are, therefore, reduced
to a single distance value, simplifying analysis and removing the dependence between
measurements expressed as relative frequencies. Although we previously described this
metric and applied it for comparing groups of genome formula observations, we did not
consider the properties of this metric in detail. Therefore, before considering here how this
metric can be applied to data for several different goals, we describe some properties of
this metric and generate expectations based on first principles in detail.

3.1.2. Minimum and Maximum Values of the Genome Formula Distance Metric

Various properties of the metric D can be readily established. Its minimum value is Dmin
a,b = 0,

which is when two genome formula values coincide. Its maximum value is Dmax
a,b =

√
2, as can

be shown by induction (Figure 2). For a bipartite virus, the greatest possible D will be obtained

when Ga = {1, 0} and Gb = {1, 0}, when Da,b =
√
(1− 0)2 + (0− 1)2 =

√
2. For tripartite

and tetrapartite, the greatest distance occurs along the edges of the genome formula space.
These edges represent the line connecting G values composed of the presence of only one
segment, resulting in Da,b =

√
2 (Figure 2). In real life, we do not expect to see such

large values, as we do not expect to see replicating virus populations in which only a
single segment is present. Although it is possible for some multipartite viruses to lose
and reacquire a segment [36], all or a number of core segments are often required for
replication [3,37]. It is, therefore, interesting to consider what values of D can be expected
under scenarios with a higher biological relevance.
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Figure 2. Here, we illustrate the genome formula distance metric (top panels, green lines) and
its maximum possible distance for different numbers of genome segments (bottom panels, purple
arrows). Figure axes are genome segment frequencies (f ) for 2 (panels (a,b)), 3 (panels (b,c,f,g)), or
4 genome segments (panels (d,h)). (a) For a bipartite virus, we illustrate two possible genome formula
values with green points and the distance between them with a line. Note that for the bipartite virus,
all possible genome formula values fall on the dotted line connecting (1,0) and (0,1). (b) For a tripartite
virus, we illustrate two possible genome formula values in three-dimensional genome formula space.
As the sum of relative frequencies is 1, all possible genome formula values fall in the triangular plane
illustrated by the dotted lines and light blue shading. (c) As all values fall in the same plane in panel
b, genome formula values for a tri-segmented virus are often illustrated in only this plane, resulting
in a ternary plot. (d) Two genome formula values and their distance are illustrated for a tetrapartite
virus in a quarternary plot. All values in the tetrahedron represent possible genome formula values,
as indicated by the light blue shading. (e) The maximum possible genome formula distance for a
bipartite virus is simply the line connecting the points (1,0) and (0,1). (f) For the tripartite virus, the
longest possible distance in the genome formula space is attained along its borders, resulting in an
identical maximum genome formula distance to the bipartite virus. The light blue shading indicates
the possible space for genome formula values. (g) The outcome described in panel f is clearer in the
ternary plot of the genome formula space. (h) For a tetrapartite virus, there is no distance between
two points in the genome formula space that is longer than the maximum distance for the bipartite
and tripartite viruses. This maximum distance occurs at the edges of the genome formula space, as
indicated by the light blue shading, connecting the vertices, which represent the presence of a single
segment. To keep the panel clear, we only illustrate this for one edge for a tetrapartite virus, although
there are six such edges.

3.1.3. Distance Metric for Random Genome Formula Variation

To determine a plausible upper limit for the mean distance between two observations
of the genome formula (Da,b), we assume that all genome segments must be present in
the virus population, but that the level of accumulation is, otherwise, entirely random.
For each segment, we, therefore, sample a value from a uniform distribution and then

determine the mean pairwise distance Drand
a,b . The values of Drand

a,b depend on the number of
genome segments, with a maximum value of 0.391 for a tri-segmented virus (Table 2). If
we find similar values for Da,b for a real-world virus population, this result would suggest
a genome formula shaped by random levels of accumulation for the different segments.
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Table 2. Expected values of D for random genome formula variation (Drand
a,b ) or the maximum genome

formula drift introduced by a single bottleneck event (Ddri f t
a,b ).

Number of Genome Segments ¯
D

rand

a,b
¯
D

drift

a,b
λ1

2 0.3855 0.2877 5.37
3 0.3905 0.2801 7.08
4 0.3638 0.2629 9.12
5 0.3367 0.2494 10.47
6 0.3132 0.2341 12.30
7 0.2934 0.2189 14.12
8 0.2767 0.2060 15.85
9 0.2625 0.1929 18.20
10 0.2501 0.1847 19.50

1 The bottleneck value corresponding to the maximum Ddri f t
a,b value.

3.1.4. Distance Metric for Maximum Genome Formula Drift

Whereas the strength of genetic drift decreases monotonically as effective population
size increases, the strength of genome formula drift is maximized at an intermediate
effective population size [25]. Therefore, to determine the maximum level of genome
formula drift that a single population bottleneck event can induce, we have to consider a
range of bottleneck sizes. We assume that the total number of virus particles that initiates
an infection follows a Poisson distribution with a mean value λ and consider the predicted
genome formula distance over a broad range of λ values for different numbers of genome

segments (Figure 3). The maximum genome formula distance values, Ddri f t
a,b , are given

in Table 2. As expected, these values are lower than those obtained for random genome

formula variation (Drand
a,b ), as the assumption of a Poisson-distributed number of founders

constrains the variation in genome segment frequencies. If a population shows similar
values of Da,b, this suggests that the genome formula variation observed is equivalent to
the maximum variation that can be generated by a single bottlenecking event.

Figure 3. The effects of the number of segments and bottleneck size on the predicted genome formula
distance are illustrated. The x-axis indicates the number of virus genome segments, whereas the y-axis
indicates the log-transformed number of infection founders (λ). For all combinations of these values,
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we predicted the mean genome formula distance Da,b, a value indicated by the heat according to
the legend on the far right. We used these simulation results to determine the highest value of Da,b

for each number of genome segments, a value we term Ddri f t
a,b . Note that the highest mean distance

values occur at intermediate values of λ, as well as being associated with higher values of λ as the
number of segments is increased.

3.2. Applications of the Genome Formula Distance Metric

To illustrate how this metric can be applied to experimental data, we re-analyze
datasets from several studies on plant multipartite viruses. We do not attempt to reproduce
all analyses in these original studies here. Rather, we focus on a few cases to illustrate how
an approach based on the genome formula distance can be used. Note that all the genome
formula data re-analyzed throughout this study were obtained through qPCR or RT-qPCR.
The only exception is the methods comparison by Boezen and coworkers [20]. Here, for
that study, we also explicitly address the effect of different methods on genome formula
quantification, as was performed in the original work.

3.2.1. Comparison of the Genome Formula to Theoretical Values

We defined clear expectations for the upper limit of the genome formula distance

metric for the random accumulation of genome segments (Drand
a,b ) or the maximum amount

of genome formula drift generated by a single population bottleneck (Ddri f t
a,b ) (Table 2). First,

we compare these theoretical predictions to observed values of genome formula distance
(Da,b). We obtain these observed values by re-analyzing genome formula data reported in
three experimental studies in which the genome formula was measured in single leaves
or whole plants [13–15]. For the tripartite RNA viruses AMV and CMV, we find that the
observed values for the genome formula distance are below both of our reference values
(Table 3), as expected for systems that appear to converge on an equilibrium value. Two
out of three measurements for AMV are close to the value measured for CMV (~0.20),
which is near to prediction for maximum genome formula drift ( Ddri f t

a,b ∼ 0.28 for a
tri-segmented virus). For the octapartite DNA virus FBNSV, we see a decrease in Da,b,
indicating a reduction in variability over leaf levels (Table 3) as reported in the original
study in Figure 3A [13]. The decrease in Da,b over leaf levels is highly significant (Kendall
rank correlation: τ = 0.368, N = 77, p < 0.001). When we compare values of Da,b to model

predictions, we find that it is higher than Drand
a,b in the inoculated leaf (leaf level 1) but falls

to and remains at levels below the Ddri f t
a,b predictions by leaf level 3 (Table 3).

Table 3. Observed values for the genome formula distance (Da,b) for two tripartite viruses.

Genome Segments
Model Predictions 1

Drand
a,b Ddrift

a,b
Ref Experiment n Da,b ± SD

3 0.391 0.280 [14] AMV in N. benthamiana, inoculated 6 0.077 ± 0.015
AMV in N. benthamiana, lower leaf 6 0.195 ± 0.029
AMV in N. benthamiana, upper leaf 6 0.197 ± 0.124

[15] CMV in N. tabacum, whole plant 9 0.207 ± 0.069

8 0.277 0.206 [13] FBNSV in V. faba, leaf level 1 9 0.352 ± 0.097
FBNSV in V. faba, leaf level 2 8 0.275 ± 0.062
FBNSV in V. faba, leaf level 3 13 0.198 ± 0.045
FBNSV in V. faba, leaf level 4 15 0.175 ± 0.050
FBNSV in V. faba, leaf level 5 16 0.198 ± 0.063
FBNSV in V. faba, leaf level 6 16 0.178 ± 0.031

1 Predictions of the mean genome formula distance under random accumulation (Drand
a,b ) and the maximum

genome formula drift introduced by a single bottleneck event (Ddri f t
a,b ) are given, depending on the number of

genome segments, as given in Table 2.
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Overall, these comparisons between model predictions and observed values of Da,b
underscore that there is considerable genome formula variation, suggesting that stochastic
forces play an important role in shaping the genome formula. The differences in variability
for the AMV estimates might reflect differences between the inoculated and systemic leaves
but may reflect the relatively low number of replicates for each condition (n = 6). This
variability stresses the need for high levels of replication for the representative estimates
of these indexes. For FBNSV, the higher-than-expected genome formula variation in the
inoculated leaf is striking. However, this phenomenon is probably related to the inoculation
with Agrobacterium, as once the virus has systemically moved, it no longer surpasses model

predictions of Drand
a,b .

3.2.2. Comparison of the Genome Formula for Different Groups

Boezen and coworkers first applied the genome formula distance metric to compare
the genome formula for different treatments [15]. In this section, we first describe these
previous results in detail, as they are important for understanding this approach and its
limitations. This previous study explored the effects of mixed infection with other plant
viruses on CMV’s genome formula [15]. To compare the genome formula of CMV in differ-
ent treatments, the authors calculated the genome formula distances and then performed
PERMANOVA. PERMANOVA is a permutational multivariate analysis of variance, a non-
parametric ANOVA widely applied in ecology [34,35]. PERMANOVA is often applied
to such analyses because of its robustness: the test makes fewer assumptions than para-
metric procedures. Note that if we apply PERMANOVA to the genome formula distance
as suggested here, we are performing a univariate analysis, for which PERMANOVA is
also suitable. One interesting feature of PERMANOVA is that the procedure detects both
differences in mean (or centroid for multivariate data) and spread. If we detect a significant
difference, we must rule out a significant difference in spread before we can conclude that
there are differences in the mean. The PERMDISP2 procedure tests whether there are signif-
icant differences in spread [34]. When Boezen and coworkers applied this procedure, they
found a significant difference between the PERMANOVA and PERMDISP2 procedures [15].
Therefore, in this case, the authors could only conclude that mixed infections had a signifi-
cant effect on genome formula spread, surprisingly leading to a reduction in the spread
compared to a CMV-only infection. Now that we have described this procedure and its
application in previous work in detail, we consider how it can be applied to other datasets.

To further illustrate how PERMANOVA on the genome formula distance is useful, we
re-analyzed data from four other experiments (see Appendix A for a detailed description).
For the first dataset we consider here, the original study measured the genome formula
of CMV with four different methods in three hosts [20]. The study found no effect of host
species on the genome formula, and although the different methods gave similar results,
there was a significant effect of method on the measured genome formula [20]. When we
re-analyzed these genome formula data, we found largely similar results when comparing
our new procedure to the model selection in the original study. The PERMANOVA-based
procedure is more robust (Table 1) but still manages to identify some subtle species effects
on the genome formula that were not detected by the original analysis (see Appendix A).
The second dataset we considered was from a study that showed frequency-dependent
selection results in an equilibrium for AMV’s genome formula, and it showed that the
genome formula of this RNA virus is host-species-dependent [14]. A number of datasets are
reported in this paper, and we choose to focus on one specific question for our re-analysis:
are there differences in the genome formula in the inoculated leaf, for leaves inoculated with
different genome formulae? Here, we did not find a significant effect (Appendix A). This
result contradicts the result of the statistical test in the original study. However, all plant
tissues were jointly analyzed in the original paper, whereas here, we focused exclusively
on the inoculated leaf. From a biological perspective, it makes the most sense to look for
an effect of the inoculum early in the infection process. In the final section of the results
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(Section 3.2.3), we explore a different approach to analyzing these AMV data that sheds
more light on the underlying processes.

Next, we compared the genome formula distance for two sets of experiments on the
octapartite FBNSV in a seminal study that reignited interest in these viruses [13]. The
third dataset we re-analyzed considers the genome formula in different leaf levels [13],
the same dataset we used to determine the pairwise distance between genome formula
measurements (Table 3). As we found large differences in genome formula variability
(Table 3), we expect and indeed find that the PERMDISP2 result is significant (Appendix A).
The results of the distance measurements and PERMANOVA are in good agreement.
The original study used ANOVA to analyze the coefficient of variation for the genome
formula in different leaf levels, also finding significant differences in variation between leaf
levels [13]. Second, we considered the FBNSV genome formula in two plant species [13],
for which the authors analyzed the abundance of individual segments. In agreement with
the original analyses, we find highly significant differences in the genome formula distance
between the two plant species, while the experiments in the same plant species render
similar results (Appendix A).

These examples illustrate how readily our proposed approach can be used to analyze
genome formula data. Our results are largely congruent with previous results in three
out of four cases. However, there is a discrepancy for the data of Wu et al. on AMV
infection [14], for which we analyzed a subset of the data using a different approach. This
discrepancy illustrates that the approach and methods used matter for the results obtained.

3.2.3. Comparison of the Genome Formula to Reference

We can also use the genome formula distance metric to compare observations of the
genome formula to a reference. The reference genome formula used will depend on the
question being addressed. We provide some examples to illustrate a range of reference
values and a purpose for the comparison, to show the breadth of potential applications.
These possible reference values include the following: (i) the mean genome formula for
a group of observations (which, in effect, also occurs for PERMANOVA); (ii) the genome
formula used in the inoculum for an experiment, to test whether it is maintained; (iii) a
balanced genome formula (i.e., 1:1:1), to quantify the imbalance in the genome formula
(see examples using another metric [13,16]); or (iv) theoretical predictions of the genome
formula, to fit models to data and test these predictions. One example from previous work
is worthy of mention because the authors used what is effectively the same metric we
are proposing: Wu and coworkers used the genome formula distance metric to consider
whether there was higher virus accumulation as virus populations approached the mean
genome formula value [14]. A rank correlation was used to test for an association between
genome formula distance and accumulation, and the results were significant. Now that
we have given some examples of purposes for which reference values can be used in
combination with our metric, next we consider one application in detail.

We previously considered whether there were significant differences for the AMV
genome formula measured in inoculated leaves [14] when the inoculum genome formula is
considered for the treatment (see Section 3.2.2 and Appendix A). However, in this instance,
one could ask a more specific question: is the genome formula measured in the inoculated
leaf more similar to the genome formula of the inoculum than expected by chance? To
address this question, we first calculate the mean genome formula distance for each AMV
observation to its corresponding inoculum [14]. Next, we resampled the data by randomly
assigning observations to inocula and calculated the mean genome formula distance for
a large number of resampled datasets (104). We can then compare the observed outcome
to the predicted range of genome formula distances for the resampled data to determine
its likelihood. This analysis clearly shows that the observed genome formula distance is
less than that predicted for the resampled data, showing that there is a clear effect of the
inoculum on the genome formula measured in the inoculated leaf (Figure 4, Table 4). The
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genome formula distance is much smaller than the predicted value for randomized data,
showing that the inoculum has a clear effect on the genome formula.

Figure 4. Resampling approach to testing for an effect of inoculum on the genome formula measured
in the inoculated leaf. The blue bars in the histogram indicate the frequency of predicted mean
genome formula distance for 104 resampled datasets, in which observations in the inoculated leaf
were randomly assigned to an inoculum. The red line indicates the genome formula distance for the
actual data.

Table 4. Re-analysis of the AMV genome formula data [14] with a resampling approach.

Genome Formula Distance to Inoculum

Tissue Observed 1 Predicted 2 Ranking 3

Inoculated leaf 0.400 ± 0.242 0.556 [0.434–0.652] 5
Middle leaf 0.484 ± 0.261 0.494 [0.410–0.568] 3683
Upper leaf 0.530 ± 0.237 0.503 [0.418–0.576] 7919

Rest of plant 0.445 ± 0.245 0.486 [0.421–0.538] 533
1 The observed value of the mean genome formula distance to the inoculum in the corresponding tissue, with its
standard deviation. 2 The predicted value of the mean genome formula distance based on randomized datasets,
with its 99% confidence interval. 3 The number of randomized datasets for which the mean genome formula
distance was smaller than the observed value, out of 104 resampled datasets in total. Ranks < 250 or > 9750 fall
outside of the 95% confidence interval, while ranks <50 or >9950 fall outside of the 99% confidence interval.

This result appears to contradict the PERMANOVA test results on the same data, in
which there was not a significant treatment effect. However, these two procedures address
different questions and test different null hypotheses. Rather than considering whether
there is an effect of treatment on the mean, here, we are asking whether means are closer
to a reference corresponding to each treatment. The resampling test we have used in this
section incorporates more information from the experimental setup, resulting in a specific
null hypothesis that can be more readily rejected.

Finally, we can perform the same resampling procedure for other tissues analyzed
in the same experiment, in which case we do not see an effect in any other tissue (Table 4
and Appendix B). Therefore, the effect of the inoculum on the genome formula appears
to be transient, as this effect is absent in systemically infected tissues. In summary, by
reanalyzing these data, we do find strong evidence for an effect of the inoculum: in the
inoculated leaf alone, the genome formula is closer to the inoculum genome formula than
would be expected by chance.

4. Discussion

In the past decade, there has been considerable interest in the genome formula of
both multipartite and segmented viruses [1,2,8,13,14,25,36,38]. However, different studies
have applied different analysis methods, many of which have serious shortcomings. To
address this challenge and provide examples, here, we present some simple and robust
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approaches to analyzing genome formula data. Our approach is based on the genome
formula distance metric, the Euclidean distance between two genome formula values. We
demonstrated the properties of this metric and showed how it can be applied to different
analyses. By reanalyzing previously published datasets, we showed that in some cases,
the approach used matters for the outcome, in support of our expectation. The genome
formula distance is amenable to formal analysis by simple and robust approaches such as
PERMANOVA, using existing software packages such as the vegan package for community
ecology in R [33].

We argue that permutational analyses based on the genome formula distance are
superior to other approaches used to analyze genome formulae, primarily because the
assumptions of the statistical test are met with this procedure. Many of the procedures
used previously by others and ourselves do not meet these assumptions, with one common
violation being the assumption of independence when relative frequencies are analyzed
as independent measurements. The procedures we propose here avoid this problem by
reducing relative frequencies to a single distance measurement. Ultimately, the main benefit
of the procedures we are proposing is greater robustness and, consequently, validity, irre-
spective of test performance. Nevertheless, in two cases, this procedure found differences
where other procedures did not find any, suggesting that the statistical power of these
procedures is not lower.

Most of our reanalysis yielded similar results to the original study. For the work of
Wu and coworkers [14], our initial re-analysis of the inoculated leaf contradicts the study’s
results, whereas our subsequent re-sampling analysis determined a clear effect of the inocu-
lum on the genome formula in the inoculated leaf. By inference, there are, therefore, some
differences between plants due to the inoculum, in agreement with the studies’ conclusions.
The different test results for the PERMANOVA and re-sampling based approaches are
logically compatible given the different null hypotheses being evaluated, and they illustrate
the importance of carefully considering which hypothesis to test. Ultimately, the results
convincingly show a clear legacy of the inoculum genome formula in the inoculated leaf.
What could explain this outcome? It cannot be categorically ruled out that the in vitro
synthesized inoculum has an effect, although this is highly unlikely given the instability of
RNA under ambient conditions. The most likely explanation is, therefore, that insufficient
generations of virus replication occurred for a frequency-dependent selection to alter the
genome formula. Major changes in the genome formula might also be more likely to occur
upon systemic movements of multipartite viruses, especially if these are associated with
low multiplicities of cellular infection (MOI) that are predicted to facilitate rapid changes
when using a theoretical model [25]. What is exciting about this new result is that it shows
that the genome formula can be transmissible, as this is an essential ingredient for its
hypothesized role in virus adaptation to changing host environments [1,13,25].

4.1. Alternative Metrics for Analyzing Genome Formula Data

In their landmark study on the FBNSV genome formula, Sicard et al. and cowork-
ers [13] proposed ∆GF as a metric, which is expressed in general terms as follows:

∆GFa,b =
k

∑
i=1

∣∣ fa,i − fb,i
∣∣/2 (4)

This metric has been used for quantifying the imbalance in the genome formula (e.g.,
comparing empirical values to a balanced genome formula) [13,16]. Given that we advocate
reducing multivariate data to a single distance measurement and then using permutational
statistics, ∆GF also could be used instead of the genome formula distance D and often yield
similar results. We chose the genome formula distance metric mainly because it provides
the simplest and most intuitive representation of the distance between two data points
in an n-dimensional space, i.e., a straight line. Another advantage may be that squaring
differences will more heavily weigh larger distances. Ultimately, both approaches are
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reasonable, and the effect on the results of analysis may often be small. To facilitate the
interpretation of analyses based on the ∆GF metric, we also calculated expected values of
genome formula variation for a random accumulation of segments and under maximum
genome formula drift (Appendix C).

4.2. Caveats

The approaches we propose have some important benefits, but it is important to keep
in mind some limitations. First, when samples have significant differences in genome
formula spread (i.e., as indicated by the PERMDISP2 procedure), no firm conclusions can
be reached on differences in mean using PERMANOVA. Significant differences in spread
between treatments can also be interesting in their own right. For example, Boezen and
co-workers used this procedure to show that mixed infections restricted genome formula
variation [15]. However, if there is not a framework to interpret whether differences in
spread are relevant, this outcome may not be very informative. Second, in some cases
multipartite viruses can lose or gain genome segments that are not essential for replica-
tion [36]. The approaches we propose can handle such data, as segments can have a relative
frequency of zero. However, when segments are missing altogether, we suggest considering
other approaches for analysis. For example, essential FBNSV segments (e.g., R and S) are
typically present at low frequencies ( f < 0.05). Their complete absence would have a
minimal effect on the hypothetical GF distance, but result in virus populations incapable of
replication. Third, methods used for the quantification of the genome formula can have
an effect on the results, as shown previously [20] and confirmed by our re-analysis here
(Appendix A). The analysis of results obtained with different methods clearly should be
avoided. However, as the genome formula quantification method could induce different
amounts of technical variation, a comparison of indexes like genome formula distance
(Da,b) obtained with different methods should also be avoided.

4.3. Concluding Remarks

Genome formula data can have a large number of dimensions, complicating their
visualization, analysis, and, ultimately, the interpretation of results. The visualization of
these data can be aided with the use of ternary plots or radar charts, whereas, here, we
explore new approaches to the analysis. We show that the genome formula distance metric
can be used for a number of different purposes, ranging from comparisons between experi-
mental treatments to comparing data and theoretical expectations. One major advantage of
these approaches is their simplicity and reliance on well-established statistical tests, such as
PERMANOVA. However, other developments suggest future directions for analyzing these
kinds of datasets. First, ecological communities, such as microbiomes, often have high
species richness. Advanced approaches for analyzing the relative frequency of taxonomic
units [39] could serve as inspiration for how to refine methods for genome formula analysis.
Second, machine learning and deep learning algorithms [40] may prove to be valuable
for analyzing genome formula data, as these tools may identify trends that are difficult to
visualize and may not be identified by testing hypotheses specified a priori.
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Appendix A. Results for the Comparison of the Genome Formula for Different Groups

In this appendix, we describe in detail the results summarized in Section 3.2.2 (“Com-
parison of the genome formula for different groups”). To illustrate how this procedure can
be used to address different questions, here, we consider some examples of comparisons of
the genome formula for different groups.

First, we consider our previous work, which measured the genome formula with four
different methods in three hosts [20]. Model selection suggested that only the method
used had a significant effect on the genome formula. To re-analyze these data, we ran a
PERMANOVA on the genome formula distance, including host and method as factors.
We found significant effects for the method (F1,44 = 12.174, p < 0.0001) and host species
(F1,44 = 9.746, p = 0.001) on the genome formula. The PERMDISP2 procedure does not show
significant effects (F11,36 = 2.073, p = 0.051). This reanalysis, therefore, confirms a clear effect
of quantification method on the genome formula. However, there was also an effect of host
in the new analysis, and differences in spread (PERMDISP2) were nearly significant.

We, therefore, looked in more detail at the results by performing one-way PER-
MANOVA for each host and method separately, as well as the corresponding PERMDISP2
tests (Table A1). These analyses revealed a significant effect of method on the mean in C.
quinoa only, suggesting the effects of quantification method are strongest in this host. By
contrast, a significant effect of the host was found only for one method (RT-dPCR), showing
the methods do not agree on a host-species effect. Overall, this new analysis, therefore,
confirms that there are biases in genome-formula quantification methods, while suggesting
these effects manifest in one host species. As the methods do not agree on a host-species
effect on the genome formula, we cannot draw clear conclusions on this effect. However,
three out of four methods suggest that there is not a clear effect, suggesting that for this
panel of host species, CMV does not show differences in the genome formula. Results from
the original [20] and new analysis are, therefore, congruent.

Second, we re-analyzed data from another study that measured the AMV genome
formula [14]. This study showed striking effects of host species on the genome formula
while arguing that the genome formula converges on a host-species dependent equilibrium.
Here, we considered the data showing convergence on an equilibrium in more detail. In
the original study, the ratio of AMV RNAs was varied in the inoculum, and the genome
formula was then measured in different tissues in inoculated plants. Here, we compared
the genome formula in inoculated leaves. This simplifies the analysis and allowed us to
consider the condition in which the genome formula is most likely to have carried over
from the inoculum. The genome formula will most likely carry over to the inoculated
leaf as the virus has not moved systematically, incurring additional bottleneck events and
opportunities for directional forces to act on the genome formula (i.e., selection). We found
an insignificant effect of the inoculum on the genome formula distance with PERMANOVA
(F1,17 = 0.991, p = 0.344) and PERMDISP2 (F6,12 = 0.520, p = 0.812). Both the mean and
spread of the genome formula, therefore, appear to be similar across plants treated with a
different inoculum genome formula.

Next, we reanalyzed data from work on FBNSV by Sicard and coworkers [13]. There
are two datasets of interest in this work. The genome formula was measured in different
leaf levels, showing a drop in genome formula variability with leaf level as described
in Figure 3a in the original study [13], and as confirmed by our re-analysis here (see
Section 3.2.1 and Table 3). When we reanalyzed these data to look for differences in
the genome formula distance between leaf levels, we obtained a significant result for
both PERMANOVA (F1,75 = 4.472, p = 0.002) and PERMDISP2 (F5,71 = 3.241, p = 0.010).
These results confirm the differences in genome formula variation, while we cannot draw
conclusions on whether the mean genome formula changes over leaf levels.
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Finally, we compared a second dataset presented by Sicard and coworkers [13]. Here,
the authors compared FBNSV genome formula measurements in different hosts, as shown
in Figure 2b in the original study [13]. For simplicity, we restricted our analysis to plants in-
oculated with viruliferous aphids and excluded the (aggregated) data from agro-inoculated
plants. First, we analyzed each experiment as a separate treatment to look for overall effects
and found a highly significant result for PERMANOVA (F1,71 = 40.946, p < 0.0001) and an
insignificant result for PERMDISP2 (F4,68 = 2.082, p = 0.088). Therefore, as there are no
significant differences in spread as indicated by the PERMDISP2 results, we can conclude
there is a significant difference in the mean. Next, we performed pairwise comparisons
between experiments to establish which differ significantly (Table A2). Here, we found no
significant differences for the PERMDISP2 procedure, whilst all the results from the two
different hosts were significantly different for PERMANOVA. This result demonstrates that
differences between experiments are due to a host species’ effect on the genome formula.

Table A1. PERMANOVA and PERMDISP2 test results for genome formula observations in three
hosts using four quantification methods, analyzed separately per host and method.

PERMANOVA PERMDISP2

Data Included in Analysis F (d.f.) P F (d.f.) P

C. quinoa, all methods 9.523 (1,14) 0.007 ** 2.293 (3,12) 0.069
N. tabacum, all methods 3.105 (1,14) 0.072 2.144 (3,12) 0.148

N. benthamiana, all methods 2.342 (1,14) 0.126 0.622 (3,12) 0.598
RT-qPCR, all host species 1.723 (1,10) 0.208 1.900 (2,9) 0.205
RT-dPCR, all host species 7.187 (1,10) 0.007 ** 0.671 (2,9) 0.538
Illumina, all host species 3.242 (1,10) 0.101 12.65 (2,9) <0.001 ***

Nanopore, all host species 3.632 (1,10) 0.072 2.988 (2,9) 0.105
** Significant at p < 0.01, *** Significant at p < 0.001.

Table A2. PERMANOVA and PERMDISP2 test results for the pairwise comparison of the FBNSV
genome formula distance for five experiments in two host species (Vicia faba and Medicago truncatula).
Cells below the diagonal give the PERMANOVA result, while cells above the diagnonal give the
PERMDISP2 results. A Holm-Bonferroni correction was made to the threshold for significance, and
all statistically significant results are marked (*). All statistically significant results were below a
threshold value of 0.001, after Holm-Bonferroni correction.

Experiment
V. faba 1 V. faba 2 V. faba 3 M. truncatula 1 M. truncatula 2

Experiment

V. faba 1 F1,14 = 0.593
p = 0.483

F1,40 = 3.525
p = 0.062

F1,21 = 0.185
p = 0.679

F1,X = 0.260
p = 0.712

V. faba 2 F1,14 = 4.397
p = 0.011

F1,36 = 1.124
p = 0.297

F1,16 = 2.130
p = 0.170

F1,17 < 0.001
p = 0.985

V. faba 3 F1,40 = 1.659
p = 0.164

F1,36 = 3.735
p = 0.013

F1,42 = 5.631
p = 0.021

F1,43 = 1.558
p = 0.227

M. truncatula 1 F1,21 = 73.68
p < 0.0001 *

F1,16 = 52.959
p < 0.0001 *

F1,42 = 44.458
p < 0.0001 *

F1,24 = 0.679
p = 0.518

M. truncatula 2 F1,X = 40.926
p < 0.0001 *

F1,17 = 28.968
p = 0.0001 *

F1,43 = 35.289
p < 0.0001 *

F1,24 = 2.006
p = 0.116

Appendix B. Results for the Comparison of the Genome Formula to A Reference

Figure A1 provides the results for the resampling of genome formula distance values,
as compared to the inoculum value, for other tissues in plants infected with AMV as
described in Section 3.2.3 (see also Figure 4 and Table 4).
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Figure A1. Resampling approach for testing for an effect of inoculum on the AMV genome formula
measured in different tissues. The blue bars in the histogram indicate the frequency of predicted
mean genome formula distance for 104 resampled datasets, in which observations in the inoculated
leaf were randomly assigned to an inoculum. The red line indicates the genome formula distance for
the actual data, which in all cases falls well within the 99% confidence interval of the distribution
predicted by resampling (see Table 4). (a) Results for the middle leaf of the plant are shown. (b) Results
for the upper leaf are shown. (c) Results for the rest of the plant tissues are shown.

Appendix C. Predicted Properties of the ∆GF Metric

For the genome formula distance (Da,b), we predicted the variation under random

accumulation of segments (Drand
a,b , Section 3.1.3) and the maximum variation under genome

formula drift by a single bottleneck event (Ddri f t
a,b , Section 3.1.4). These same predictions can

be made for the ∆GF metric (Table A3), to help provide some context for observed values
of the mean pairwise ∆GF (∆GFa,b). Compared to Da,b, there are differences in the absolute
values and for random accumulation. The trend is also different, as it increases with the
number of segments whereas Drand

a,b decreases.
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Table A3. Expected values of ∆GFa,b for random genome formula variation (∆GFrand
a,b ) or the maxi-

mum genome formula drift introduced by a single bottleneck event (∆GFdri f t
a,b ).

Number of Genome Segments ∆GFrand
a,b ∆GFdrift

a,b λ1

2 0.2726 0.2034 5.37
3 0.3046 0.1981 7.08
4 0.3157 0.1850 9.33
5 0.3211 0.1742 10.96
6 0.3241 0.1585 13.49
7 0.3260 0.1493 15.14
8 0.3274 0.1411 16.98
9 0.3285 0.1324 19.05
10 0.3291 0.1236 21.88

1 The bottleneck value corresponding to the maximum ∆GFdri f t
a,b value.
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